
J. Cryptol. (2011) 24: 545–587
DOI: 10.1007/s00145-010-9070-1

Short Undeniable Signatures Based
on Group Homomorphisms∗

Jean Monnerat
SwissSign AG, Sägereistrasse 25, 8152 Glattbrugg, Switzerland

jean.monnerat@gmail.com

Serge Vaudenay
EPFL, 1015 Lausanne, Switzerland

serge.vaudenay@epfl.ch

Communicated by Matthew Franklin

Received 23 May 2007
Online publication 18 June 2010

Abstract. This paper is devoted to the design and analysis of short undeniable signa-
tures based on a random oracle. Exploiting their online property, we can achieve signa-
tures with a fully scalable size depending on the security level. To this end, we develop
a general framework based on the interpolation of group homomorphisms, leading to
the design of a generic undeniable signature scheme called MOVA with batch veri-
fication and featuring nontransferability. By selecting group homomorphisms with a
small group range, we obtain very short signatures. We also minimize the number of
moves of the verification protocols by proposing some variants with only two moves in
the random oracle model. We provide a formal security analysis of MOVA and assess
the security in terms of the signature length. Under reasonable assumptions and with
some carefully selected parameters, the MOVA scheme makes it possible to consider
signatures of about 50 bits.

Key words. Undeniable signatures, Short signatures, Group homomorphisms, Inter-
polation, Interactive proofs

1. Introduction

An undeniable signature scheme is similar to a classical digital signature except that
the recipient of a message cannot verify its validity alone: he needs to interact with the
signer in order to be convinced of the validity or invalidity of the signature. This prop-
erty, called invisibility, opposes to the universal verifiability of classical digital signa-
tures and allows the signer to have a control on how his signature spreads. This concept
was put forth by Chaum and van Antwerpen [17] in 1989 and was mainly motivated
by the need for privacy of a signer dealing with private or sensitive contract. Later

∗ This paper builds upon the conference papers [41,43].

© International Association for Cryptologic Research 2010

mailto:jean.monnerat@gmail.com
mailto:serge.vaudenay@epfl.ch

546 J. Monnerat and S. Vaudenay

on, several additional applications have been proposed such as licensing sensitive soft-
ware [15], electronic voting [52], and digital cash [10,16,50]. An undeniable signature
scheme is composed of a key generation algorithm, a signature generation algorithm,
a confirmation protocol to prove the validity of a valid signature, and a denial protocol
to prove the invalidity of an invalid signature. It achieves nonrepudiation in the sense
that valid signatures can only be forged by the signer and cannot be denied, but invalid
signatures can be denied. Privacy is based on invisibility. It can be strengthened fur-
ther by having proofs nontransferable: a malicious verifier cannot take advantage of the
interaction with the prover to prove (in)validity of a signature to a third party.

Following the seminal article of Chaum and van Antwerpen, a quite fair amount of
work has been dedicated to this field. In particular, their original scheme gave rise to
a series of articles [9,15,18,20,33,38,39,45,46] devoted to schemes based on the dis-
crete logarithm problem. As alternative of the discrete logarithm, Gennaro et al. [24]
proposed an undeniable signature based on RSA and Biehl et al. [6] devised a scheme
based on quadratic orders. The tremendous development of pairing-based cryptography
over the last few years also influenced the field of undeniable signatures as illustrated
by the identity-based scheme of Libert and Quisquater [36] and schemes proposed by
Laguillaumie and Vergnaud [34,35]. Besides, it is worth to mention papers dealing with
other issues such as the transferability of the (in)validity proof of a signature [21] or
blackmailing against the signer [29].

In traditional digital signature schemes, the security collapses when the signature is
too short because of universal verifiability: an attacker can try to guess a signature until
it is valid in order to forge it. One advantage of undeniable signatures is that the security
smoothly decreases with the signature length. As an example, we can think of 20-bit
signatures which cannot be forged but with a probability of success of 2−20. The forger
can increase it in an on-line attack, but the number of verification or signing queries can
be easily limited. So, undeniable signatures could in principle be arbitrarily small, e.g.,
as small as a MAC, although no such signatures were proposed prior to this work.

Our Contribution As far as we know, all previous signature schemes did not fully
exploit the lack of offline verification capability towards the design of schemes offering
very short signatures. One of the main contributions of this work is to remedy to this
situation. To this goal, we develop a general framework based on the sole notion of the
interpolation of group homomorphisms. Based on it, we define a decisional problem and
a computational problem, which generalizes several fundamental problems related to
public-key cryptography. Among them, we find the decision and computational Diffie–
Hellman problems as well as the quadratic residuosity problem. We use this settings
to develop a new scheme called MOVA which is based on a group homomorphism
privately known by the signer.

The interest of this technique to undeniable signatures is twofold. First, group ho-
momorphisms allow one to express the well-known Chaum’s undeniable signature [15]
and the RSA undeniable signature of Gennaro et al. [24] in a unified formalism. Sec-
ondly, we obtain very short signatures in a quite natural way, namely by instantiating
our MOVA scheme with group homomorphisms with a range group of small size. In
addition to this, we introduce nontransferability features in our MOVA scheme.

Short Undeniable Signatures Based on Group Homomorphisms 547

We also propose some two-move verification protocols for MOVA in the random ora-
cle model. As far as we know, these are the first interactive verification protocols achiev-
ing only two moves. We provide some formal security proofs on the different required
properties related to the confirmation and denial protocols such as the soundness, zero-
knowledge, and nontransferability. We address invisibility and unforgeability in settings
where the attacker has access to signing, confirmation, and denial oracles. This provides
precise security bounds and explain how to select MOVA parameters.

Finally, we offer a batch verification protocol.

Structure of the Paper The next section gives the definition of cryptographic primi-
tives, and the subsequent one is devoted to the security model of undeniable signatures.
In Sect. 4, we develop the concept of interpolation of group homomorphisms and pro-
vide some technical results that are necessary for the rest of this article. It includes
interactive protocols that are used in some setup and verification protocols of MOVA.
Then, we give a description of our new scheme called MOVA and prove its security in
Sect. 5. Finally, we provide some possible instantiations and parameters, discuss addi-
tional properties of MOVA, and conclude this paper.

2. Preliminaries

Notation A function f (n) is called polynomial and we write f (n) = poly(n) if there
exists an integer k such that f (n) = O(nk). It is called negligible and we write
f (n) = negl(n) if for any integer k, we have f (n) = O(n−k). For a set S, the nota-
tion s ∈U S means that we assign to s an element picked uniformly at random in S.
For a probabilistic algorithm A, we denote by A(x; r) the output produced by A on in-
put x with coins r and by y ← A(x) the action of assigning y to the output of A with
input x and random coins as we often omit the coins from the notation when unnec-
essary. The statistical distance between two random variables X1 and X2 with range
X is �(X1,X2) = 1

2

∑
x∈X |Pr[X1 = x] − Pr[X2 = x]|. Two random variables X and

Y are computationally resp. statistically resp. perfectly indistinguishable and we write
X ≈c Y resp. X ≈s Y resp. X ≈p Y if no polynomially bounded distinguisher can tell
X and Y apart with nonnegligible advantage resp. �(X,Y) is negligible resp. X and Y

have the same probability distribution.
When dealing with Abelian groups, we will use additive notation for group opera-

tions.

Proof of Membership A proof protocol Proto is a pair Proto = (P , V) of interactive al-
gorithms called a prover and a verifier. The verifier V is assumed to be probabilistic with
polynomial-time complexity. The prover P is unbounded. One of the two algorithms is
called the initiator in the protocol.

We recall that an interactive machine is defined by a deterministic algorithm A
mapping an input x, some coins r , and a list (possibly empty in the case of the ini-
tiator) of input messages m1, . . . ,mn to a next-message A(x,m1, . . . ,mn; r) = m′.
A message ending by a special termination symbol is called a final message. The
(x, r,m1, . . . ,mn) tuple is called the partial view of the machine. It is complete if either
mn or A(x,m1, . . . ,mn; r) is a final message.

548 J. Monnerat and S. Vaudenay

An instance of a protocol execution denoted P (w; rP)
x↔ V (z; rV) refers to using x

as a common input, w as a private input for P (this may be called a witness), z as a
private input for V (this may be called an auxiliary input), and rP resp. rV as random
coins for P resp. V .1 For instance, if the verifier is the initiator and if mV

0 ,mV
1 , . . .

resp. mP
1 ,mP

2 , . . . are the messages sent by the verifier resp. the prover, we have mV
i =

V (x, z, rV ,mP
1 , . . . ,mP

i−1) and mP
i = P (x,w, rP ,mV

0 , . . . ,mV
i) for all i. The complete

view of V is denoted

ViewV
(

P (w; rP)
x↔ V (z; rV)

) = (
x, z, rV ,mP

1 , . . . ,mP
n

)
.

The output from V , denoted OutputV (P (w; rP)
x↔ V (z; rV)), is the last message

from V .
In the random oracle model, algorithms may access to an oracle Gen which imple-

ments a random function with uniform distribution mapping elements of a specified
domain to elements of a specified range. For simplicity, we restrict to cases where the
domain and the range are finite sets. Note that an empty domain corresponds to the
standard model where random oracles are not used.

A proof of membership for language L is defined by a set K of pairs (KV
p ,KV

s), a
mapping L(x) defining the set of witnesses for a given x ∈ L, and a proof protocol
(P Gen, V Gen). The proof must verify the following properties.

Completeness. For any x ∈ L, w ∈ L(x), (KV
p ,KV

s) ∈ K, rP , rV , and any instance of
Gen, we have

OutputV
(

P Gen(w; rP)
x,KV

p←→ V Gen(KV
s ; rV

)) = accept.

ε-Soundness. For any x 	∈ L, any algorithm P ∗, any (KV
p ,KV

s) ∈ K, given a random
rV and a random instance Gen, we have

Pr
[
OutputV

(
P ∗Gen x,KV

p←→ V Gen(KV
s ; rV

)) = accept
]

≤ ε.

The definition was adapted here to accommodate cases where the verifier has a pub-
lic/private key pair. The classical definition with auxiliary input is when KV

p is void.
Later, the secret of the verifier may allow a malicious prover to cheat. For this, we need
to replace the notion of proof by the notion of argument where soundness is replaced
by the following property.

ε-Computational Soundness. For any x 	∈ L, any polynomial algorithm P ∗, given
some random (KV

p ,KV
s) ∈ K, rV , and Gen, we have

Pr
[
OutputV

(
P ∗Gen x,KV

p←→ V Gen(KV
s ; rV

)) = accept
]

≤ ε.

1 Since P is unbounded, we could assume that the prover uses neither witness nor any random coin without
loss of generality. In practice, however, we use a probabilistic polynomially bounded prover with a witness
set up as some kind of secret key. So we keep it in the notation to avoid confusion

Short Undeniable Signatures Based on Group Homomorphisms 549

That is, the malicious prover is now given some limited time to cheat online given
the key of the verifier but still has any time to cheat offline given the instance x.

The proof/argument of membership is zero-knowledge (ZK) if the following property
is satisfied.

Zero-Knowledge. There exists a probabilistic polynomial-time oracle machine B such
that for any x ∈ L, any w ∈ L(x), and any polynomial-time verifier V ∗, any auxiliary
input z, and any KV

p , given a random rP , rV , rB , and Gen, we have

ViewV
(

P Gen(w; rP)
x,KV

p←→ V ∗Gen
(z; rV)

)
≈ B V ∗,Gen(x,KV

p , z; rB
)
,

where B V ∗,Gen(x,KV
p , z; rB) denotes the output of B with oracle V ∗ and Gen, input

x,KV
p , z, and random coins rB . Depending on the type of indistinguishability, we

have computational resp. statistical resp. perfect ZK. We further say that the proof
is straight-line ZK if we can construct an online fake prover P ∗ with input z who
cheats by looking at the communication tape between V ∗ and Gen, i.e., if B consists
of simulating the interaction

P ∗Gen,tape
(z; rP)

x,KV
p←→ V ∗Gen

(z; rV).

We note that the above definition of zero-knowledge is black-box [26], which means
that we require the existence of one “universal” simulator having an oracle access to the
verifier.

In the standard model, Barak et al. [4] proved that zero-knowledge proofs of an NP-
complete language (possibly non-black-box) requires at least three moves. To overcome
this limitation, the notion of zero-knowledge was extended in the random oracle model
(for more details, see [5]) in which the queries to the random oracles are controlled by
the simulator, i.e., it can simulate the output of the oracles, provided that the output dis-
tribution is correct. Pass [49] proposed the notion of deniable zero-knowledge in which
the simulator is no longer allowed to simulate the output of the random oracles, but is
only able to observe the queries made to the random oracles and the corresponding an-
swers. This restriction makes the simulator to produce views that do not yield evidence
that the interactive proof occurred. The above definition follows this model. Pass [49]
showed that two moves are necessary and sufficient to achieve deniable zero-knowledge
for NP. Our interactive zero-knowledge proofs (with two moves) involving random ora-
cles will be deniable. Deniability is indeed crucial to preserve invisibility in undeniable
signatures.2

The argument of membership is nontransferable (NT) if the following property is
satisfied.

Nontransferability. There exists a probabilistic polynomial-time algorithm P ∗ such
that for any x ∈ L, any (KV

p ,KV
s) ∈ K, any verifier V ∗, given a random rP , rV , and

2 As an artefact of the quite unfortunate standard terminology, we can see that we have an undeniable
signature scheme with a deniable protocol which is a deniable proof itself!

550 J. Monnerat and S. Vaudenay

Gen, we have

ViewV
(

P Gen(w; rP)
x,KV

p←→ V ∗Gen(
KV

s ; rV
))

≈ ViewV
(

P ∗Gen(
KV

s ; rP
) x,KV

p←→ V ∗Gen(
KV

s ; rV
))

.

Depending on the type of indistinguishability we have computational resp. statistical
resp. perfect NT.

Clearly, the value KV
s allows a malicious prover to cheat with a verifier with public

key KV
p in polynomial time. Thus, we cannot achieve regular soundness.

We note that the definition of nontransferability allows one to avoid some attacks in
which the verifier V ∗ identified with KV

p interact with the honest signer and a hidden

malicious verifier Ṽ so that Ṽ gets a proof that x ∈ L. Namely, our definition ensures
that V ∗ with knowledge of KV

s could simulate the messages sent by S (without any help
from S) in a straight-line way. Indeed, if we restrict to malicious verifiers knowing KV

s ,
the protocol is straight-line ZK in a standard-model sense since P ∗ does not cheat by
looking at the interaction tape between V ∗ and the random oracle.

Our definition of nontransferability is similar to the one of Camenisch and Michels
[14] with the main difference that our version assumes that V ∗ is computationally un-
bounded. We can thus assume without loss of generality that V ∗ makes no queries to
the signing and confirmation/denial oracles when considering undeniable signatures.
Therefore, the nontransferability of the protocols presented below will also hold with
respect to the Camenisch–Michels definition.

The proof of membership is noninteractive zero-knowledge (NIZK) if the prover is
the initiator and sends a single message and if the protocol satisfies the following prop-
erty.

Noninteractive Zero-Knowledge. There exists a probabilistic polynomial-time oracle
machine B such that for any x ∈ L, any w ∈ L(x), and any KV

p , given a random rP ,
rB , and Gen, we have

(
Gen, P Gen(x,KV

p ,w; rP
)) ≈ B

(
x,KV

p ; rB
)
,

where B(x,KV
p ; rB) generates an algorithm defining a function which simulates Gen.

Trapdoor Commitment Scheme We use trapdoor commitment schemes [11]. These
were used by Jakobsson et al. [30] to construct nontransferable proofs. We will follow
their methodology as well. Trapdoor commitment schemes are made of three proba-
bilistic algorithms. The first one generates a pair of keys (Kp,Ks). The second one is a
commitment algorithm Commit, and the third one is a collision algorithm Equivocate.
On a given message m and random coins dec (which will be used as the decommitment
value), the commitment value is com = Commit(Kp,m;dec). To open a commitment
means to release m and dec and to check that it produces the correct commitment value.
The Equivocate algorithm satisfies the following property: for any message m and any
commitment value com, running Equivocate(Ks,m, com) produces a uniformly distrib-
uted string dec among all those such that com = Commit(Kp,m;dec). Interestingly,

Short Undeniable Signatures Based on Group Homomorphisms 551

Equivocate is not meant to be used at all. We only need its existence as a security war-
ranty. Somehow, it is a “life jacket algorithm.”

