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Abstract. Goldreich and Lindell (CRYPTO ’01) recently presented the first proto-
col for password-authenticated key exchange in the standard model (with no common
reference string or set-up assumptions other than the shared password). However, their
protocol uses several heavy tools and has a complicated analysis.

We present a simplification of the Goldreich–Lindell (GL) protocol and analysis
for the special case when the dictionary is of the form D = {0,1}d i.e., the password
is a short string chosen uniformly at random (in the spirit of an ATM PIN number).
The security bound achieved by our protocol is somewhat worse than the GL protocol.
Roughly speaking, our protocol guarantees that the adversary can “break” the scheme
with probability at most O(poly(n)/|D|)�(1), whereas the GL protocol guarantees a
bound of O(1/|D|).

We also present an alternative, more natural definition of security than the “aug-
mented definition” of Goldreich and Lindell, and prove that the two definitions are
equivalent.

Key words. Human-memorizable passwords, Key exchange, Authentication, Cryp-
tographic protocols, Secure two-party computation.

1. Introduction

What is the minimal amount of information that two parties must share in order to
perform nontrivial cryptography? This fundamental question is at the heart of many
of the major distinctions we draw in cryptography. Classical private-key cryptography
assumes that the legitimate parties share a long random key. Public-key cryptography
mitigates this by allowing the sharing of information to be done through public keys
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that need not be hidden from the adversary. However, in both cases, the amount of
information shared by the legitimate parties (e.g., as measured by mutual information)
needs to be quite large. Indeed, the traditional view is that security comes from the
adversary’s inability to exhaustively search the keyspace.

Thus it is very natural to ask: can we do nontrivial cryptography using “low-entropy”
keys (i.e., using a keyspace that is feasible to exhaustively search)? In addition to being
a natural theoretical question, it has clear relevance to the many “real-life” situations
where we need security but only have a low-entropy key (e.g., an ATM PIN number, or
human-chosen password on a website).

Public-key cryptography provides an initial positive answer to this question: key-
exchange protocols, as in [10], do not require any prior shared information. However,
this holds only for passive adversaries, and it is well known that without any prior
shared information between the legitimate parties, an active adversary can always suc-
ceed through a person-in-the-middle attack. Thus, it remains an interesting question to
achieve security against active adversaries using a low-entropy shared key. This has led
researchers to consider the problem of password-authenticated key exchange, which we
describe next.

Password-Authenticated Key Exchange The password-authenticated key exchange
problem was first suggested as a topic for research by Bellovin and Merritt [4]. We as-
sume that two parties, Alice and Bob, share a password w chosen uniformly at random
from a dictionary D ⊆ {0,1}n. This dictionary can be very small, e.g., |D| = poly(n),
and in particular it may be feasible for an adversary to exhaustively search it. Our aim
is to construct a protocol enabling Alice and Bob to generate a “random” session key
K ∈ {0,1}n, which they can subsequently use for standard private-key cryptography.
We consider an active adversary that completely controls the communication channel
between Alice and Bob. The adversary can intercept, modify, drop, and delay messages,
and in particular can attempt to impersonate either party through a person-in-the-middle
attack.

Our goal is that, even after the adversary mounts such an attack, Alice and Bob will
generate a session key that is “indistinguishable” from uniform even given the adver-
sary’s view. However, our ability to achieve this goal is limited by two unpreventable
attacks. First, since the adversary can block all communication, it can prevent one or
both of the parties from completing the protocol and obtaining a session key. Second,
the adversary can guess a password w̃ chosen uniformly from the dictionary D and at-
tempt to impersonate one of the parties. With probability 1/|D|, the guess equals the real
password (i.e., w̃ = w), and the adversary will succeed in the impersonation and there-
fore learn the session key. Thus, we revise our goal to effectively limit the adversary to
these two attacks. Various formalizations for this problem have been developed through
several works [2,3,7,15,17,25]. We follow the definitional framework of Goldreich and
Lindell [15], which is described in more detail in Sect. 2.