We want our commitment scheme to achieve binding and hiding properties. A com-
mitment scheme is computationally binding if no probabilistic polynomial-time al-
gorithm launched with a random KV

p can output two distinct messages m, m′,
two decommitment values dec, dec′, one commitment value com such that com =
Commit(Kp,m;dec) and com = Commit(Kp,m;dec′) with nonnegligible probability.
We denote the success probability of an algorithm A in this game by Succcom-bnd

A .
A commitment scheme is perfectly hiding if the distribution of com given by com =
Commit(Kp,m;dec) is uniformly distributed for any Kp and m. For an example of a
perfectly-hiding and computationally-binding trapdoor commitment scheme, we refer
to Bresson et al. [12].

Trapdoor One-Way Permutations over a set S of bitstrings of a given fixed length
(depending on the security parameter) are made of three algorithms. The first one
generates a pair of keys (Kp,Ks). The other two are deterministic and map x ∈ S to
TPOW(Kp, x) resp. TPOW−1(Ks, x), both in S . They must be such that TPOW−1(Ks,

TPOW(Kp, x)) = x for any x. Here again, TPOW−1 is a life jacket algorithm which is

not meant to ever be used in our constructions. We denote Succinv-tp
A the probability for

an adversary A to compute TPOW−1(Ks, y) given a random (uniform) y ∈ S , without
knowing Ks.

3. Undeniable Signature

We consider two players who are the signer S and the verifier V . Let k ∈ N be a security
parameter, M the message space, and Σ the signature space.3 An undeniable signature
scheme is composed of the four following algorithms.

Setup The setup is composed of two probabilistic polynomial-time (in terms of k) algo-
rithms SetupS and SetupV producing the signer’s key pair (KS

p ,KS
s) ← SetupS (1k)

and the verifier’s key pair (KV
p ,KV

s) ← SetupV (1k). Possible public keys are called
well-formed keys.

Validate A deterministic polynomial-time algorithm Validate(KS
p) is used to check that

KS
p is a well-formed key.

Sign Let m ∈ M be a message to sign. On the input of the signer’s secret key KS
s , the

polynomial-time algorithm Sign generates a signature σ = Sign(KS
s ,m) which lies

in Σ . In this paper we restrict to deterministic Sign algorithms. For all well-formed
KS

p , we say that (KS
p ,m,σ) is valid if for all KS

s such that (KS
p ,KS

s) could be output

by SetupS , Sign(KS
s ,m) = σ . Otherwise, we say that (KS

p ,m,σ) is invalid. We let

Val resp. coVal be the set of all valid resp. invalid (KS
p ,m,σ) triplets.

Confirm and Deny Let (m,σ) ∈ M × Σ be a message-signature pair. Confirm resp.
Deny are interactive algorithms that, together with the set of all possible (KV

p ,KV
s),

3 Sometimes in the literature the signature space depends on the signing key. Since we do not need this,
we assume a “fixed” domain (i.e., depending on k) for simplicity reasons.

552 J. Monnerat and S. Vaudenay

make a ZK argument of membership between S and V for language Val (resp. coVal).
The pair of interactive algorithms (ConfirmS ,ConfirmV) resp. (DenyS ,DenyV) has a
tuple (KS

p ,m,σ,KV
p) as common input, witness input KS

s for S , and auxiliary input

KV
s for V . In these ZK arguments, provers must be polynomially bounded. (Recall

that verifiers are bounded by definition of interactive algorithms.)

An execution of the confirmation resp. denial between S and V with private in-

put KS
s and KV

s will be denoted by VerifyS (KS
s ; rS)

KS
p ,m,σ,KV

p←→ VerifyV (KV
s ; rV) for

Verify = Confirm or Verify = Deny. Correctness of the undeniable signature scheme
comes from the completeness of the two interactive protocols. This requires that under
honest execution of all algorithms, a valid resp. invalid tuple is always proven as such
by the signer to the designated verifier.

Remark 3.1. For basic undeniable signature, we do not need keys for the verifier. They
will be needed later to address nontransferability. This way, the signer can decide to run
an argument for a verifier which is designated by its public key in the tuple instance.

Remark 3.2. Following Kurosawa [32], the undeniable signature SetupS should pro-
vide a signature simulator together with KS

p to guarantee invisibility. Here we assume
that this simulator always generates uniformly distributed samples in Σ and does not
depend on KS

p .

Following [32], the scheme should also provide a Check(KS
s ,m,σ) signature

checking algorithm. Here we concentrate on deterministic Sign algorithm, so that
Check(KS

s ,m,σ) consists of checking the σ = Sign(KS
s ,m) equation.

Following [32], undeniable signatures come with the following security properties:
unforgeability and invisibility, in addition to the ZK properties of Confirm and Deny.
Unforgeability ensures nonrepudiation, so that we can call the scheme a signature
scheme. Nonrepudiation is formalized by resisting adaptive existential forgery attacks.
Invisibility with respect to an active attacker who tries to distinguish a valid message–
signature pair from a randomly picked one is considered. It thus protects privacy. ZK
argument of membership assumes computational soundness of the proof and zero-
knowledge. In addition to this, we will consider nontransferability. This last property
ensures that a malicious verifier is not able to convince any third party of the validity
of the statement (e.g., a given message signature is valid) proven in the protocol. The
nontransferability notion may be important in some applications where the validity of
the argument itself is valuable (like for licensing software).

We consider the standard security notion of existential forgery under an adaptive
chosen-message attack as defined by Goldwasser et al. [28] for classical digital signa-
tures. This notion is similar to Kurosawa–Heng [33] and is adapted as follows.

Existential Unforgeability. An undeniable signature scheme is secure against an exis-
tential forgery under adaptive chosen-message attack if there exists no probabilistic
polynomial-time algorithm F which wins the following game with a nonnegligible
probability.

Short Undeniable Signatures Based on Group Homomorphisms 553

Game: F receives a public key KS
p from (KS

p ,KS
s) ← SetupS (1k)

and a verifier’s key pair (KV
p ,KV

s) ← SetupV (1k). Then, F can query
some chosen messages to a signing oracle, some chosen pairs (m,σ) ∈
M × Σ to a confirmation (and denial) protocol oracle, and interact
with it in a confirmation (denial) protocol where the oracle plays the
role of the signer. All these queries must be polynomially bounded in
k and can be sent adaptively. F wins the game if it outputs a valid pair
(m∗, σ ∗) ∈ M × Σ such that m∗ was not queried to the signing oracle.

The success probability of F in this game is denoted by Succef-cma
F .

We use a similar definition as Kurosawa–Heng [33].

Invisibility. Consider first a probabilistic polynomial-time algorithm D called invisi-
bility distinguisher and the two following games with respect to a bit b.

Gameinv-cma-b . D receives the public key KS
p from (KS

p ,KS
s) ←

SetupS (1k) and a verifier’s key pair (KV
p ,KV

s) ← SetupV (1k), it can
query some chosen messages to a signing oracle and some chosen
message–signature pairs (m,σ) ∈ M × Σ to an oracle telling whether
(m,σ) is valid or not. At some point, D chooses one message m∗ ∈ M
which was not queried to the signing oracle and submits it to the chal-
lenger. If b = 0, he sets σ ∗ = Sign(KS

s ,m∗). Otherwise, σ ∗ is picked
uniformly at random in Σ . D receives σ ∗. After that, the distinguisher
can query the signing, confirmation, and denial oracles again, provided
that m∗ is not a query of the signing oracle and (m∗, σ ∗) is not a query
of the confirmation or denial protocols. Finally, D outputs a guess bit b′.

We define the advantage of the distinguisher as follows:

Advinv-cma
D =

∣
∣
∣Pr

[
b′ = 1 in Gameinv-cma-1

]
− Pr

[
b′ = 1 in Gameinv-cma-0

]∣
∣
∣,

where probabilities are over the random tapes of the involved algorithms. An undeni-
able signature scheme is said to be invisible under a chosen-message attack if there
exists no probabilistic polynomial-time algorithm D with a nonnegligible advantage.

Note that this definition is similar to that of Galbraith et al. [23] except that the distin-
guisher is not allowed to query m∗ to the signing oracle in our definition. The invisibility
notion of Galbraith et al. cannot be satisfied when the signature is deterministic (which
is the case for MOVA). This will be discussed in Remark 5.3.

4. Interpolation of Group Homomorphisms

4.1. Problem Definitions

We define several generic problems related to some arbitrary Abelian groups. Later,
these groups will be generated by a specific setup algorithm, and some attached trapdoor
will render some of the problems easy.

The concept of group homomorphism interpolation is defined below.

554 J. Monnerat and S. Vaudenay

Definition 4.1. Let G, H be two Abelian groups, and S be a subset of G × H written
in the form S = {(x1, y1), . . . , (xs, ys)}.

1. We say that the set of points S interpolates in a group homomorphism if there
exists a group homomorphism f : G −→ H such that f (xi) = yi for i = 1, . . . , s.

2. We say that a set of points B ⊆ G×H interpolates in a group homomorphism with
another set of points A ⊆ G×H if A∪B interpolates in a group homomorphism.

4.1.1. Group Homomorphism Interpolation Problem

We state here the Group Homomorphism Interpolation problem (GHI problem) and its
corresponding decisional problem (GHID problem). All problems assume parameters
defining two Abelian groups G and H , a set S ⊆ G × H of cardinality s, and a positive
integer n. We define the language LGHI(n,S) ⊆ (G×H)n of all tuples interpolating with
S in a group homomorphism and its complement LcoGHI(n,S) = (G×H)n\LGHI(n,S).

n-S-GHI Problem (n-S-Group Homomorphism Interpolation Problem):
Instance: n elements x1, . . . , xn in G.
Problem: Find y1, . . . , yn ∈ H such that ((x1, y1), . . . , (xn, yn)) ∈ LGHI(n,S).

The success probability of an n-S-GHI solver A is denoted by Succn-S-GHI
A .

n-S-GHID Problem (n-S-GHI Decisional Problem):
Instance Generation: The instance T is generated according to one of the two follow-

ing ways and is denoted T0 or T1, respectively. Following T0, an n-tuple of points is
picked uniformly at random in the language LGHI(n,S). Following T1, an n-tuple of
points is picked uniformly at random in (G × H)n.

Problem: Decide whether the instance T is of type T0 or T1.

The advantage of an n-S-GHID distinguisher D is given by

Advn-S-GHID
D

=
∣
∣
∣ Pr
instance∈U LGHI(n,S)

[D(instance) = 0] − Pr
instance∈U (G×H)n

[D(instance) = 0]
∣
∣
∣.

Remark 4.2. The uniform distribution in LGHI(n,S) does not seem easy to produce in
general. However, when S uniquely determines a homomorphism f , one can generate
T0 by picking the xi ’s uniformly at random and setting yi = f (xi) for i = 1, . . . , n.

We will only consider n-S-GHI and n-S-GHID problems with a set S which interpo-
late in a unique group homomorphism. The n-S-GHI problem consists in evaluating the
uniquely defined homomorphism on n elements. The n-S-GHID problem essentially
consists in deciding whether all points of T lie in its graph. Later, in Sect. 4.2, we will
provide instances of GHI and GHID problems.

4.1.2. Related Computational Problems

We also consider the following problems.

d-G-MGGD Problem in G (Modular Group Generation Decisional Problem):

Short Undeniable Signatures Based on Group Homomorphisms 555

Parameters: An Abelian group G and a positive integer d .
Instance: A set of values S1 ⊆ G.
Problem: Does S1 modulo dG span G/dG?

By Lemma 4.3 below, we show that S = {(x1, y1), . . . , (xs, ys)} interpolates in at most
one group homomorphism if and only if S1 = {x1, . . . , xs} spans G/dG modulo dG,
where d is the order of H . We let LMGGD(d,G) be the set of all S1 that span G/dG.

(d, S1)-MSR Problem in G (Modular System Representation Problem):
Parameters: An Abelian group G, a set S1 ⊆ G (of values denoted x1, . . . , xs below),

and a positive integer d .
Instance: An element x ∈ G.
Problem: Find a1, . . . , as ∈ Z such that x ∈ a1x1 + · · · + asxs + dG. If no solution

exists, output ⊥.

d-G-Root Problem in G (d th Root Problem):
Parameters: An Abelian group G and a positive integer d .
Instance: An element x ∈ dG.
Problem: Find r ∈ G such that x = dr .

Group Expert When a participant has a key to run a polynomial-time algorithm to
solve the (d, S1)-MSR and the d-G-Root problems, we say that it is a group expert
for G relative to (d, S1).

4.2. Preliminaries

This subsection is devoted to technical lemmas related to the interpolation of group
homomorphisms. In particular, we provide some criteria for a set to interpolate in at
most one group homomorphism, and we show how to sample elements uniformly.

4.2.1. Uniqueness of the Interpolation

Lemma 4.3. Let G, H be two finite Abelian groups, and d be the order of H . Let
x1, . . . , xs ∈ G span a subgroup denoted by G′. The following properties are equivalent.
In this case, we say that x1, . . . , xs H -generate G

1. For any y1, . . . , ys ∈ H , there exists at most one group homomorphism f : G −→
H such that f (xi) = yi for all i = 1, . . . , s.

2. There exists a unique group homomorphism ϕ : G −→ H such that ϕ(xi) = 0 for
i = 1, . . . , s, namely ϕ = 0.

3. The set Hom(G/G′,H) of all group homomorphisms from G/G′ to H is restricted
to {0}.

4. gcd(#(G/G′), d) = 1.
5. G′ + dG = G.
6. The cosets x1 + dG, . . . , xs + dG span G/dG.

Proof. 1 ⇒ 2 This directly follows by choosing yi = 0 for all i = 1, . . . , s.
2 ⇒ 1 Assume that there exist two group homomorphisms f1, f2 from G to H such

that f1(xi) = f2(xi) = yi for all i = 1, . . . , s. Then, by assertion 2, we deduce that the
group homomorphism f1 − f2 must be equal to the homomorphism 0.

556 J. Monnerat and S. Vaudenay

2 ⇒ 3 Suppose that there exists a homomorphism ϕ̄ : G/G′ → H which is not
equal to 0. Let πG′ : G → G/G′ denote the canonical projection. We define the ho-
momorphism ϕ = ϕ̄ ◦ πG′ from G to H . By definition, πG′(xi) = 0, and therefore
ϕ(xi) = 0 for any i = 1, . . . , s. Moreover, since πG′ is onto and ϕ̄ is not trivial, ϕ must
be different from 0, which contradicts assertion 2.

3 ⇒ 4 Suppose the existence of a common prime factor p of #(G/G′) and d . Then,
from the structure of Abelian groups, G/G′ and H must both possess one cyclic sub-
group U and V , respectively, of order p. Let λ′ denote the exponent of the group G/G′.
By the structure of Abelian groups, we can choose U of the form λ′/p · (G/G′). Hence,
we have a group homomorphism

ϕ : G/G′ −→ U

x �−→ λ′
p

x

which is onto. So, we can define a nontrivial homomorphism which is the composition
of ϕ and the isomorphism between U and V . This contradicts 3.

4 ⇒ 5 Let x ∈ G, and let k = ord(x mod G′) be the order of x mod G′ in the quotient
group G/G′. By assertion 4, d must be invertible modulo k. Let m ∈ Z be such that
m · d ≡ 1 (modk). We have m · d · x ≡ x (modG′). Hence, x − d(m · x) ∈ G′, and
therefore x ∈ G′ + dG.

5 ⇒ 2 Let ϕ ∈ Hom(G,H) such that ϕ|G′ = 0 and x ∈ G. By assertion 5, we can
write x = a1x1 + · · · + asxs + dr for some integers a1, . . . , as and an element r ∈ G.
Thus, ϕ(x) = dϕ(r) = 0. This holds for any x ∈ G, i.e., ϕ = 0.

5 ⇔ 6 This follows from G′ + dG = G ⇔ {x′ + dG | x′ ∈ G′} = G/dG. �

Remark 4.4. Replacing d by the exponent λ of H in assertions 5 and 6 leads to some
equivalent assertions.

Note that the criteria 4–6 suggest that H is only involved by the prime factors in its
order. Later, the smallest prime factor p will play an important role. Note also that if
G = H , these criteria mean that x1, . . . , xs generate G. Furthermore, from assertion 6
we see that S1 ∈ LMGGD(d,G) is equivalent to, say, that S1 H -generate G.

4.2.2. Existence of the Interpolation

Here is a condition allowing one to determine whether a set of points interpolates in a
group homomorphism. The following result assumes that the G-coordinates of this set
of points H -generate G so that the group homomorphism is unique when it exists.

Lemma 4.5. Let G, H , and d be as in Lemma 4.3. Let x1, . . . , xs ∈ G H -generate G.
The set S = {(x1, y1), . . . , (xs, ys)} ⊆ G × H interpolates in a group homomorphism
if and only if for any a1, . . . , as ∈ Z such that a1x1 + · · · + asxs ∈ dG, we have
a1y1 + · · · + asys = 0.

Short Undeniable Signatures Based on Group Homomorphisms 557

Proof. “⇒” By assumption, there exists a homomorphism f : G → H such that
f (xi) = yi for i = 1, . . . , s. Since dG lies in the kernel of f , we have f (a1x1 + · · · +
asxs) = a1y1 + · · · + asys = 0, whenever a1x1 + · · · + asxs ∈ dG.

“⇐” By assertion 5 of Lemma 4.3, we know that any element x ∈ G can be written
in the form x = dr + a1x1 + · · · + asxs for some integers a1, . . . , as and an element
r ∈ G. We now define a function f : G → H such that f (dr + a1x1 + · · · + asxs) =
a1y1 + · · · + asys for any a1, . . . , as ∈ Z and r ∈ G. It remains to prove that f is well
defined on G and that it is homomorphic. Assume that an element x ∈ G admits two
different representations, i.e.,

x = dr + a1x1 + · · · + asxs = dr ′ + a′
1x1 + · · · + a′

sxs .

By assumption, we must have (a1 − a′
1)y1 + · · · + (as − a′

s)y
′
s = 0, and therefore

f (dr + a1x1 + · · · + asxs) = f (dr ′ + a′
1x1 + · · · + a′

sxs).

Finally, the homomorphic property of f follows from the linearity in the ai ’s. �

Remark 4.6. Note that we can replace d by the exponent λ of the group H in
Lemma 4.5.

Remark 4.7. Lemma 4.5 does not hold anymore if we relax the assumption stating
that the elements x1, . . . , xs H -generate G. Choosing G = Z27, H = Z9 ⊕ Z3, s = 1,
x1 = 3, and y1 = (0,1) illustrates this fact.

4.2.3. Examples of GHI and GHID Problems

We can often meet the GHI and GHID problems in cryptography as the following ex-
amples suggest. Here, we exclusively consider 1-GHI and 1-GHID variants.

Example 4.8 (DL parameters). We take a cyclic group G of order q , H = Zq , and a
generator g of G. The set S = {(g,1)} interpolates in a unique group homomorphism,
and the GHI problem is exactly the discrete logarithm problem. The GHID problem is
easy.

Example 4.9 (DH parameters). We take a cyclic group G = H of order q and a gen-
erator g of G. For any a ∈ Zq , S = {(g, ag)} interpolates in a unique group homomor-
phism: the exponentiation to the power a. The GHI and GHID problems correspond to
the Diffie–Hellman problem [22] and the decisional Diffie–Hellman problem with static
key a.

Example 4.10 (QR parameters). Let n = pq be such that p,q are different odd primes
and H = {−1,+1}. We let x1, x2 ∈ Z

∗
n be such that x1 is a quadratic residue modulo p

and not modulo q and that x2 is a quadratic residue modulo q , and not modulo p.
We notice that S = {(x1,1), (x2,−1)} interpolates in a unique group homomorphism
which is the Legendre symbol (·/p). Since it is easy to compute (·/n), the quadratic
residuosity problem [27] with the information x1 and x2 is equivalent to the GHI and
GHID problems.

558 J. Monnerat and S. Vaudenay

Example 4.11 (RSA parameters). Here, we consider the well-known RSA cryptosys-
tem [51]. Let n = pq be an RSA modulus, and G = H = Z

∗
n. Let f : Z

∗
n → Z

∗
n be de-

fined by f (x) = xe mod n for an exponent e such that gcd(e,ϕ(n)) = 1. Given enough
many pairs (xe

i mod n,xi) ∈ Z
∗
n × Z

∗
n, i = 1, . . . , s, such that the first coordinates gen-

erate Z
∗
n, the RSA problem corresponds to the GHI problem with S composed of the

above pairs and e known. If e is known, the GHID problem is easy in this case.

Example 4.12 (BDH parameters). We show here how we can apply the GHI problem
to the Bilinear Diffie–Hellman Problem (BDHP). This problem was used in the semi-
nal paper of Boneh and Franklin [7,8] to propose an identity-based encryption scheme
based on it. Let ê : G1 × G1 → G2 be a bilinear, nondegenerate and computable map-
ping, where G1 and G2 are cyclic groups of a large prime order p. Let P be a gener-
ator of G1; we can state the BDHP as follows: given three random elements aP , bP

and cP ∈ G1, compute ê(P ,P)abc . (G1 resp. G2 is written additively resp. multiplica-
tively.) BDHP is equivalent to the GHI problem with the set S = {(P, ê(aP,bP))} and
x1 = cP when S is refreshed for each instance with some a and b picked uniformly at
random in Zp .

Example 4.13 (Paillier parameters). Let us consider the Paillier trapdoor function [48]
that maps an element (x, y) ∈ Zn × Z

∗
n to the element gx · yn mod n2 of Z

∗
n2 , with g an

element of Z
∗
n2 of order n. For such a g, the Paillier trapdoor function is an isomorphism.

Thus, assuming that we have s pairs of plaintext/ciphertext that generate Zn × Z
∗
n resp.

Z
∗
n2 , the decryption problem of a challenged ciphertext corresponds to the GHI problem

with G = Z
∗
n2 and H = Zn × Z

∗
n. This application of GHI problem to the decryption

problem can be adapted to every homomorphic trapdoor function. Again, if the public
key is known, the GHID problem is easy.

Note that Examples 4.9, 4.10, 4.11, 4.12, and 4.13 include trapdoors in order to in-
terpolate the group homomorphism. Furthermore, Example 4.10 includes a trapdoor in
order to solve the MSR and 2-G-Root problems, thus to make a group expert relative
to any (2, S1). Also note that the order d of H is publicly known in Examples 4.8, 4.9,
4.10, 4.12. It is further quite small in Example 4.10. We will also consider the following
example inspired by [1].

Example 4.14 (Newton parameters). Let n = pq be such that p = rd + 1 and q are
prime, gcd(r, d) = 1, gcd(q − 1, d) = 1, with d small prime. We take G = Z

∗
n and

H = Zd . We can easily compute a group homomorphism by first raising to the power
r(q − 1), then computing a discrete logarithm in a small cyclic subgroup of order d .

Our construction for a signature scheme requires the hardness of the GHI problem
(for unforgeability), the hardness of the GHID problem (for invisibility), a trapdoor for
interpolation (for computability), d publicly known, and sometimes a group expertise.
So, in what follows, we focus on DH, QR, BDH, and Newton parameters in Exam-
ples 4.9, 4.10, 4.12, 4.14, respectively.

Short Undeniable Signatures Based on Group Homomorphisms 559

Parameters GHI GHID Trapdoor d known Expert

DL Hard Easy No Yes No
DH Hard Hard Yes Yes No
QR Hard Hard Yes Yes Yes
RSA Hard Easy Yes No No
BDH Hard Hard Yes Yes No

Paillier Hard Easy Yes No No
Newton Hard Hard Yes Yes Yes

4.2.4. Sampling G uniformly

Lemma 4.15. Let f : G → H be a surjective group homomorphism from the group
G to the group H . Then, f is balanced, i.e., #f −1(y) = #Ker(f) for any y ∈ H .

Proof. Let x, x′ ∈ G and y = f (x). The lemma follows by noticing that f (x′) = y if
and only if x′ ∈ x + Ker(f). �

We provide a useful lemma to sample group elements.

Lemma 4.16. Let G, H , d be defined as in Lemma 4.5. Let x1, . . . , xs ∈ G H -
generate G. The following mapping from G × Z

s
d to G is balanced:

g : (r, a1, . . . , as) �−→ dr + a1x1 + · · · + asxs. (4.1)

By abuse of notation, Zd denotes the set {0,1, . . . , d − 1} here. Note that g is not
necessarily a group homomorphism because some xi may have orders larger than d .

Proof. Let n be the order of G. Let h : G × Z
s
nd → G be the function defined by

h(r, a1, . . . , as) = dr + a1x1 + · · · + asxs . Obviously, h is a homomorphism. It is
onto due to assertion 5 of Lemma 4.3. Hence, it is balanced by Lemma 4.15. Let
ϕ : G × Z

s
nd → G × Z

s
d be a function defined by ϕ(r, a1, . . . , as) = (r + q1x1 + · · · +

qsxs, a1 mod d, . . . , as mod d), where ai − (ai mod d) = dqi for i = 1, . . . , s. We have
g ◦ ϕ = h. We note that ϕ is balanced onto G × Z

s
d since

ϕ−1(r, a1, . . . , as)

= {
(r − q1x1 − · · · − qsxs, a1 + dq1, . . . , as + dqs) | (q1, . . . , qs) ∈ Z

s
n

}
.

If #g−1(x) = m, we have mns = #ϕ−1(g−1(x)) = #h−1(x) = (dn)s . Hence, m = ds

does not depend on x, so g is balanced. �

Remark 4.17. Lemma 4.16 also holds if d is replaced by the exponent λ of the
group H .

Note that a group expert relative to (d, {x1, . . . , xs}) knows how to invert g in
Lemma 4.16. We show here that this ability even allows us to pick an element in g−1(x)

uniformly at random for any x ∈ G. Since g ◦ ϕ = h, we have g−1(x) = ϕ ◦ h−1(x).

560 J. Monnerat and S. Vaudenay

Because ϕ is balanced, it is enough to sample an element of h−1(x). For that, we only
need one element, and we can randomize it by adding a random element from h−1(0).
For that, we pick a tuple τ ∈U G × Z

s
nd , apply our group expertise, and retrieve a tuple

t ′ ∈ g−1(h(τ)). We can then compute τ − ψ(t ′) where ψ(t ′) is any function such that
ϕ ◦ ψ is the identity mapping. Finally, we obtain

t = ϕ
(
ψ(t0) + τ − ψ(t ′)

)
where t0 ∈ g−1(x), t ′ ∈ g−1(h(τ)

)
.

The representation t is uniformly distributed in g−1(x).

4.3. Approximations of the Homomorphism

In this subsection we present a hardness result of approximation related to the existence
of a homomorphism which interpolates a set of points. This is inspired by the theory of
checkable proofs [2,3].

Lemma 4.18. Given two finite Abelian groups G and H , and a set of s points S =
{(xi, yi) | i = 1, . . . , s} ⊆ G × H such that x1, . . . , xs H -generate G. We let d be the
order of H and p be its smallest prime factor. We assume that S does not interpolate
in any group homomorphism and define for any x ∈ G the set Ux = {(r, a1, . . . , as) ∈
G × Z

s
d | dr + a1x1 + · · · + asxs = x}. Then, for any x ∈ G and any y ∈ H , we have

Pr
(r,a1,...,as)∈U Ux

[a1y1 + · · · + asys = y] = 0 or δ

for a constant δ ≤ 1/p. Therefore, for any x ∈ G and any function f : G → H , we have

Pr
(r,a1,...,as)∈U Ux

[
f (x) = a1y1 + · · · + asys

] ≤ 1

p
.

Proof. Let K be the subgroup of Z
s
d defined by K = {(a1, . . . , as) ∈ Z

s
d | a1x1 +· · ·+

asxs ∈ dG}. By Lemma 4.5, the image of g : (b1, . . . , bs) �→ b1y1 + · · · + bsys defined
on K is a subgroup of order greater or equal to p. Moreover, by Lemma 4.15, g is
balanced on its image, which shows that

Pr
(b1,...,bs)∈U K

[b1y1 + · · · + bsys = y] = 0 or δ

for any y ∈ H , where δ = 1/|Im(g)|. Let x be an arbitrary element of G. We can deduce
that for any fixed tuple (r ′, b′

1, . . . , b
′
s) ∈ Ux , we also have

Pr
(b1,...,bs)∈U K

[
(b1 + b′

1)y1 + · · · + (bs + b′
s)ys = y

] = 0 or δ

for any y ∈ H . This is equivalent to Pr(a1,...,as)∈U Vx [a1y1 + · · · + asys = y] = 0 or δ,
for any y ∈ H , where Vx = {(a1, . . . , as) | ∃r ∈ G s.t. (r, a1, . . . , as) ∈ Ux}. Here, we
remark that for any tuple (a1, . . . , as) ∈ Vx , there exists the same number of elements
r ∈ G such that (r, a1, . . . , as) ∈ Ux . Namely, this number is equal to the cardinality of

Short Undeniable Signatures Based on Group Homomorphisms 561

the kernel of the homomorphism r �→ dr defined on G, which is equal to #G/#dG.
From this we finally deduce that

Pr
(r,a1,...,as)∈U Ux

[a1y1 + · · · + asys = y] = Pr
(a1,...,as)∈U Vx

[a1y1 + · · · + asys = y] = 0 or δ

for any y ∈ H . �

Corollary 4.19. Let G, H , S, d , and p be as in Lemma 4.18. We assume that there
exists a function f : G −→ H such that

ρ = Pr
(r,a1,...,as)∈U G×Z

s
d

[
f (dr + a1x1 + · · · + asxs) = a1y1 + · · · + asys

]
>

1

p
.

The set of points S interpolates in a group homomorphism. Furthermore, given x ∈U G,
the value y = f (x) matches the unique interpolation with probability ρ.

The above result can be extended to the computability of the homomorphism. Sim-
ilarly as above and using techniques of linear cryptanalysis [31], one can efficiently
amplify such a function f to compute the homomorphism with a negligible error prob-
ability. More details can be found in [40,41].

4.4. A 4-Move ZK Protocol for GHI and coGHI

In this section, we develop some interactive proof protocols for GHI and coGHI under
the assumption that group expert algorithm exists.

Let G, H be parameters of a GHID problem. Let
 ∈ N be a security parameter.
We note that “T interpolates with S” is equivalent to “S ∪ T interpolates,” and so we
use a single set N as input without loss of generality. We present here an interactive
proof of membership in which a prover wants to convince a verifier that N interpolates
in a group homomorphism f : G −→ H used as a witness. This protocol is denoted
GHIproof
(N) and is depicted below.

GHIproof
(N)

Parameters: G,H,d,

Common input: N = {(g1, e1), . . . , (gn, en)} ⊆ G×H , the public key KV
p

of the verifier
Witness input: f such that f (gi) = ei , i = 1, . . . , n.
1. The verifier picks ri ∈U G and ai,j ∈U Zd for i = 1, . . . ,
 and j =

1, . . . , n. He computes ui = dri + ai,1g1 + · · · + ai,ngn and wi =
ai,1e1 + · · ·+ ai,nen for i = 1, . . . ,
. He sends u1, . . . , u
 to the prover.

2. The prover computes the values vi = f (ui) for i = 1, . . . ,
, picks dec,
and the commitment com = Commit(KV

p , v1, . . . , v
;dec). He sends
com to the verifier.

3. The verifier sends all ri ’s and ai,j ’s to the prover.
4. The prover checks that the ui ’s were computed correctly by verifying

that ui = dri + ai,1g1 + · · · + ai,ngn for i = 1, . . . ,
. If not, he aborts
the protocol. He then opens his commitment by sending dec.

562 J. Monnerat and S. Vaudenay

5. The verifier checks that the commitment is opened correctly, i.e.,

com = Commit
(
KV

p ,w1, . . . ,w
;dec
)
.

If this is the case, the verifier accepts the proof. Otherwise, he rejects it.