In addition to addressing what can be done with a minimal amount of shared in-
formation, the study of this problem is useful as another testbed for developing our
understanding of concurrency in cryptographic protocols. The concurrency implicitly
arises from the person-in-the-middle attack, which we can view as two simultaneous
executions of the protocol, one between Alice and the adversary and the other between
Bob and the adversary.
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The first protocols for the password-authenticated key exchange problem were pro-
posed in the security literature, based on informal definitions and heuristic arguments
(e.g., [5,27]). The first rigorous proofs of security were given in the ideal cipher and
random oracle models [2,7,19]. Only recently were rigorous solutions without random
oracles given, in independent works by Goldreich and Lindell [15] and Katz, Ostrovsky,
and Yung [18]. One of the main differences between these two protocols is that the KOY
protocol (and the subsequent protocol of [13]) is in the “public parameters model,” re-
quiring a string to be generated and published by a trusted third party, whereas the
GL protocol requires no set-up assumption other than the shared password. Thus, even
though the KOY protocol has a number of practical and theoretical advantages over the
GL protocol (which we will not enumerate here), the GL protocol is more relevant to our
initial question about the minimal amount of shared information needed for nontrivial
cryptography.

The Goldreich–Lindell Protocol As mentioned above, the Goldreich–Lindell proto-
col [15] is remarkable in that the only set-up assumption it requires is that the two
parties share a password chosen at random from an arbitrary dictionary. Furthermore,
their protocol can be based on general complexity assumptions (i.e., the existence of
enhanced trapdoor permutations), can be implemented in a constant number of rounds
(under stronger assumptions), and achieves a nearly optimal security bound (the adver-
sary has probability only O(1/|D|) of “breaking” the scheme).

Despite giving such a strong result, the Goldreich–Lindell protocol does not leave us
with a good understanding of the password-authenticated key-exchange problem. First,
the protocol makes use of several “heavy” tools: secure two-party polynomial evaluation
(building on [21], who observed that this yields a protocol for password-authenticated
key exchange against passive adversaries), nonmalleable commitments (as suggested in
[6]), and the specific concurrent zero-knowledge proof of Richardson and Kilian [24].
It is unclear whether all of these tools are really essential for solving the key-exchange
problem. Second, the proof of the protocol’s security is extremely complicated. Gol-
dreich and Lindell do introduce nice techniques for analyzing concurrent executions
(arising from the person-in-the-middle attack) of two-party protocols whose security is
only guaranteed in the stand-alone setting (e.g. the polynomial evaluation), but these
techniques are applied in an intricate manner that seems inextricably tied to the pres-
ence of the nonmalleable commitment and zero-knowledge proof. Finally, finding an
efficient instantiation of the Goldreich–Lindell protocol would require finding efficient
instantiations of all three of the heavy tools mentioned above, which seems difficult. In
particular, the Richardson–Kilian zero-knowledge proof is used to prove an NP state-
ment that asserts the consistency of a transcript of the nonmalleable commitment, a
standard commitment, and the output of an iterated one-way permutation. For such an
NP statement, it seems difficult to avoid using a generic zero-knowledge proof system
for NP, which is almost always inefficient due to the use of Cook’s theorem.

Our Protocol Our main result is a simplification of the Goldreich–Lindell protocol and
analysis for the special case when the dictionary is of the form D = {0,1}d , i.e., the pass-
word is a short string chosen uniformly at random from {0,1}d , for d ≥ 3 logn where n

is the security parameter. More generally, the password can be chosen uniformly at ran-
dom from any fixed dictionary of size 2d whose elements we can efficiently enumerate
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(because the enumeration provides a bijection with {0,1}d ). Note that this special case
still retains the main features of the problem: the person-in-the-middle attack and the
resulting concurrency issues are still present, and the adversary can still exhaustively
search the dictionary (since we allow the password length d to be as small as O(logn),
where n is the security parameter). Our protocol is still far from practical (and cannot be
used with passwords as short as 4-digit ATM numbers), but we view it as a theoretical
step in our understanding of a natural and important cryptographic problem.

Though our protocol cannot be used directly for arbitrary dictionaries, it can be con-
verted into one for arbitrary dictionaries in the common reference string model (using
the common reference string as the seed of a randomness extractor [23]). For dictio-
naries D ⊂ {0,1}n, the common reference string is a uniform string of only logarithmic
length (specifically, O(logn + log |D|)), and thus retains the spirit of minimizing the
amount of shared information between the legitimate parties. In contrast, the previ-
ous protocols in the public parameters model [13,18] require a public string of length
poly(n) with special number-theoretic structure.