The commitment scheme is crucial to achieve zero-knowledge, since it allows the
prover to disclose the answers vi ’s after having checked that the verifier generated the
challenges correctly. Otherwise, a malicious verifier could use the prover as an oracle to
evaluate the function f on any element of G. Note also that the parameter
 corresponds
to the number of challenges sent by the verifier and is thus directly related to the security
level of GHIproof. For asymptotic security, this one can be seen as a function of a
global security parameter k.

Theorem 4.20. We consider the above protocol GHIproof with parameters G, H ,
d ,
 and a trapdoor commitment scheme which is computationally binding and per-
fectly hiding. We let S be a subset of G × H and S1 be the set of all G-coordinates of
its elements. Let t be an integer. If for any N1 such that S1 ⊆ N1 ⊆ G, there exists a
group expert algorithm relative to (d,N1), then GHIproof(S ∪ T) is a ZK argument of
membership for T ∈ LGHI(t, S). More precisely, we have the following properties.

1. Let p be the smallest prime factor of d . For any ε > p−
, GHIproof is ε-sound.
From any cheating signer S ∗ who passes the protocol on an invalid N with a
probability ε and a group expert we can construct an algorithm B which finds a
collision on the commitment scheme with probability

Succcom-bnd
B ≥ ε(ε − p−
)

by rewinding S ∗ once.
2. GHIproof is perfect black-box zero-knowledge.
3. GHIproof is perfect nontransferable.

Proof. Completeness is trivial.

Soundness By Corollary 4.19, if the set N does not admit any interpolating homo-
morphism, it is impossible to find any procedure to deduce wi = ∑n

j=1 ai,j ej from
ui = dri + ∑n

j=1 ai,j gj with probability greater than 1/p, for any i = 1, . . . ,
. Since
the challenges ui ’s are generated independently, no prover is able to find the correct
w = (w1, . . . ,w
) from the challenge u = (u1, . . . , u
) with probability greater than
p−
. Below, we show that a (cheating) prover P ∗ must break the binding property of
Commit with nonzero probability in order to succeed in the protocol with a probability
ε > p−
.

We construct below a simulator B who interacts with P ∗ and plays the role of an
honest verifier. The simulator will launch two protocol runs sequentially with P ∗ in
such a way that a collision on Commit can be found with a certain probability. For this,
he rewinds the prover to play twice with the same inputs, coins, and challenge. We
stress that this is allowed as long as the prover receives messages which are correctly

Short Undeniable Signatures Based on Group Homomorphisms 563

distributed in both runs of the protocol. So, if we look at both runs separately, the prover
cannot see any difference from an interaction with an honest verifier.

The simulator B picks some coefficients ai,j ’s and ri ’s uniformly at random and
computes the challenges ui ’s. He then sends u to P ∗. This one answers a committed
value com. The simulator releases the coefficients ai,j ’s and ri ’s to P ∗. At the end,
P ∗ succeeds if he opens the commitment correctly on the values wi ’s. If he does not
succeed, the simulator aborts. Otherwise, using his group expertise, the simulator finds
some coefficients a∗

i,j ’s and r∗
i ’s that satisfy

ui = dr∗
i +

n∑

j=1

a∗
i,j gj for i = 1, . . . ,

and that are picked uniformly at random among all possible representations of the ui ’s.
Now, B rewinds the prover with the same random tape. The simulator sends the same
challenges ui ’s as before. Therefore, the prover answers the same commitment com. At
this time, B releases the coefficients a∗

i,j ’s and r∗
i ’s to P ∗. This one succeeds if he is

able to open com on the values w∗
i = ∑n

j=1 a∗
i,j ej for i = 1, . . . ,
. In case of success,

the simulator directly finds a collision with respect to Commit if wi 	= w∗
i holds for at

least one i.
It remains to compute the probability that this event occurs. At first, we note that

the simulations are perfect in both runs of the protocol. Namely, if we look at both
protocol runs independently, we remark that all coefficients ri , ai,j are chosen uniformly
at random. We now have to take into account that rewinding the prover with the same
random tape and the same challenges is a restriction in the space of all possible protocol
runs. So, we decompose the probability of success according to the random tape � of
P and challenges u. Note that once the random tape and the challenge are fixed, both
protocol runs are independent.

Let A be the probability event that P ∗ succeeds in the first protocol run, and E�,u

be the event that the random tape is � and the challenge is u. Similarly, we define the
same event A∗ for the second protocol run. We set Pr[A|E�,u] = Pr[A∗|E�,u] = ε�,u.
We also denote by B the event that w 	= w∗, where w∗ = (w∗

1, . . . ,w∗

). Since A and

A∗ conditioned to E�,u are independent, we have

Pr[A ∧ A∗|E�,u] = ε2
�,u.

From this we deduce that

Pr[A ∧ A∗ ∧ B|E�,u] ≥ ε2
�,u − Pr[A ∧ A∗ ∧ ¬B|E�,u] ≥ ε2

�,u − Pr[A ∧ ¬B|E�,u].
Note that Pr[¬B|A,E�,u] ≤ p−
 by Lemma 4.18: no matter the values of u and w,
picking the a∗ and r∗ leading to the same u at random will give the same w∗ = w with
probability bounded by p−
. Hence, Pr[A ∧ ¬B|E�,u] ≤ ε�,up

−
. We obtain that

Pr[A ∧ A∗ ∧ B|E�,u] ≥ ε�,u

(
ε�,u − p−

)
.

Applying Jensen’s inequality, we obtain

Pr[A ∧ A∗ ∧ B] ≥ ε
(
ε − p−

)
,

564 J. Monnerat and S. Vaudenay

where ε is the probability that P ∗ passes the proof with a honest verifier. This leads us
to the desired result.

Zero-Knowledge We construct a black-box simulator B which is given an instance T ∈
LGHI(n,S), the public key KV

p of the verifier, and an auxiliary input z for the malicious
verifier V ∗. As usual, we let N = S ∪ T .

1. The simulator first runs V ∗(T ,KV
p , z; rV) and gets the list u of the ui ’s. (If these

are not well formed, the simulator stops with (T ,KV
p , z, rV ,abort) which perfectly

simulates the view after interacting with the prover.)
2. Then, the simulator commits to some dummy vi ’s and sends the commit value

com to V ∗. Since the commitment is perfectly hiding, the commit value has the
perfect distribution as if it was from the honest prover.

3. If V ∗ reveals incorrect ai,j ’s and ri ’s, the simulator stops with (T ,KV
p , z, rV ,

com,abort) which perfectly simulates the view. Otherwise, the simulator can now
compute the correct vi ’s, rewind the verifier, and go back to the commit phase on
the correct vi ’s.

4. After rewinding and committing again, if the verifier does not return any correct
ai,j ’s and ri ’s, rewind again until it works. Even though the ai,j ’s and ri ’s may
have changed, the vi ’s are uniquely defined by the ui ’s. So, any correct ai,j ’s and
ri ’s may allow the simulator to produce an accepting view with perfect distribu-
tion.

One caveat though: the loop in the last step may be nonpolynomial. However, the
expected complexity of the simulator remains polynomial. Indeed, given some fixed
(T ,KV

p , z, rV), let p be the probability (over the distribution induced by com) that

V ∗(T ,KV
p , z, com; rV) reveals some correct ai,j ’s and ri ’s. The expected number of

V ∗(T ,KV
p , z, com; rV) calls in the simulator is

(1 − p) + p

(

1 + 1

p

)

,

which is 2. So, we rewind only once on average and the simulator has a polynomial
average complexity.

Nontransferability Following the definition of nontransferability, the malicious prover
P ∗ is given the trapdoor KV

s of the commitment. So, after receiving the chal-
lenge u = (u1, . . . , u
) from V ∗, he can make a junk commitment by picking w′ =
(w′

1, . . . ,w
′

) ∈U H
 uniformly at random and computing com′ = Commit(KV

p ,w′;
dec′). Then he can send com′ to V ∗. Then, the verifier sends the values ri ’s and
ai,j ’s to P ∗. He can check whether these values satisfy ui = dri + ∑n

j=1 ai,j gj for
i = 1, . . . ,
. If it is not the case, he answers abort. If it is the case, he deduces the
right tuple w and computes dec ← Equivocate(KV

s ,w, com′). He then sends w, dec to
open the commitment com′. Note that in this case, the transcript of this interaction is
(u, com′, ri’n, ai,j ’n,w,dec). Since the commitment is perfectly hiding, the transcript
has exactly the same distribution as a transcript produced between an honest prover and
the verifier V ∗. �

Short Undeniable Signatures Based on Group Homomorphisms 565

Let G, H , and S = {(g1, e1), . . . , (gs, es)} ⊆ G × H be parameters of a GHID
problem, and let d be the order of H with smallest prime factor p. Let T =
{(x1, z1), . . . , (xt , zt)} ⊆ G × H be a set of t points. We assume that S interpolates
in a unique group homomorphism f : G → H . A prover wants to convince a verifier
that T 	∈ LGHI(t, S). For this, the prover makes use of the knowledge of a group homo-
morphism f uniquely interpolating S. Let
 ∈ N be a security parameter. He performs
the following interaction with a verifier.

coGHIproof
(S,T)

Parameters: G,H,d,p,
,B such that 1 < B ≤ p and B polynomially
bounded.

Common input: S = {(g1, e1), . . . , (gs, es)}, T = {(x1, z1), . . . , (xt , zt)} ⊆
G × H , the public key KV

p of the verifier.
Witness input: f such that f (gi) = ei , i = 1, . . . , s. We let yk = f (xk),

k = 1, . . . , t .
1. The verifier picks ri,k ∈U G, ai,j,k ∈U Zd , and λi ∈U {0,1, . . . ,B − 1}

for i = 1, . . . ,
, j = 1, . . . , s, k = 1, . . . , t . He computes ui,k = dri,k +∑s
j=1 ai,j,kgj + λixk and wi,k = ∑s

j=1 ai,j,kej + λizk for all i and k.
Set u = (u1,1, . . . , u
,t) and w = (w1,1, . . . ,w
,t). He sends u and w to
the prover.

2. The prover computes vi,k = f (ui,k) for i = 1, . . . ,
, k = 1, . . . , t . By
the equation wi,k − vi,k = λi(zk −yk), he should be able to find each λi

by exhaustive search if the verifier is honest, since yk 	= zk for at least
one k. Otherwise, he picks λi ∈U {0,1, . . . ,B −1} uniformly at random
for i = 1, . . . ,
. He computes com = Commit(KV

p , λ;dec), where λ =
(λ1, . . . , λ
). The prover sends the committed value com to the verifier.

3. The verifier sends all ri,k’s and ai,j,k’s to the prover.
4. The prover checks that u and w were correctly computed by verifying

that ui,k = dri,k + ∑s
j=1 ai,j,kgj + λixk and wi,k = ∑s

j=1 ai,j,kej +
λizk for all i and k. If not, he aborts the protocol. He then opens the
commitment by sending λ and dec.

5. The verifier checks that the prover has found the right λ and that the
commitment is correctly opened by checking com = Commit(KV

p , λ;
dec). If this is the case, the verifier accepts the proof. Otherwise, he
rejects it.

Remark 4.21. Provided that the discrete logarithm in H is easy, we can take B = p

and replace exhaustive search on λi by a discrete logarithm algorithm.

This protocol was inspired from the denial protocol of Gennaro et al. [24]. This one
can actually be seen as a special case of ours with the RSA encryption function as
homomorphism.

We also notice that λ was chosen such that it can uniquely be retrieved from every
nonzero values of H that can be taken by the elements zk − yk’s. This is shown by the
following result.

566 J. Monnerat and S. Vaudenay

Lemma 4.22. Let H , d , p as above, and a, b ∈ H such that b 	= 0. If the equation
a = λb has a solution λ in {0,1, . . . , p − 1}, then this one is unique.

Proof. Let us first consider the subgroup 〈b〉 generated by b. If there exists a solution
to the above equation, we must have a ∈ 〈b〉. Moreover, the coefficient λ is uniquely
defined modulo ord(b). By definition of p, we have ord(b) ≥ p. Therefore, λ is uniquely
defined in {0,1, . . . , p − 1}. �

Theorem 4.23. Let S be a set which interpolates in exactly one group homomorphism.
We consider the above coGHIproof protocol with parameters G, H , d , p,
, B . For any
trapdoor commitment scheme which is computationally binding and perfectly hiding, if
there exists a group expert relative to (d, S1) for any S1 ⊆ G, then coGHIproof is a ZK
argument of membership for the language LcoGHI(t, S) for any integer t . More precisely,
we have the following properties.

1. Let p be the smallest prime factor of d . For any ε > B−
, coGHIproof is ε-
sound. From any cheating prover P ∗ who passes the protocol on T 	∈ LcoGHI(t, S)

with probability ε and a group expert relative to (d, S1), we can construct an
algorithm B which finds a collision on the commitment scheme with probability at
least ε(ε − B−
) by rewinding P ∗ once.

2. coGHIproof is perfect black-box zero-knowledge.
3. coGHIproof is perfect nontransferable.

Proof. Completeness is trivial.

Soundness We first remark that ui,k is uniformly distributed for any fixed λi for i =
1, . . . ,
 and k = 1, . . . , t by Lemma 4.16. Moreover, if the set of points T interpolates
in f , we have that f (xk) = zk for all k = 1, . . . , t . By the homomorphic property of f ,
we have f (ui,k) = wi,k for any i and k. Putting all together implies that the distribution
of the challenge (ui,k,wi,k) is completely independent of the value λi for any i and k.
Thus, a prover cannot deduce the right λi ’s with a probability greater than B−
 from the
challenges. Below, we show how we can break the binding property of Commit using
a prover succeeding with a probability ε > B−
. To this, we proceed similarly as for
proving the soundness of GHIproof. We run the protocol once with the prover, rewind
this one, and run the protocol with carefully chosen coefficients.

The simulator B first picks the values ai,j,k’s, ri,k’s, and λi ’s uniformly at random
and computes the tuples u = (u1,1, . . . , u
,t) and w = (w1,1, . . . ,w
,t) according to the
protocol. Then, B sends u, w to the prover P ∗. This one answers com. The simulator
releases the coefficients ai,j,k’s, ri,k’s, λi ’s, and the prover succeeds if he opens com
on λ = (λ1, . . . , λ
). Now, B picks λ∗ = (λ∗

1, . . . , λ
∗

) uniformly at random. By using

his group expertise, he is able to find some uniformly random coefficients a∗
i,j,k’s, r∗

i,k’s
satisfying

ui,k − λ∗
i xk = dr∗

i,k +
s∑

j=1

a∗
i,j,kgj for i = 1, . . . ,
 and k = 1, . . . , t.

Short Undeniable Signatures Based on Group Homomorphisms 567

The simulator rewinds P ∗ with the same random tape and the same challenges. He
answers the same commitment com. This time, B sends a∗

i,j,k’s, r∗
i,k’s. The prover wins

if he is able to open com on the value λ∗. If λ∗ 	= λ, B breaks the computationally
binding property of Commit.

Note that B simulates an honest verifier perfectly in both protocol runs. We can com-
pute the success probability that B finds a collision for Commit in a very similar way
as for GHIproof. Namely, we decompose the probability of success for the different
random tapes � and challenges u. Let ε�,u be the probability that the prover wins in
one protocol run with the random tape � and the challenge u (and thus w = f (u)).
Since the probability that λ = λ∗ for any random tape � and challenge u is equal to
B−
, we can show as for GHIproof that the success probability of B is higher than

∑

�,u

q�,u · (ε2
�,u − ε�,u · B−

)
,

where q�,u denotes the probability that the protocol runs with the random tape �

and the challenge u. Again, applying Jensen’s inequality leads to the desired bound
ε(ε − B−
).

Zero-Knowledge The simulation works as in GHIproof. One can rewind the verifier
and achieve perfect zero-knowledge. We can just check that λ is uniquely defined by u

and w. Indeed, if V ∗ provides (after rewinding once) two sets (r, a,λ) and (r∗, a∗, λ∗)
with same u and w, we obtain that

(λi − λ∗
i)

(
f (xk) − zk

) = 0

for all i and k. So, if f (xk) 	= zk , we obtain that λi = λ∗
i for all i.

Nontransferability The simulation works as in GHIproof. One can use the trapdoor
of the commitment scheme to open the commitment on the desired value (correct an-
swer). �

4.5. A Two-Move ZK Protocol for GHI and coGHI in the Random Oracle Model

Below, we propose a two-move variant of GHIproof. This variant is achieved by re-
moving the two messages sent in the middle of the protocol which allow us to achieve
zero-knowledge through the commitment scheme. In order to maintain zero-knowledge,
the verifier sends a kind of commitment on a seed which generates the coefficients pro-
ducing the challenges sent to the prover. This commitment can only be opened by the
prover after this one solved these challenges. For this, we introduce a pseudorandom
generator Gen and a cryptographic hash function denoted Gen′ which will be mod-
eled by random oracles. We notably add a trapdoor one-way permutation with associ-
ated secret key KV

s in order to obtain nontransferability. This two-move protocol called
2GHIproof is described here.

2GHIproof
(N)

Parameters: G,H,d,
, k.

Random oracles: Gen : {0,1}k → G
 × Z

n
d , Gen′ : H
 → {0,1}k .

568 J. Monnerat and S. Vaudenay

Common input: N = {(g1, e1), . . . , (gn, en)} ⊆ G×H , the public key KV
p

of the verifier.
Witness input: f such that f (gi) = ei , i = 1, . . . , n.
1. The verifier picks seed ∈U {0,1}k and, by applying a pseudorandom

generator Gen on this seed, generates values ri ∈ G and ai,j ∈ Zd

for i = 1, . . . ,
 and j = 1, . . . , n. He computes ui = dri + ai,1g1 +
· · · + ai,ngn, wi = ai,1e1 + · · · + ai,nen for i = 1, . . . ,
, and ϑ =
TPOW(KV

p , seed). Using a cryptographic hash function Gen′, he com-
putes h = Gen′(w1, . . . ,w
) ⊕ seed. The verifier sends u1, . . . , u
, h,
and ϑ to the prover.

2. The prover computes vi = f (ui) for i = 1, . . . ,
, seed′ = Gen′(v1, . . . ,

v
) ⊕ h. He checks that ϑ = TPOW(KV
p , seed′) and that Gen(seed′)

generates values ai,j ’s and ri ’s such that ui = dri + ai,1g1 + · · ·
+ ai,ngn for i = 1, . . . ,
. If not, the prover aborts the protocol. He
then sends seed′ to the verifier.

3. The verifier accepts the proof if seed′ = seed holds. Otherwise, he re-
jects it.

Note that the secret key KV
s of the verifier is unused in the protocol. Its availability will

be used to prove nontransferability.
The two-move variant has a very similar complexity as the four-move ones. In partic-

ular, the prover needs to perform the same number of homomorphism evaluations. The
computational work related to Commit is replaced by the one induced by Gen, Gen′,
TPOW.

Theorem 4.24. We consider the above 2GHIproof protocol with parameters G, H ,
d ,
, k. We assume that Gen and Gen′ are random oracles and that TPOW is a trapdoor
one-way permutation defined on domain {0,1}k . 2GHIproof(S ∪ T) is a ZK argument
of membership for T ∈ LGHI(n,S). More precisely, we have the following properties.

1. Let p be the smallest prime factor of d . The protocol is sound: There is a proba-
bilistic polynomial-time algorithm AP ∗

invoking P ∗ once and such that if P ∗ is a
cheating prover limited to qGen′ queries to Gen′ and with probability of success ε,
then AP ∗

inverts TPOW on domain {0,1}k with success probability higher than
ε − qGen′p−
.

2. 2GHIproof is statistical black-box straight-line deniable zero-knowledge in the
random oracle model.

3. 2GHIproof is perfect nontransferable.

Proof. Completeness is trivial.

Soundness Let P ∗ be a cheating prover who wants to pass the protocol with common
input N which does not interpolate in a group homomorphism. We let KV

p and KV
s be

the keys for the verifier, and we assume that P ∗ ↔ V accepts with probability ε.
When interacting with a honest verifier, P ∗ wins if and only if it responds by seed

such that TPOW(KV
p , seed) = ϑ . Note that it is easy to check whether a value seed′ is

equal to seed because TPOW is deterministic. Without loss of generality, we can assume

Short Undeniable Signatures Based on Group Homomorphisms 569

that P ∗ never queries seed to Gen (indeed, he can first check if this is the correct answer
before querying). Similarly, we can assume that P ∗ always responds correctly whenever
he queries the right w = (w1, . . . ,w
) to Gen′ because he can check that Gen′(w) ⊕ h

is the correct seed. Therefore, P ∗ always wins if the correct w is queried to Gen′ and
never queries seed to Gen.

We transform P ∗ into an algorithm A inverting TPOW(KV
p , ·) as follows.

1. A receives a random challenge ϑ whose preimage by TPOW is denoted seed. The
goal of A is to find seed.

2. A generates some random values ri ’s and ai,j ’s and deduces the corresponding
ui ’s and wi ’s. A further picks a random h. Then (u,h,ϑ) is a challenge for the
prover, and A can start simulating P ∗.

Clearly, given a random Gen and Gen′, the simulation for P ∗ is perfect as long
as seed is not queried to Gen and w is not queried to Gen′. Since the former case
never happens, A simulates P ∗ and stops if w is queried to Gen′. In this case, A
just fails.

3. The simulation of P ∗ leads to either a failure or a release of the correct value seed
which can be returned by A.

The algorithm succeeds to invert the trapdoor permutation at the condition that (event A)
P ∗ succeeds without querying w to Gen′. Let B be the event that P ∗ queries w to Gen′.
Since the simulation is perfect, Pr[A] + Pr[B] is the probability that P ∗ passes the
protocol with an honest verifier. Clearly, Pr[A] is the probability that A succeeds in
inverting TPOW. Thus Pr[A] ≤ Succinv-tp. Below we show an upper bound for Pr[B].
To this end, we consider a simulator B which plays with P ∗ to win the following game:

Game: A challenger picks elements ri ’s and ai,j ’s uniformly at random
and computes ui = dri + ∑n

j=1 ai,j gj . The simulator B receives the ui ’s
and wins the game if he finds the correct values wi = ∑n

j=1 ai,j ej for i =
1, . . . ,
.

We transform P ∗ into an algorithm B as follows.

1. B receives a random challenge u.
2. B then picks a random seed, computes ϑ = TPOW(KV

p , seed), and picks a ran-
dom h. Additionally, B picks an integer
 ∈ {1, . . . , qGen′ } uniformly at random.
Then (u,h,ϑ) is a challenge for the prover, and B can start simulating P ∗.

Clearly, the simulation works just like for A as long as P ∗ does not query Gen′
with the response w to the game. So, B just let P ∗ query Gen′ for the
 − 1 first
queries and stops at the
th one. The value w′ of this last query is returned as the
response to the game.

3. If the simulation P ∗ stops, then B just fails.

Clearly, B wins if and only if event B occurs and the simulator has guessed which of
the queries by P ∗ gave the correct answer. Therefore, B wins with probability 1/qGen′ ·
Pr[B]. By Corollary 4.19, this probability is at most p−
, which implies that Pr[B] ≤
qGen′p−
. So, the confirmation cannot succeed with probability larger than Succinv-tp +
qGen′p−
.

570 J. Monnerat and S. Vaudenay

Zero-Knowledge We want to construct a simulator B V ∗,Gen,Gen′
using any verifier V ∗

as a subroutine to simulate the view from V ∗ in the protocol. One problem is that V ∗
may not have KV

s as an input by definition. So, we cannot assume that the simulator has
it. B runs the verifier V ∗ and looks at the queries made by V ∗ to the oracle Gen. B puts
these qGen queries seedk for 1 ≤ k ≤ qGen and the corresponding answers of Gen in
memory. The simulator then receives the first message M of V ∗. If this one has not a
correct format, the simulator outputs the abort view (N,KV

p , z, rV ,abort). Otherwise,
the simulator checks whether one answer among those queries seedk’s made to Gen
generates the challenges ui ’s correctly and the image of this query by TPOW is equal
to ϑ . If it is not the case, B outputs the abort view. Otherwise, the simulator is able
to compute the right wi ’s from this answer (the right ri ’s and ai,j ’s). From the wi ’s,
B computes seed∗ = h ⊕ Gen′(w1, . . . ,w
) and checks whether seed∗ generates the
right ri ’s and ai,j ’s. In the positive case, B outputs the view (N,KV

p , z, rV , seed∗). In
the negative case, it outputs the abort view.

It remains to show that the two view distributions are statistically indistinguishable.
When the first message has not a correct format, the two transcripts are clearly identical.
Let consider the case where the verifier did not query any seedk which produces the
challenges ui ’s and whose image by TPOW leads to ϑ . In this case, the honest prover
will not abort the protocol only if he retrieves a seed = Gen′(w1, . . . ,w
) ⊕ h which
generates the challenges ui ’s and ϑ . This occurs only if the verifier V ∗ was able to
guess that the output values of the query seed to the oracle Gen generate the right ri ’s
and aij ’s. Since Gen is a random oracle, no polynomial-time verifier V ∗ can succeed
to do that with a nonnegligible probability. We still have to consider the case where
the verifier queried a seedk which produces the challenges ui ’s and ϑ . We see that the
two transcripts are always identical, since the simulator clearly knows the answer of
the honest prover by learning the right wi ’s. Therefore, we can conclude that the two
transcript distributions are statistically indistinguishable.

Nontransferability We now want to construct an online prover simulator P ∗ which
would be undistinguishable from the real one, provided that it is given the correct KV

s .
Based on receiving the (u,h,ϑ) challenge, if the format is incorrect, then P ∗ aborts.
Otherwise, P ∗ can compute seed = TPOW−1(KV

s , ϑ), then check whether u and h are
well computed from seed. If correct, P ∗ can eventually respond with seed. Clearly, the
simulation is perfect. �

The interactive coGHIproof protocol can be transformed in a two-move protocol in
a similar way as for GHIproof. This variant called 2coGHIproof is presented below.

2coGHIproof
(S,T)

Parameters: G,H,d,p,
, k,B such that 1 < B ≤ p and B polynomially
bounded.

Random oracles: Gen : {0,1}k → G
t × Z

st
d × {0, . . . ,B − 1}
, Gen′ :

Z

d → {0,1}k .

Common input: S ={(g1, e1), . . . , (gs, es)}, T ={(x1, z1), . . . , (xt , zt)} ⊆
G × H , the public key KV

p of the verifier.
Witness input: f such that f (gi) = ei , i = 1, . . . , s. We let yk = f (xk),

k = 1, . . . , t .

Short Undeniable Signatures Based on Group Homomorphisms 571

1. The verifier picks seed ∈U {0,1}k and, by applying a pseudorandom
generator Gen on this seed, generates values ri,k ∈ G, ai,j,k ∈ Zd , λi ∈
{0,1, . . . ,B − 1} for i = 1, . . . ,
, j = 1, . . . , s, k = 1, . . . , t . He com-
putes ui,k = dri,k +∑s

j=1 ai,j,kgj +λixk , wi,k = ∑s
j=1 ai,j,kej +λizk

for all i, k, and ϑ = TPOW(KV
p , seed). Using a cryptographic hash

function Gen′, the verifier computes h = Gen′(λ1, . . . , λ
) ⊕ seed. Set
u = (u1,1, . . . , u
,t) and w = (w1,1, . . . ,w
,t). He sends u, w, h, and ϑ

to the prover.
2. The prover computes vi,k = f (ui,k) for i = 1, . . . ,
, k = 1, . . . , t . By

the equations wi,k − vi,k = λi(zk − yk), he should be able to find every
λi by exhaustive search if the verifier is honest since yk 	= zk for at
least one k. The prover computes seed′ = Gen′(λ1, . . . , λ
) ⊕ h. He
checks that ϑ = TPOW(KV

p , seed′) and that seed′ generates coeffi-
cients ri,k’s, ai,j,k’s, λi ’s such that ui,k = dri,k +∑s

j=1 ai,j,kgj +λixk ,
wi,k = ∑s

j=1 ai,j,kej + λizk for all i and k. If not, he aborts the proto-
col. He then sends seed′ to the verifier.

3. The verifier accepts the proof if seed′ = seed holds. Otherwise, he re-
jects it.

Theorem 4.25. We consider the above 2coGHIproof protocol with parameters G,
H , d , p,
, k, B . Let S be a set which interpolates in exactly one group homomorphism.
We assume that Gen and Gen′ are random oracles and that TPOW is a trapdoor one-
way permutation defined on domain {0,1}k . 2coGHIproof is a ZK proof of membership
for the language LcoGHI(t, S). More precisely, we have the following properties.

1. Let p be the smallest prime factor of d . 2coGHIproof is sound: From any
cheating prover P ∗ limited to qGen′ queries to Gen′ who passes the protocol on
T 	∈ LcoGHI(t, S) with probability ε we can construct an algorithm A to invert
TPOW on domain {0,1}k with probability of success higher than ε − qGen′B−
.

2. 2coGHIproof is statistical black-box straight-line deniable zero-knowledge in the
random oracle model.

3. 2coGHIproof is perfect nontransferable.

Proof. This proof is very similar to the one of Theorem 4.24. �

4.6. A NIZK for MGGD

Let G, d be some parameters, and S1 some input of a d-G-MGGD problem. We pro-
pose here a noninteractive proof in which a prover proves that S1 = {g1, . . . , gs} H -
generate G, for any group H of order d . In other words, by assertion 5 of Lemma 4.3
this corresponds to show that 〈S1〉 + dG = G or by assertion 6 of the same lemma that
the answer to the d-G-MGGD problem is positive. For this, the prover must be a group
expert relative to (d, S1).

We first introduce a technical result.

Lemma 4.26. Given a finite Abelian group G, a subset S1 = {g1, . . . , gs} ⊆ G, and an
integer d with smallest prime factor p. We assume that there exists a function f : G →

572 J. Monnerat and S. Vaudenay

G × Z
s
d satisfying

Pr
x

[
x = dr + a1gs + · · · + asgs | x ∈U G;f (x) = (r, a1, . . . as)

]
>

1

p
.

Then, we have G = 〈S1〉 + dG, i.e., S1 H -generate G for any Abelian group H of
order d .

Proof. First, we notice that if gcd(#G,d) = 1, we have dG = G, which trivially leads
to 〈S1〉 + dG = G. Now, assuming that gcd(#G,d) 	= 1, there exists a smallest prime
p′ such that p′|#G and p′|d . Consider now the unique prime factor decomposition
#G = ∏k

i=1 q
ai

i , where q1 < q2 < · · · < qk . Note that p′ = q
 for an integer
 ≤ k. By
the structure of the Abelian groups, we have G � G(q1) ⊕ · · · ⊕ G(qk), where G(qi) is
the qi -subgroup of G. For i <
, since gcd(d, qi) = 1, we have dG(qi) = G(qi). This
shows that the structure of dG is of the form

dG � G(q1) ⊕ · · · ⊕ G(q
−1) ⊕ dG(q
) ⊕ · · · ⊕ dG(qk)

and that #dG = ∏
−1
i=1 q

ai

i · ∏k
i=
 q

bi

i for some integers bi ’s satisfying bi ≤ ai for
i =
, . . . , k. Since dG is a subgroup of K = 〈S1〉 + dG, we are ensured that #K =∏
−1

i=1 q
ai

i · ∏k
i=
 q

ci

i with bi ≤ ci ≤ ai for i ≥
. Thus, #G/#K = ∏k
i=
 q

ai−ci

i , which
is either 1 or something greater or equal to p′. By the existence of f , we have
#G/#K < p ≤ p′, which implies that G = K . �

We make use of a pseudorandom generator GenM modeled by a random oracle. Let

 ∈ N be a security parameter. This protocol called NIMGGDproof is depicted below.

NIMGGDproof
(S1)

Parameters: G,d.

Input:
, S1 = {g1, . . . , gs} ⊆ G.
1. The prover picks seedM ∈U {0,1}km uniformly at random and us-

ing the pseudorandom generator GenM produces some challenges
GenM(G, seedM) = (x1, . . . , x
). Then, using his group expertise, he
finds ri ∈ G and ai,1, . . . , ai,s ∈ Zd such that xi = dri + ∑s

j=1 ai,j gj

for i = 1, . . . ,
. He sends seedM and the coefficients ri ’s and ai,j ’s to
the verifier.