The main way in which we simplify the GL protocol is that we remove the non-
malleable commitments and the Richardson–Kilian zero-knowledge proof. Instead, our
protocol combines secure polynomial evaluation with a combinatorial tool (i.e., almost
pairwise-independent hashing), in addition to using “lightweight” cryptographic primi-
tives also used in [15] (one-way permutations, one-time MACs, standard commitments).
Our analysis is also similarly simpler. While it has the same overall structure as the
analysis in [15] and utilizes their techniques for applying the stand-alone properties of
the polynomial evaluation in the concurrent setting, it avoids dealing with the nonmal-
leable commitments and the zero-knowledge proof (which is the most complex part of
the GL analysis).

Removing the nonmalleable commitments and the RK zero-knowledge proof has two
additional implications. First, finding an efficient implementation of our protocol only
requires finding an efficient protocol for secure polynomial evaluation (in fact, only
for linear polynomials).1 Since this is a highly structured special case of secure two-
party computation, it does not seem beyond reach to find an efficient protocol. Indeed,
Naor and Pinkas [21] have already given an efficient polynomial evaluation protocol for
passive adversaries. Second, our protocol can be implemented in a constant number of
rounds assuming only the existence of trapdoor permutations, whereas implementing
the Goldreich–Lindell protocol in a constant number of rounds requires additional as-
sumptions, such as the existence of claw-free permutations (for a round-efficient version
of the Richardson–Kilian zero-knowledge proof, see [15]) and some sort of exponen-
tial hardness assumption (to use [1] and obtain constant-round non-malleable commit-
ments). Though our protocol is not efficient and cannot be used in practice, this the-
oretical work will hopefully help lead the way to protocols that are both simpler and
efficient.

We note that the security bound achieved by our protocol is somewhat worse than
in previous works. Roughly speaking, our protocol for a password chosen uniformly
at random from the dictionary D = {0,1}d guarantees that the adversary can “break”

1 Actually, we require a slightly augmented form of polynomial evaluation, in which one of the parties
commits to its input beforehand and the protocol ensures consistency with this committed input.
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the scheme with probability at most O(n3/|D|)1/4, whereas previous works guarantee
a bound of O(1/|D|). A security bound with linear dependency on the size of the dic-
tionary is of course preferable for both conceptual and practical reasons, but again, our
protocol should be viewed as a stepping stone towards more efficient protocols with
better security bounds.

An additional result in our paper involves the definition of security in [15]. As pointed
out by Rackoff (cf. [2]), it is important that a key exchange protocol provide security
even if the party who completes the protocol first starts using the generated key in
some application before the second party completes the protocol. In order to address
this issue, Goldreich and Lindell [15] augmented their definition with a “session-key
challenge”, in which the adversary is given either the generated key or a uniform string
with probability 1/2 upon the first party’s completion of the protocol. We present an
arguably more natural definition that directly models the use of the generated key in an
arbitrary application, and prove its equivalence to the augmented definition of Goldreich
and Lindell [15]. (This result is analogous to the result of Shoup [25] for non-password-
based key exchange protocols.)

Organization In Sect. 2, we formalize the problem of session-key generation using
human passwords. We first provide the basic security definition of Goldreich and Lin-
dell [15] and give their augmented definition (which deals with the issue of one party
using the generated key before the other party completes the protocol). We then present
our alternative, more natural definition of security and prove its equivalence to the aug-
mented definition of Goldreich and Lindell.

In Sect. 3, we provide an overview of our protocol. It was observed in [21] that a
secure protocol for polynomial evaluation yields a protocol for session-key generation
that is secure against passive adversaries. In [15], Goldreich and Lindell work from the
intuition that by augmenting a secure protocol for polynomial evaluation with additional
mechanisms, one can obtain a protocol for session-key generation that is secure against
active adversaries. Our protocol also comes from this intuition, but the additional tools
we are using are different.

In Sect. 4, we state our main security theorems and provide an overview of the proof
of security. As in [15], the proof reduces the case of active adversaries to the case of
passive adversaries by establishing a “Key-Match Property,” which states that if certain
“pre-keys” computed by the two honest parties are different, then one of the parties will
reject with high probability.

Section 5 contains the proof of security against passive adversaries. In Sects. 6 and 7,
we establish the Key-Match Property (each section handling a different ‘scheduling’ of
the two concurrent interactions between the adversary and the honest parties). It is here
that our analysis differs from and is significantly simpler than that of Goldreich and
Lindell [15]. In Sect. 8, we adapt the proofs of [15] to show that the simulation-based
definition of security against active adversaries is satisfied.

In Sect. 9, we state additional security theorems and show how the shared dictionary
D = {0,1}d can be realized from several other types of dictionaries. In Appendix A,
we recall definitions of secure two-party computation and in Appendix B we give a
construction of almost pairwise-independent hash functions that can be used in our pro-
tocol.