2. Using GenM, the verifier generates x1, . . . , x
 from seedM. He checks
whether xi = dri + ∑s

j=1 ai,j gj for i = 1, . . . ,
. If this is the case, the
verifier accepts the proof. Otherwise, he rejects it.

Note that the G occurrence in GenM(G, seedM) means that GenM must be fed with
the description and representation of G. This is to make sure that it was chosen before
generating the elements and avoid problems like in ECDSA [54].

Theorem 4.27. Let G be an Abelian group, and d be an integer with smallest
prime factor p. We assume that GenM is a random oracle. We consider the above
NIMGGDproof protocol with parameters G, d . For provers who are group experts rel-
ative to (d, S1), NIMGGDproof(S1) is a NIZK for the language LMGGD(d,G). More
precisely, we have the following properties.

Short Undeniable Signatures Based on Group Homomorphisms 573

1. NIMGGDproof is sound: for any set S1 such that 〈S1〉 + dG 	= G, any cheating
prover P ∗ limited to qGenM queries to GenM has a success probability

Succsd-NIMGGD
P ∗ ≤ qGenM · p−
 + (#G)−
.

2. NIMGGDproof is perfect noninteractive black-box zero-knowledge in the ran-
dom oracle model.

Proof. Completeness is trivial.

Soundness We describe here a simulator B who uses P ∗ in order to win the following
game. Without loss of generality, we assume that P ∗ does not submit the same query
more than once.

Game: A challenger picks xi ∈U G uniformly at random for i = 1, . . . ,

and sends x1, . . . , x
 to B. The simulator wins if he is able to find coeffi-
cients ri ’s and ai,j ’s such that xi = dri + ∑s

j=1 ai,j gj for i = 1, . . . ,
.

The simulator first receives x = (x1, . . . , x
) according to the above game and
runs P ∗. B picks an integer n ∈U {1, . . . , qGenM} uniformly at random. The GenM
queries made by P ∗ are simulated by maintaining a list of the queries and correspond-
ing answers. Upon queries, the simulator outputs a uniformly random answer and adds
the new pair in the list. However, we handle the nth query in a special way. Namely, we
answer x to this query. Since x was picked uniformly at random, B simulates the oracle
GenM perfectly. At the end, P ∗ outputs a seed seedM and coefficients ri ’s and ai,j ’s.
The simulator forwards the same coefficients to his challenger.

Let A be the event “B wins the game.” By Lemma 4.26, Pr[A] ≤ p−
. We also note
that event A occurs only if P ∗ sends seedM as nth query made to GenM. Let B be the
event “P ∗ queried seedM to GenM,” and C be the event “P ∗ succeeds”. We have

Pr[A] = 1

qGenM
· Pr[B ∧ C].

Since GenM is a random oracle, Pr[¬B ∧ C] ≤ (#G)−
, because the prover needs to
guess x which corresponds to some seedM. Putting all together leads to

p−
 ≥ Pr[A] ≥ 1

qGenM

(
Succsd-NIMGGD

P ∗ − (#G)−

)
,

which concludes the proof.

Noninteractive Zero-Knowledge We describe a simulator B who simulates the mes-
sage sent by an honest prover. Although the verifier V ∗ does not send any message here,
the simulator needs to simulate the random oracle GenM which can be queried by V ∗.
B picks ri ∈U G, ai,j ∈U Zd and computes xi = dri + ∑s

j=1 ai,j gj for i = 1, . . . ,
,

j = 1, . . . , s. The simulator picks seedM ∈U {0,1}km uniformly at random and adds the
pair (seedM, x), where x = (x1, . . . , x
) in a list maintained to simulate GenM. Then,
the simulator can run V ∗ and sends him seedM and the coefficients ri ’s, ai,j ’s. B sim-
ulates GenM as usual by maintaining a list of the previous queries and corresponding

574 J. Monnerat and S. Vaudenay

answers. For any new query, the simulator simply picks the answer uniformly at ran-
dom. The simulation is done perfectly since seedM was added in the list before the first
query made by V ∗. �

4.7. A 0-Move Proof for MGGD

We can further reduce the proof by making sure that almost all instances belong to the
language. A first idea consists in including the NIZK in the instance so that instances
become self-proven. Another idea can be used in order to relax the group expert as-
sumption which is needed in the NIMGGDproof protocol. For this, we provide a proof
that the instance was randomly generated. The instance is generated by

GenK(G, seedK) = (g1, . . . , gs).

The value seedK is added in the instance as a proof and actually replaces it as the
instance is fully defined by seedK. We essentially use two different approaches. The
first one consists of having instances long enough so that it is hard to generate a bad
instance offline. The second one consists of having a TTP to select the random seed
and an instance so that it is hard to generate a bad instance online. The latter approach
requires using a certificate for proper generation of the seed.

We start by the following technical lemma.

Lemma 4.28. Let A be a finite Abelian p-group such that A � Zpe1 ⊕ Zpe2 ⊕ · · · ⊕
Zpek , for some integers 0 < e1 ≤ e2 ≤ · · · ≤ ek . Set e = ∑k

i=1 ei . The number of maxi-
mal subgroups of A, i.e., of order pe−1 is equal to (pk − 1)/(p − 1).

Proof. According to some results in combinatorial theory (see [37, p. 87] quoted in
Butler [13]), the number of subgroups of A of order p
 is equal to those of order pe−
,
for any integer
 < e. Hence, our problem can be solved by enumerating all subgroups
of A of order p. For this, we consider all elements of A of order p. Since any group Zpei

contains exactly p elements of order p or which are 0 for i = 1, . . . , k, we have pk − 1
elements in A of order p (we just need to remove the neutral element). To conclude,
it suffices to remark that any subgroup generated by an element of order p is in fact
generated by p − 1 such elements. �

Theorem 4.29. Let G, H be some Abelian groups, and d the order of H . The proba-
bility Pgen that some elements g1, . . . , gs ∈U G picked uniformly at random H -generate
G satisfies

Pgen ≥
∏

q∈Pd

(

1 − qkq − 1

(q − 1) · qs

)

,

where Pd is the set of all prime factors of gcd(#G,d), and kq is the rank of the maximal
q-subgroup of G: Given a prime q , the q-subgroup of G is the subgroup Aq of elements
whose orders are powers of q . The rank kq is the integer such that there exists a unique
sequence of integers aq,1 ≤ · · · ≤ aq,kq such that Aq is isomorphic to Zq

aq,1 ⊕ · · · ⊕
Z

q
aq,kq .

Short Undeniable Signatures Based on Group Homomorphisms 575

Proof. By the assertion 6 of Lemma 4.3, we need to study the probability to generate
the quotient group G/(d ·G) with some elements picked uniformly at random. Classical
results on the structure of Abelian groups states the decomposition G � Ap1 ⊕ · · · ⊕
Apn . Note that

G/(d · G) � Ap1/dAp1 ⊕ · · · ⊕ Apn/dApn.

We consider Bq = Aq/dAq and study the probability that elements generate this group.
If gcd(d, q) = 1, then dAq = Aq , and Bq is trivial. So, we only focus on the q’s that
divide d and denote eq the largest integer such that qeq |d . We deduce that the structure
of Bq satisfies

Bq � Zq
aq,1 ⊕ · · · ⊕ Zqaq,r ⊕ Zqeq ⊕ · · · ⊕ Zqeq ,

where r is the largest integer such that aq,r < eq . The probability Pq that s elements
do not generate Bq is equal to the probability that these elements stay in one of the
maximal subgroups of Bq . By Lemma 4.28, the number of such subgroups is equal to
(qkq − 1)/(q − 1). Therefore,

Pq ≤ qkq − 1

(q − 1) · qs
.

Since these events are independent for the different Bq ’s, the final probability is obtained
by multiplying the terms 1 − Pq . �

Remark 4.30. As an application, if d is prime and if the d-subgroup of G is a product
of k cyclic groups, we have Pgen ≥ 1− (dk −1)/(d −1) ·d−s . In practice, we will rarely
have k greater than 2 so that we approximately have a probability of 1 − d−s+1.

5. MOVA Scheme

5.1. Description

We present our scheme called MOVA which is based on a secret group homomorphism.
This scheme was first proposed at ASIACRYPT ’04 [41] and was inspired by a pre-
liminary version restricted to group characters (with a less efficient denial protocol)
presented at PKC ’04 [42].

Since MOVA is generic, the precise setup algorithms are not specified. In addition to
this, several variants are proposed depending on whether key registration is used and on
whether a group expertise can be used. Depending on the situation, one will be preferred
on the others. Concrete instances are discussed in Sect. 5.3.

Domain Parameters. To formally comply with asymptotic definitions of security
properties, the above parameters can be seen as polynomial functions of one sin-
gle global security parameter k. We let integers Lkey, Lsig, Icon, Iden be polynomial
security parameters as well as “group ensembles” for Xgroup and Ygroup. The group
ensembles should define groups, representation of elements with polynomial length,
and polynomial-time addition, inversion, and comparison algorithms. An optional
parameter Ival ∈ N is used for variant using NIMGGDproof.

576 J. Monnerat and S. Vaudenay

Primitives. We use two deterministic pseudorandom generators GenK and GenS (mod-
eled by some random oracles) which produce elements of Xgroup. We consider a
trapdoor one-way permutation TPOW. The associated key pair (KV

p ,KV
s) is that of

the verifier. We also use additional random oracles specified in protocols given in
Sect. 4.

Secret Key. KS
s = Hom is a group homomorphism from Xgroup to Ygroup.

Public Key. KS
p = (Xgroup,Ygroup, seedK, (Ykey1, . . . ,YkeyLkey),opt), where opt is

an optional string which can be used to check the KS
p validity in the setup vari-

ants. We always implicitly assume that the participants check this string before using
a public key. We use (Xkey1, . . . ,XkeyLkey) = GenK(Xgroup, seedK) and Ykeyj =
Hom(Xkeyj) for j = 1, . . . ,Lkey.

Validate. The first two options consist of using the 0MGGDproof verification algorithm.
Either it is based on a long key (so the public key only includes a seed), or it is
based on a TTP-certified seed (in which case the public key also includes a certifi-
cate for the seed). A third option consists of verifying the NIZK as specified in the
NIMGGDproofIval protocol which must be included in the public key.

Signature Generation. Let m be a message to sign. The signer generates

GenS(m) = (Xsig1, . . . ,XsigLsig).

He then computes Ysigk = Hom(Xsigk) for k = 1, . . . ,Lsig. The signature is

σ = (Ysig1, . . . ,YsigLsig).

It is Lsig · log2 d bits long.
Confirmation Protocol. Let (m,σ) be a supposedly valid message–signature pair. The

verifier first checks that the public key is valid using Validate. Both the signer and the
verifier (signature’s recipient) compute the elements Xkey1, . . . ,XkeyLkey from the
signer’s public key. They also generate GenS(m) = (Xsig1, . . . ,XsigLsig). The signer
playing the role of the prover runs 2GHIproofIcon with the verifier on the set

N = {
(Xkeyj ,Ykeyj) | j = 1, . . . ,Lkey

} ∪ {
(Xsigk,Ysigk) | k = 1, . . . ,Lsig

}
.

Denial Protocol. Let (m,σ ′) be an alleged invalid message–signature pair. We de-
note σ ′ = (Zsig1, . . . ,ZsigLsig). The verifier first checks that the public key is valid.
The signer and the verifier compute Xkey1, . . . ,XkeyLkey from the public key and
GenS(m) → Xsig1, . . . ,XsigLsig. The signer playing the role of the prover runs
2coGHIproofIden with the verifier on the sets

S = {
(Xkeyj ,Ykeyj) | j = 1, . . . ,Lkey

}
and

T = {
(Xsigk,Zsigk) | k = 1, . . . ,Lsig

}
.

The protocol options are threefold. First, we can choose the 4-Move or the 2-Move
option for the GHI or coGHI proofs. One difference is that the 2-Move option requires
random oracles instead of a trapdoor commitment. In addition to this, the 4-Move option
requires a group expert algorithm to exist (although it shall not necessarily be known by
the signer). Since the signature itself requires random oracles we found no advantage

Short Undeniable Signatures Based on Group Homomorphisms 577

in using the 4-Move option, and so we concentrate on the 2-Move one. Second, we can
choose to have nontransferability (in which case we need keys for the verifier) or not.
If nontransferability is not a concern, we can get rid of the key pair for the verifier and
no longer use a trapdoor one-way permutation. Finally, there are three options for the
validate algorithm. We can use the 0MGGDproof using either a long key or a TTP-
certified seed. Another choice, when group experts exist, consists of expanding the
public key with a NIZK (the NIMGGDproof protocol). The selection of the NT versus
non-NT and the Validate option span into six possible settings:

Option 0MGGDproof 0MGGDproof NIMGGDproof Comment

Non-NT × × × No key for V
NT × × × Uses TPOW

Comment Lkey long TTP Group expert

5.2. Security Results

We first prove that the two-move version of the MOVA scheme satisfies the security
properties of undeniable signature schemes. The proofs of resistance against forgery
attacks and invisibility were inspired from Kurosawa and Heng [33].

Theorem 5.1. Let e denote the natural logarithm base. The MOVA scheme satisfies
the following security properties in the random oracle model.

1. Confirm and Deny are nontransferable zero-knowledge proof of membership.
2. Consider the Lsig-S-GHI problem with the same parameters as for the MOVA

scheme, i.e., G = Xgroup, H = Ygroup, and the set S = {(Xkey1,Ykey1), . . . ,

(XkeyLkey,YkeyLkey)}. Assume that for any algorithm B with a given complexity,

we have SuccLsig-S-GHI
B ≤ ε. Then, any forger F with similar complexity using qS

signing queries and qV queries to the confirmation/denial oracle wins the forgery
game under a chosen-message attack with probability at most εe(1+qS)(1+qV).

3. Consider the Lsig-S-GHID problem with the same parameters. Assume that for
any algorithm B and B′ with a given complexity, we have

AdvLsig-S-GHID
B ≤ ε and SuccLsig-S-GHI

B′ ≤ ε′.

Then, any distinguisher D with similar complexity using qS signing queries and
qV queries to the confirmation/denial oracle wins the invisibility game under a
chosen-message attack with advantage

Advinv-cma
D ≤ e(1 + qS)

(
ε + 2(1 + qV)ε′).

Proof. The properties of Confirm and Deny come from Theorems in Sects. 4.4–4.5.

Unforgeability Let F be a forger who succeeds to existentially forge a signature under
an adaptive chosen-message attack with probability ε′. We construct an algorithm B

578 J. Monnerat and S. Vaudenay

using the forger F and KV
s . At the beginning, B receives the challenges x1, . . . , xLsig ∈

Xgroup of the Lsig-S-GHI problem. Then, B runs the forger and simulates the queries
to the random oracle GenS, qS queries to the signing oracle Sign and qV queries to
the denial/confirmation oracle Ver. We can assume that all messages sent to Sign resp.
Ver was previously queried to GenS (since the oracle Sign resp. Ver has to make such
queries anyway). B simulates the oracles GenS and Sign as follows:

GenS. B maintains a list of the messages queried to GenS and corresponding answer.
If the message was already queried, B outputs the corresponding answer in the list.
Otherwise, he picks ai,j ∈U Zd and ri ∈U Xgroup uniformly at random for 1 ≤ i ≤
Lsig, 1 ≤ j ≤ Lkey. With probability q , he answers Xsigi = dri + ∑Lkey

j=1 ai,j Xkeyj

for i = 1, . . . ,Lsig. We call it type-1 answer. With probability 1 − q , the answer is
Xsigi = dri + xi + ∑Lkey

j=1 ai,j Xkeyj for i = 1, . . . ,Lsig. We call it type-2 answer. For
each message, B keeps the coefficients ai,j ’s and ri ’s and answer type in memory.
Note that the simulation is perfect by Lemma 4.16, since the public key is valid.

Sign. For a message m, if the answer to the GenS query of m was of type-1, then B
answers Ysigi = ∑Lkey

j=1 ai,j Ykeyj for i = 1, . . . ,Lsig. Otherwise, it aborts the simula-
tion.

Let (mi, σi) denote the ith query to Ver for 1 ≤ i ≤ qV , and (mqV +1, σqV +1) denote
the F output. In order to simulate the answers of the queries made to Ver, B guesses
the smallest i such that (mi, σi) is a valid forged pair (i.e., m was not queried to Sign).
For this, B simply picks
 uniformly at random in {1, . . . , qV + 1}. B deals with the ith
query as follows:

i <
. To any query (mi, σi), B checks whether mi was submitted to Sign. If it is the
case, B is able to decide whether (mi, σi) is valid and simulates the appropriate pro-
tocol. Otherwise, B guesses that (mi, σi) is invalid and simulates the appropriate
protocol. The simulation is done as the simulator in the proof of nontransferability of
the confirmation (resp. denial) protocol.

i =
. Let (m
,σ
) = (m
,Ysig1, . . . ,YsigLsig). If the corresponding Xsigi ’s were
of type-1, B aborts. Otherwise, when
 was correctly guessed, Ysigi = yi +
∑Lkey

j=1 ai,j Ykeyj , and B is able to deduce the yi ’s of the Lsig-S-GHI problem.

It remains to compute the probability that B retrieves the yi ’s and did not abort. This
event occurs if B is able to simulate all Sign queries, guess the right
, and use
the message m
 to deduce the yi ’s. Therefore, Pr[B succeeds|F succeeds] = qqS (1 −
q)/(qV + 1). As for the full-domain hash technique [19] and as in [33], the op-
timal qopt = qS/(qS + 1), and so Pr[Bsucceeds|F succeeds] ≥ 1

e(1+qS)(1+qV)
. Thus,

ε′ ≤ εe(1 + qS)(1 + qV).

Invisibility Let D be a distinguisher which breaks the invisibility of the MOVA
scheme with an advantage ε. We construct an algorithm B which solves the Lsig-S-
GHID problem by using D and KV

s . At the beginning, B is challenged with a tuple
{(x1, y1), . . . , (xLsig, yLsig)} ∈ (Xgroup × Ygroup)Lsig for which it has to decide whether
Hom(xi) = yi for all 1 ≤ i ≤ Lsig or if this tuple was picked at random. Like for the
proof of the existential forgery, the simulator B runs D and simulates the queries to the

Short Undeniable Signatures Based on Group Homomorphisms 579

random oracle GenS, qS queries to the signing oracle Sign, and the queries to the de-
nial/confirmation oracle Ver. We can assume that each message queried to Sign or Ver
was previously queried to the random oracle GenS. We assume that no query m to Ver
was submitted to Sign beforehand. (Otherwise, we can just simulate them with KV

s .)
Let Forge be the event in which D sends a valid message–signature pair to Ver. We first
remove all instances for which the event Forge occurs. So, we can now assume that D
never submits any valid pair (m,σ) to Ver such that m was not previously submitted to
Sign. B simulates the oracles just like in the proof of unforgeability with
 = qV + 1
(we excluded valid forged pairs).

After a given time, the distinguisher D sends a message m∗ to the challenger of the
invisibility game which is simulated by B. We can assume that m∗ was queried to GenS
(otherwise B simulates a new query). If the answer of m∗ to GenS was of type-1, B
aborts the simulation. Otherwise, it sends the challenge signature (Ysig∗

1, . . . ,Ysig∗
Lsig),

where Ysig∗
i = yi + ∑Lkey

j=1 ai,j Ykeyj for 1 ≤ i ≤ Lsig. Then, D continues to query the
oracles which are simulated by B as above.

Finally, D outputs a guess bit b′. The simulator B outputs the same bit b′ as guess bit
to the Lsig-S-GHID challenger or a random bit when B aborted.

Using the homomorphic property of Hom, we deduce that the set {(xi, yi)}Lsig
i=1

interpolates in a group homomorphism with the set of points S if and only if
(m∗,Ysig∗

1, . . . ,Ysig∗
Lsig) is a valid message–signature pair. Hence, when the simulator

does not abort and the event Forge does not occur, B perfectly simulates the invisibility
games. It remains to compute the advantage of B.

For a bit b, we denote Ab the event that B does not abort when the challenge to B was
of the form Tb (thus, B simulates the game Gameinv-cma-b to D). Note that the prob-
ability Pr[A1] = Pr[A0] can be bounded in an optimal way as in the proof of existen-
tial forgery attacks, namely, by choosing q adequately we get Pr[A1] ≥ (1/e(1 + qS)).
We now define the events Bb and Db which occur when B and D respectively out-
put the bit 0 when the challenge was of the form Tb . Note that if Ab happens, both
events Bb and Db occur simultaneously. Let us denote ε0 resp. ε1 the probability
for D to output 0 in the game Gameinv-cma-0 resp. Gameinv-cma-1. We now estimate
Pr[B0|A0] and Pr[B1|A1] with respect to ε0 and ε1. To this end, we notice that the
event B0|A0 resp. B1|A1 occurs simultaneously with the event where D outputs 0 in the
game Gameinv-cma-0 resp. Gameinv-cma-1, provided that the event Forge does not occur.
Hence, applying the difference lemma of Shoup [53] leads to

|Pr[Bb|Ab] − εb| ≤ Pr[Forge]

for b = 0,1. From this we can deduce that Pr[B0|A0] ≥ ε0 −Pr[Forge] and Pr[B1|A1] ≤
ε1 + Pr[Forge]. Without loss of generality, we can assume that Pr[B0] ≥ Pr[B1]. The
advantage of B is then equal to

Pr[B0] − Pr[B1] = Pr[¬A0] · (Pr[B0|¬A0] − Pr[B1|¬A1]
)

+ Pr[A0] · (Pr[B0|A0] − Pr[B1|A1]
)
.

580 J. Monnerat and S. Vaudenay

Since Pr[B0|¬A0] = Pr[B1|¬A1] = 1/2 and ε0 − ε1 = Advinv−cma
D , we finally have

AdvLsig-S-GHID
B ≥ 1

(1 + qS)e

(
Advinv−cma

D − 2 Pr[Forge]).

We can conclude by noting that Forge occurs with a probability bounded by e(1 +
qS)(1 + qV)ε′ by assertion 2. �

Remark 5.2. Similarly to Laguillaumie and Vergnaud [34], the efficiency of the secu-
rity reduction for the existential forgery can be improved (factor (1+qV)−1 is removed)
by replacing the GHI problem by its gap variant [46]. This problem consists in solving
the GHI problem using an access to an oracle which solves the corresponding GHID
problem. This one helps to simulate the confirmation and denial oracles. So, we do not
need to guess
 ∈ {1, . . . , qV + 1} to simulate these oracles correctly.

Remark 5.3. MOVA scheme can be made probabilistic so that the invisibility notion
defined in Galbraith and Mao [23] is satisfied. To this, it suffices to append some ran-
domness r to the message to sign and to add r in the signature. The drawback is that the
signature enlarges.

5.3. Parameters, Implementation, and Other Properties

Security results on the unforgeability and the invisibility of MOVA given in Theorem 5.1
allow us to directly derive some bounds on the signature size provided certain assump-
tions on the GHI and GHID problems. We point out that the hardness of solving GHI
and GHID problems can often be scaled by only adjusting the size of Xgroup.

To illustrate this, consider Xgroup = Z
∗
n with n = pq for two large primes p, q and

the Legendre symbol (·/p). Solving the corresponding GHI problem requires to solve
the quadratic residuosity assumption for which the best known solver algorithm consists
in factoring n.

As shown by the above example, the MOVA scheme can be instantiated so that the
signature size is fully scalable depending on the required security. In certain cases, we
can also select Xgroup such that the hardness of GHI is adjusted to the computational
power of the adversary without any impact on the signature size. Namely, we assume
here that Xgroup is adjusted such that

SuccLsig-S-GHI
B ≈ d−Lsig and AdvLsig-S-GHID

B ≈ 0

for all algorithms B with similar complexity as the adversary. Using Theorem 5.1, this
leads to

Succef-cma
F ≈ eqSqV d−Lsig and Advinv-cma

D ≈ 2eqSqV d−Lsig.

Since the verification of an undeniable signature must be done online, we can consider
some security probabilities of about 2−20 instead of the classical offline security of 2−80.
In Table 1, we give the required MOVA signature size in order to achieve Succef-cma

F ≈
2−20 depending on qS and qV . We can get the same (except 1 bit due to the factor 2)
results for the invisibility.

Short Undeniable Signatures Based on Group Homomorphisms 581

Table 1. Signature size with unforgeability and invisibility of 2−20.

qS qV Lsig · log2(d) bits

210 210 42
210 220 52
220 210 52
220 220 62

As an example, an application involving qS = 210 signatures and up to qV = 220

online verifications per key can tolerate a size of Lsig = 52 bits.
Results for the soundness of the two-move confirmation and denial protocols can be

obtained using Theorem 4.24 and 4.25. Under the assumption Succinv-tp ≈ 0, we obtain

Succsd-con
S ∗ ≈ qGen′p−Icon and Succsd-den

S ∗ ≈ qGen′p−Iden.

For instance, we can achieve a soundness probability of 2−20 with the parameters Icon =
Iden = 60/ log2(p), qGen′ = 240. Similarly, for the four-move protocols, we assume that
Commit satisfies

Succcom-bnd
B ≈ 0

for any algorithm B with similar complexity as the adversary. This shows that

Succsd-con
S ∗ ≈ p−Icon and Succsd-den

S ∗ ≈ p−Iden,

which leads to some smaller parameters Icon and Iden. Namely, for a soundness proba-
bility of 2−20, we get Icon = Iden = 20/ log2(p).

We examine here the size of parameters implied by the different setup variants ac-
cording to their specificity. First, we note that security of Setup Variant using 0-Move
proof for MGGD is directly deduced from the results of Theorem 4.29. The main dif-
ference is simply due to the number of attempts the adversary can perform until he gets
some “bad” elements Xkey1, . . . ,XkeyLkey. In the first variant, the signer can try as many
attempts as he can so that we require an “offline” probability Pgen ≥ 1 − 2−80, while
in the second one he is very limited so that we require an “online” probability Pgen ≥
1 − 2−20. Assuming similar assumptions as in Remark 4.30, we get Lkey = 81/ log2(d)

for 0-Move with long key variant and Lkey = 21/ log2(d) for 0-Move with TTP variant.
This means that the tuple (Ykey1, . . . ,YkeyLkey) which is contained in the public key
would be 81- and 21-bits long, respectively. As for the soundness of the confirmation
and denial protocols, we get a probability that the signer passes the protocol with an
invalid public key of 2−20 with Ival = 20/ log2(p) assuming that no efficient adversary
breaks the computationally binding property of Commit. Finally, Theorem 4.27 gives
results for Setup variant with NIZK for MGGD. Since Xgroup is usually greater than p,
we have

Succsd-NIMGGD
P ∗ ≈ qGenM · p−Ival,

which leads to a probability of 2−20 with qGenM = 260 and Ival = 80/ log2(p).

582 J. Monnerat and S. Vaudenay

5.4. Potential Instantiations

We briefly discuss some potential instantiations of the homomorphism which allow one
to consider short signatures. These ones must have a short group range.

Characters Let n = pq be an RSA modulus. A character on Z
∗
n is a homomorphism

from Z
∗
n to C\{0}. We consider some characters χ of order d = 2,3,4, i.e., χd(x) = 1

for any x ∈ Z
∗
n. For d = 2, the nontrivial characters which are assumed hard to compute

are both Legendre (Jacobi) symbols (·/p) and (·/q). For d = 3 or 4, the characters
correspond to some natural generalization of the Legendre symbols arising in the theory
of cubic and quartic residuosity, respectively. The cubic characters require the use of
Eisenstein integers, i.e., elements of the form a + bω for a, b ∈ Z and ω = (−1 +√−3)/2. We require that p ≡ q ≡ 1 (mod 3) and take an Eisenstein integer π such
that ππ̄ = p. As a candidate homomorphism, we can take χπ defined by χπ(x) =
x(p−1)/3 (modπ) for x ∈ Z

∗
n. Similarly, characters of order 4 arises in the set of Gauss

integers Z[i] = {a + bi|a, b ∈ Z}. Choose p ≡ q ≡ 1 (mod 4) and π such that ππ̄ = p.
Then, consider χπ defined as χπ(x) = x(p−1)/4 (modπ) for x ∈ Z

∗
n.

The cubic and quartic characters can be efficiently (about quadratic time) computed
using reciprocity laws as for the quadratic residue. We also note that group expertise for
the above characters correspond to the factorization of n. A more detailed treatment on
the character instantiations can be found in [40,42].

Example 5.4 (QR parameters). As a concrete example, we propose to adopt the Legen-
dre symbol Hom(x) = (x/p) and use Lkey = 21, Lsig = 52, Icon = Iden = 60, Ival = 80,
and the 2-Move variant with NIMGGDproof. Under the assumption that qS < 103,
qV < 106, and qGen′ < 1012, we have an online security of 220 and an offline security
of 280.

Example 5.5 (Newton parameters). Let n be such that n = pq with p = rd + 1, q , d

prime, gcd(q − 1, d) = 1, gcd(r, d) = 1, and g generating a subgroup of Z
∗
p . We obtain

g by choosing a random element h ∈ Z
∗
n until h satisfies hr mod p 	= 1, and we set

g = hr mod p. Like this, we find a homomorphism by “sending” the input in a hidden
cyclic subgroup of order d and then computing its discrete logarithm with respect to the
generator g,

ϕ : Z
∗
n −→ Zd

x �−→ logg(x
r mod p).

The expert group knowledge is obtained if one knows p and q . Typically, we could use
d = 220 − 3 = 1 048 573, which is prime, Lkey = 1, Lsig = 3, Icon = Iden = 3, Ival = 4,
and the 2-Move variant with NIMGGDproof. Under the assumption that qS < 103,
qV < 106, and qGen′ < 1012, we have an online security of 220 and an offline security
of 280.

5.5. Implementation of the Signature Generation

Here, we finally compare the time required for generating a MOVA signature with dif-
ferent homomorphisms. We consider a signature size of Lsig = 20 bits (except for RSA).

Short Undeniable Signatures Based on Group Homomorphisms 583

Table 2. Signature generation.

Homomorphism Lsig = 20 Lsig = 52
Time in ms Time in ms

Quartic Residue Symbol (χπ) 90.32 234.83
Jacobi Symbol (ordinary algorithm) 25.22 65.57
Jacobi Symbol (mpz_jacobi) 2.32 6.03
Discrete Logarithm (Precomputed Table) 9.66 n/a
Discrete Logarithm (Baby-Step Giant-Step) 19.47 31.39
Discrete Logarithm (Pollard’s rho) 74.93 120.82

RSA 33.87 33.87

We omit the time required by the generation of the values Xsigi ’s. Hence, we compare
the time required for computing 20 Jacobi symbols (·/p)2, 10 quartic residue sym-
bols χπ , one homomorphism based on the discrete logarithm in a hidden subgroup and
one RSA homomorphism. We recall that for all these homomorphisms, we take a mod-
ulus n of size of 1024 bits.

The implementation of all algorithms has been written in C using the GNU Multiple
Precision Arithmetic Library (GMP) [25] and was done by Yvonne Anne Oswald in
2005 [47]. The tests have been done on an Intel(R)4 1.4 GHz Desktop Computer with
256 MB RAM. Results are given in Table 2. To scale these numbers with Lsig = 52,
the figures for symbols should be multiplied by 52

20 , the ones for baby-step/giant-step

and Pollard discrete logarithm should be multiplied by
√

52
20 , the one for RSA should be

kept as is (the signature is not short), and we should not consider precomputed tables
for discrete logarithm any more. Results are also reported.

We have implemented the Jacobi symbol using basic GMP subroutines in order to
have a fair comparison with our implementation of the quartic residue symbol. We note
that the highly optimized GMP implementation of the Jacobi symbol mpz_jacobi
provides the fastest signature generation and that the quartic residue symbol χπ is about
four times slower than our implementation of the Jacobi symbol. This is mainly due
to the fact that all operations are performed in Z[i] instead of Z. Due to the nature of
Eisenstein integers, a similar result for cubic characters is very likely. The variants of
the discrete logarithm offer a very competitive homomorphism. In particular, except for
the variant using the Pollard rho method, this homomorphism is more efficient than an
RSA ordinary signature. In particular, the variant with the precomputed table is three
times faster than an RSA signature.