Simpler Session-Key Generation from Short Random Passwords 57

2. Definition of Security

We adopt the notation of Goldreich and Lindell and refer the reader to [15] for more
details.

• C denotes the probabilistic polynomial time adversary through which the honest
parties A and B communicate. We model this communication by giving C oracle
access to a single copy of A and a single copy of B . Here the oracles A and B

have memory and represent honest parties executing the session-key generation
protocol. We denote by CA(x),B(y)(σ ) an execution of C with auxiliary input σ

when it communicates with A and B , with respective inputs x and y. The output
of the channel C from this execution is denoted by output(CA(x),B(y)(σ )).

• The security parameter is denoted by n. The password dictionary is denoted by
D ⊆ {0,1}n and we write ε = 1

|D| .

We denote by Un the uniform distribution over strings of length n, by neg(n) an arbitrary
negligible function, and write x

R← S when x is chosen uniformly from the set S.
For a function γ : N → [0,1], we say that the probability ensembles {Xn} and

{Yn} are (1 − γ )-indistinguishable (denoted by {Xn} γ≡ {Yn}) if for every probabilis-
tic polynomial-time distinguisher D, every polynomial p, every n, and every auxiliary
input σn ∈ {0,1}p(n), we have

|Pr[D(Xn,σn) = 1] − Pr[D(Yn,σn) = 1]| < γ (n) + neg(n).

We say that {Xn} and {Yn} are computationally indistinguishable, which we denote by

Xn

comp≡ Yn, if they are 1-indistinguishable. We say that {Xn} is (1 − γ )-pseudorandom
if it is (1 − γ )-indistinguishable from Un.

We will also consider indistinguishability for probability ensembles {Xw}w∈S and
{Yw}w∈S that are indexed by a set of strings S in which case we require that for every
probabilistic polynomial-time distinguisher D, every polynomial p, every w ∈ S, and
every auxiliary input σ ∈ {0,1}p(|w|), we have:

|Pr[D(Xw,w,σ) = 1] − Pr[D(Yw,w,σ ) = 1]| < γ (|w|) + neg(|w|).
We will now formalize the problem of session-key generation using human pass-

words. We first provide the basic security definition of Goldreich and Lindell [15] in
Sect. 2.1 and give their augmented definition (which deals with the issue of one party
using the generated key before the other party completes the protocol) in Sect. 2.2. In
Sect. 2.3, we present our alternative, more natural definition of security and prove its
equivalence to the augmented definition of Goldreich and Lindell.

2.1. The Initial Definition

The definition in [15] follows the standard paradigm for secure computation: define an
ideal functionality (using a trusted third party) and require that every adversary attacking
the real protocol can be simulated by an ideal adversary attacking the ideal functionality.
Note that in the real protocol, the active adversary C can prevent one or both of the
parties A and B from having an output. Thus, in the ideal model, we will allow Cideal to
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specify two input bits, decA
C and decB

C , that determine whether A and B obtain a session
key or not.

Ideal model Let A,B be the honest parties and let Cideal be any probabilistic
polynomial-time ideal adversary with auxiliary input σ .

1. A and B receive w
R←D.

2. A and B both send w to the trusted party.
3. Cideal sends (decA

C,decB
C) to the trusted party.

4. The trusted party chooses K
R← {0,1}n. For each party i ∈ {A,B}, the trusted

party sends K if deci
C = 1 and sends ⊥ if deci

C = 0. Hence output(A) = K if
decA

C = 1, and ⊥ otherwise (output(B) is defined similarly).

The ideal distribution is defined by:

IDEALCideal(D, σ ) = (w,output(A),output(B),output(Cideal(σ ))).

We note that this description of the ideal model differs slightly from the original
definition in [15] since we allow B to finish first and A to reject in the ideal model
(this is to take into account protocols in which no party is guaranteed to terminate with
a session key). However, as described in Sect. 3.3, our protocol will guarantee that A

always accepts. Moreover, we will show that any real adversary can be simulated by
an ideal adversary who always chooses A to conclude first and accept.