Note that these results directly apply to the confirmation protocol since the number of
homomorphism evaluations the prover needs to perform is proportional (except for RSA
which does not provide small signature) to that required for the signature generation.

More details about the optimization of the above homomorphisms are given in [44].

5.6. Other Properties

We point out that our scheme allows a batch verification of signatures. Indeed, the
confirmation protocol can be easily adapted in order to confirm several signatures at
the same time by putting all (Xsigk,Ysigk) in a single set S. The properties of the

584 J. Monnerat and S. Vaudenay

2GHIproof protocol are such that the communication complexity remains the same,
whereas the computation complexity is linear in the number of the signatures. To iso-
late a small set of m incorrect signatures in a big set of n signatures, we can use a
cut-and-choose algorithm and do it with O(m logn) iterations.

Note that the signer with group expertise can selectively convert an undeniable sig-
nature into a classical one by finding the coefficients ai,k ∈ Zd and ri ∈ Xgroup such
that

Xsigi = dri +
Lkey∑

k=1

ai,kXkeyk for i = 1, . . . ,Lsig.

The conversion consists of revealing these coefficients. For verifying a signature, it
suffices to check the above equations and verify that Ysigi = ∑Lkey

k=1 ai,kYkeyk for i =
1, . . . ,Lsig.

There are some cases where computing the group homomorphism does not imply
group expertise but some group expertise may exist. For instance, take p ≡ q ≡ 1
(mod 4) and π ∈ Z[i] such that ππ̄ = n. The quartic residue symbol χπ(x) can be eval-
uated using π and x only. It provides a single hard-to-compute bit since (χπ (x))2 =
(x/n) is the Jacobi symbol, which is easy to compute from x and n only. Here, the
value of π does not leak the factors of n so the 4-G-Root problem remains hard. We
can thus obtain two levels of secrets: a first level, which is enough to compute signatures
and participate to verification protocols, and another level, which can convert signatures
and make NIZK proofs for public keys.

6. Conclusion

We have proposed a generic scheme called MOVA based on group homomorphisms
which generalizes the Chaum’s undeniable signature scheme. For this, we developed a
general framework based on the interpolation of group homomorphisms. Several well-
known problems such as Diffie–Hellman and discrete logarithm can be easily expressed
in this setting. By considering group homomorphisms with a small range group and
scaling the domain group with respect to the adversary’s complexity, we can naturally
achieve very short signatures. As far as we know, this is the first signature scheme for
which signatures of less than 80 bits can be considered. As further results, our two-
move confirmation and denial protocols reach the minimal number of moves for in-
teractive verification protocols. Possible concrete instantiations of MOVA scheme have
been studied, and implementations showed that Legendre symbol offers the most effi-
cient signature generation.

As open issues for further research, we are wondering if the interpolation of group
homomorphisms can contribute to the design of other cryptographic primitives or give
new theoretical insights in public-key cryptography. We also point out that designing
a similar scheme (with short signatures) without using random oracles is still an open
problem.

Short Undeniable Signatures Based on Group Homomorphisms 585

Acknowledgements

Most of this work was done when the first author was at EPFL or UCSD and sup-
ported by Swiss National Foundation with grants PBEL2-116915, 200021-101453/1,
and 200020-109133.

References

[1] R.J. Anderson, S. Vaudenay, B. Preneel, K. Nyberg, The Newton channel, in Information Hiding: 1st
International Workshop. Lecture Notes in Computer Science, vol. 1174 (Springer, Berlin, 1996), pp.
151–156

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and hardness of approxima-
tion problems, in 33rd Annual IEEE Symposium on Foundations of Computer Science, FOCS ’92 (IEEE
Computer Society, Los Alamitos, 1992), pp. 14–23

[3] L. Babai, L. Fortnow, L.A. Levin, M. Szegedy, Checking computations in polylogarithmic time, in
23rd Annual ACM Symposium on Theory of Computing, STOC ’91 (Assoc. Comput. Mach., New York,
1991), pp. 21–31

[4] B. Barak, Y. Lindell, S.P. Vadhan, Lower bounds for non-black-box zero knowledge, in 44th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ’03 (IEEE Computer Society, Los Alami-
tos, 2003), pp. 384–393

[5] M. Bellare, P. Rogaway, Random oracles are practical: a paradigm for designing efficient protocols, in
1st ACM Conference on Computer and Communications Security (Assoc. Comput. Mach., New York,
1993), pp. 62–73

[6] I. Biehl, S. Paulus, T. Takagi, Efficient undeniable signature schemes based on ideal arithmetic in
quadratic orders. Des. Codes Cryptogr. 31(2), 99–123 (2004)

[7] D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing, in Advances in Cryptology—
CRYPTO ’01. Lecture Notes in Computer Science, vol. 2139 (Springer, Berlin, 2001), pp. 213–229

[8] D. Boneh, M. Franklin, Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–
615 (2003). Full version of [7]

[9] J. Boyar, D. Chaum, I. Damgård, T.P. Pedersen, Convertible undeniable signatures, in Advances in
Cryptology—CRYPTO ’90. Lecture Notes in Computer Science, vol. 537 (Springer, Berlin, 1991), pp.
189–205

[10] C. Boyd, E. Foo, Off-line fair payment protocols using convertible signatures, in Advances in
Cryptology—ASIACRYPT ’98. Lecture Notes in Computer Science, vol. 1514 (Springer, Berlin, 1998),
pp. 271–285

[11] G. Brassard, D. Chaum, C. Crépeau, Minimum disclosure proofs of knowledge. J. Comput. Syst. Sci.
37(2), 156–189 (1988)

[12] E. Bresson, D. Catalano, D. Pointcheval, A simple public-key cryptosystem with a double trapdoor
decryption mechanism and its applications, in Advances in Cryptology—ASIACRYPT ’03. Lecture Notes
in Computer Science, vol. 2894 (Springer, Berlin, 2003), pp. 37–54

[13] L.M. Butler, A unimodality result in the enumeration of subgroups of a finite Abelian group. Proc. Am.
Math. Soc. 101(4), 771–775 (1987)

[14] J. Camenisch, M. Michels, Confirmer signature schemes secure against adaptive adversaries, in Ad-
vances in Cryptology—EUROCRYPT ’00. Lecture Notes in Computer Science, vol. 1807 (Springer,
Berlin, 2000), pp. 243–258

[15] D. Chaum, Zero-knowledge undeniable signatures, in Advances in Cryptology—EUROCRYPT ’90. Lec-
ture Notes in Computer Science, vol. 473 (Springer, Berlin, 1990), pp. 458–464

[16] D. Chaum, T.P. Pedersen, Wallet databases with observers, in Advances in Cryptology—CRYPTO ’92.
Lecture Notes in Computer Science, vol. 740 (Springer, Berlin, 1993), pp. 89–105

[17] D. Chaum, H. van Antwerpen, Undeniable signatures, in Advances in Cryptology—CRYPTO ’89. Lec-
ture Notes in Computer Science, vol. 435 (Springer, Berlin, 1990), pp. 212–217

[18] D. Chaum, E. van Heijst, B. Pfitzman, Cryptographically strong undeniable signatures, unconditionally
secure for the signer, in Advances in Cryptology—CRYPTO ’91. Lecture Notes in Computer Science,
vol. 576 (Springer, Berlin, 1992), pp. 470–484

586 J. Monnerat and S. Vaudenay

[19] J.-S. Coron, On the exact security of full domain hash, in Advances in Cryptology—CRYPTO ’00. Lec-
ture Notes in Computer Science, vol. 1880 (Springer, Berlin, 2000), pp. 229–235

[20] I. Damgård, T.P. Pedersen, New convertible undeniable signature schemes, in Advances in Cryptology—
EUROCRYPT ’96. Lecture Notes in Computer Science, vol. 1070 (Springer, Berlin, 1996), pp. 372–386

[21] Y. Desmedt, M. Yung, Weaknesses of undeniable signature schemes, in Advances in Cryptology—
EUROCRYPT ’91. Lecture Notes in Computer Science, vol. 547 (Springer, Berlin, 1991), pp. 205–220

[22] W. Diffie, M.E. Hellman, New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654
(1976)

[23] S.D. Galbraith, W. Mao, Invisibility and anonymity of undeniable and confirmer signatures, in Topics in
Cryptology—CT–RSA ’03. Lecture Notes in Computer Science, vol. 2612 (Springer, Berlin, 2003), pp.
80–97

[24] R. Gennaro, H. Krawczyk, T. Rabin, RSA-based undeniable signatures. J. Cryptol. 13(4), 397–416
(2000)

[25] The GNU Multiple Precision Arithmetic Library. http://www.swox.com/gmp/
[26] O. Goldreich, Foundations of Cryptography, Volume I Basic Tools (Cambridge University Press, Cam-

bridge, 2001)
[27] S. Goldwasser, S. Micali, Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)
[28] S. Goldwasser, S. Micali, R.L. Rivest, A digital signature scheme secure against adaptive chosen-

message attacks. SIAM J. Comput. 17(2), 281–308 (1988)
[29] M. Jakobsson, Blackmailing using undeniable signatures, in Advances in Cryptology—EUROCRYPT

’94. Lecture Notes in Computer Science, vol. 950 (Springer, Berlin, 1995), pp. 425–427
[30] M. Jakobsson, K. Sako, R. Impagliazzo, Designated verifier proofs and their applications, in Advances

in Cryptology—EUROCRYPT ’96. Lecture Notes in Computer Science, vol. 1070 (Springer, Berlin,
1996), pp. 143–154

[31] P. Junod, On the optimality of linear, differential, and sequential distinguishers, in Advances in
Cryptology—EUROCRYPT ’03. Lecture Notes in Computer Science, vol. 2656 (Springer, Berlin, 2003),
pp. 17–32

[32] K. Kurosawa, Universally composable undeniable signature, in Automata, Languages and Program-
ming: 35th International Colloquium, ICALP ’08. Lecture Notes in Computer Science, vol. 5126
(Springer, Berlin, 2008), pp. 524–535

[33] K. Kurosawa, S.-H. Heng, 3-Move undeniable signature scheme, in Advances in Cryptology—
EUROCRYPT ’05. Lecture Notes in Computer Science, vol. 3494 (Springer, Berlin, 2005), pp. 181–197

[34] F. Laguillaumie, D. Vergnaud, Short undeniable signatures without random oracles: the missing link, in
Progress in Cryptology—INDOCRYPT ’05. Lecture Notes in Computer Science, vol. 3797 (Springer,
Berlin, 2005), pp. 283–296

[35] F. Laguillaumie, D. Vergnaud, Time-selective convertible undeniable signatures, in Topics in
Cryptology—CT–RSA ’05. Lecture Notes in Computer Science, vol. 3376 (Springer, Berlin, 2005), pp.
154–171

[36] B. Libert, J.-J. Quisquater, Identity based undeniable signatures, in Topics in Cryptology—CT–RSA ’04.
Lecture Notes in Computer Science, vol. 2964 (Springer, Berlin, 2004), pp. 112–125

[37] I.G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford University Press, London, 1979)
[38] M. Michels, M. Stadler, Efficient convertible undeniable signature schemes, in Selected Areas in

Cryptography—SAC ’97 (1997), pp. 231–243
[39] M. Michels, H. Petersen, P. Horster, Breaking and repairing a convertible undeniable signature, in

3rd ACM Conference on Computer and Communications Security (Assoc. Comput. Mach., New York,
1996), pp. 148–152

[40] J. Monnerat, Short undeniable signatures: design, analysis, and applications. PhD thesis, Thèse N° 3691,
EPFL, Lausanne, Switzerland (2006)

[41] J. Monnerat, S. Vaudenay, Generic homomorphic undeniable signatures, in Advances in Cryptology—
ASIACRYPT ’04. Lecture Notes in Computer Science, vol. 3329 (Springer, Berlin, 2004), pp. 354–371

[42] J. Monnerat, S. Vaudenay, Undeniable signatures based on characters: how to sign with one bit, in
Public Key Cryptography—PKC ’04. Lecture Notes in Computer Science, vol. 2947 (Springer, Berlin,
2004), pp. 69–85

[43] J. Monnerat, S. Vaudenay, Short 2-move undeniable signatures, in VIETCRYPT ’06. Lecture Notes in
Computer Science, vol. 4341 (Springer, Berlin, 2006), pp. 19–36

http://www.swox.com/gmp/

Short Undeniable Signatures Based on Group Homomorphisms 587

[44] J. Monnerat, Y.A. Oswald, S. Vaudenay, Optimization of the MOVA undeniable signature scheme,
in Progress in Cryptology—MYCRYPT ’05. Lecture Notes in Computer Science, vol. 3715 (Springer,
Berlin, 2005), pp. 196–209

[45] W. Ogata, K. Kurosawa, S.-H. Heng, The security of the FDH variant of Chaum’s undeniable signa-
ture scheme, in Public Key Cryptography—PKC ’05. Lecture Notes in Computer Science, vol. 3386
(Springer, Berlin, 2005), pp. 328–345. Extended version available on: Cryptology ePrint Archive, Re-
port 2004/290, http://eprint.iacr.org/

[46] T. Okamoto, D. Pointcheval, The gap-problems: a new class of problems for the security of crypto-
graphic schemes, in Public Key Cryptography—PKC ’01. Lecture Notes in Computer Science, vol.
1992 (Springer, Berlin, 2001), pp. 104–118

[47] Y.A. Oswald, Generic homomorphic undeniable signature scheme: optimizations. Semester project,
EPFL, LASEC, Lausanne, Switzerland (2005)

[48] P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, in Advances in
Cryptology—EUROCRYPT ’99. Lecture Notes in Computer Science, vol. 1592 (Springer, Berlin, 1999),
pp. 223–238

[49] R. Pass, On deniability in the common reference string and random oracle model, in Advances in
Cryptology—CRYPTO ’03. Lecture Notes in Computer Science, vol. 2729 (Springer, Berlin, 2003),
pp. 316–337

[50] D. Pointcheval, Self-scrambling anonymizers, in Financial Cryptography, FC ’00. Lecture Notes in
Computer Science, vol. 1962 (Springer, Berlin, 2001), pp. 259–275

[51] R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures and public-key cryp-
tosystems. Commun. ACM 21(2), 120–126 (1978)

[52] K. Sakurai, S. Miyazaki, An anonymous electronic bidding protocol based on a new convertible group
signature scheme, in Information Security and Privacy, ACISP ’00. Lecture Notes in Computer Science,
vol. 1841 (Springer, Berlin, 2000), pp. 385–399

[53] V. Shoup, Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint
Archive, Report 2004/332 (2004). http://eprint.iacr.org/

[54] S. Vaudenay, Digital signature schemes with domain parameters: yet another parameter issue in ECDSA,
in Information Security and Privacy, ACISP ’04. Lecture Notes in Computer Science, vol. 3108
(Springer, Berlin, 2004), pp. 188–199

http://eprint.iacr.org/
http://eprint.iacr.org/

	Short Undeniable Signatures Based on Group Homomorphismsn1
	Abstract
	Introduction
	Our Contribution
	Structure of the Paper

	Preliminaries
	Notation
	Proof of Membership
	Trapdoor Commitment Scheme
	Trapdoor One-Way Permutations

	Undeniable Signature
	Interpolation of Group Homomorphisms
	Problem Definitions
	Group Homomorphism Interpolation Problem
	Related Computational Problems
	Group Expert

	Preliminaries
	Uniqueness of the Interpolation
	Existence of the Interpolation
	Examples of GHI and GHID Problems
	Sampling G uniformly

	Approximations of the Homomorphism
	A 4-Move ZK Protocol for GHI and coGHI
	Soundness
	Zero-Knowledge
	Nontransferability
	Soundness
	Zero-Knowledge
	Nontransferability

	A Two-Move ZK Protocol for GHI and coGHI in the Random Oracle Model
	Soundness
	Zero-Knowledge
	Nontransferability

	A NIZK for MGGD
	Soundness
	Noninteractive Zero-Knowledge

	A 0-Move Proof for MGGD

	MOVA Scheme
	Description
	Security Results
	Unforgeability
	Invisibility

	Parameters, Implementation, and Other Properties
	Potential Instantiations
	Characters

	Implementation of the Signature Generation
	Other Properties

	Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