Real model Let A,B be the honest parties and let C be any probabilistic polynomial-
time real adversary with auxiliary input σ .
At some initialization stage, A and B receive w

R← D. The real protocol is exe-
cuted by A and B communicating via C. We will augment C’s view of the protocol
with A and B’s decision bits, denoted by decA and decB , where decA = reject if
output(A) = ⊥, and decA = accept otherwise (decB is defined similarly). (Indeed,
in typical applications, the decisions of A and B will be learned by the real adver-
sary C: if A obtains a session key, then it will use it afterwards; otherwise, A will
stop communication or try to re-initiate an execution of the protocol.) C’s augmented
view is denoted by output(CA(w),B(w)(σ )).
The real distribution is defined by:

REALC(D, σ ) = (w,output(A),output(B),output(CA(w),B(w)(σ ))).

One might want to say that a protocol for password-based session-key generation is
secure if the above ideal and real distributions are computationally indistinguishable.
Unfortunately, as pointed in [15], an active adversary can guess the password and suc-
cessfully impersonate one of the parties with probability 1

|D| . This implies that the real

and ideal distributions are always distinguishable with probability at least 1
|D| . Thus we

will only require that the distributions be distinguishable with probability at most O(γ )

where the goal is to make γ as close to 1
|D| as possible. In the case of a passive adversary,

we require that the real and ideal distributions be computationally indistinguishable (for
all subsequent definitions, this requirement will be implicit).
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Definition 2.1 (Initial definition). A protocol for password-based authenticated
session-key generation is (1 − γ )-secure for the dictionary D ⊆ {0,1}n (where γ is
a function of the dictionary size |D| and n) if:

1. For every real passive adversary, there exists an ideal adversary Cideal that always
sends (1,1) to the trusted party such that for every auxiliary input σ ∈ {0,1}poly(n),

{IDEALCideal(D, σ )} comp≡ {REALC(D, σ )}.

2. For every real adversary C, there exists an ideal adversary Cideal such that for
every auxiliary input σ ∈ {0,1}poly(n),

{IDEALCideal(D, σ )} O(γ )≡ {REALC(D, σ )}.

By the discussion above, the best we can hope for is γ = 1
|D| . Note that in [15], their

definition and protocol refer to any dictionary D ⊆ {0,1}n and γ = 1
|D| . In contrast,

our protocol will be (1 − γ )-secure for dictionaries of the form D = {0,1}d and γ =
(

poly(n)

|D| )�(1).
Following [15] (but unlike some of the other previous work), the above definition

refers to only a single execution of the session-key generation protocol. As in [15], it
can be shown that security is maintained for multiple sequential executions, but security
is not guaranteed for concurrent executions using the same password.

2.2. Security with Respect to the Session-Key Challenge

The above definition is actually not completely satisfying because of a subtle point
raised by Rackoff: the adversary controls the scheduling of the interactions (A,C) and
(C,B) so the honest parties do not necessarily end at the same time. Assume that A

completes the protocol first. Then A might use its session key KA before the interac-
tion (C,B) is completed: A’s use of KA leaks information which C might use in its
interaction with B to learn KA,KB or the password w.

In [15], Goldreich and Lindell augment the above definition with a session-key chal-
lenge to address this issue. Suppose that A completes the protocol first and outputs a
session key K , then the adversary is given a session key challenge Kβ , which is the
session key K with probability 1/2 (i.e., β = 1) or a truly random string K0 with proba-
bility 1/2 (i.e., β = 0). The adversary C will be given the session-key challenge in both
the ideal and real models, as soon as the first honest party outputs a session key K . We
call the resulting definition security with respect to the session-key challenge.

Ideal model Let A,B be the honest parties and let Cideal be any probabilistic
polynomial-time ideal adversary with auxiliary input σ .

1. A and B receive w
R←D.

2. A and B both send w to the trusted party.
3. Cideal decides which party i ∈ {A,B} concludes first and whether it is a suc-

cessful execution or not, i.e., Cideal sends a pair (i,deci
C) to the trusted party.
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4. The trusted party chooses K
R← {0,1}n. If deci

C = 1, the trusted party sends K

to party i; otherwise it sends ⊥.
5. Session-key challenge: if party i received ⊥, then the trusted party gives ⊥ to

Cideal. Otherwise, the trusted party chooses β
R←{0,1} and gives Cideal the string

Kβ where K1 = K and K0
R← {0,1}n.

6. Cideal decides whether the second party’s execution is successful or not, i.e.,
Cideal sends decj

C for j 
= i to the trusted party.

7. If decj
C = 1, the trusted party sends K to party j . Otherwise, it sends ⊥.

The augmented ideal distribution is defined by:

IDEAL-SKCideal(D, σ ) = (w,output(A),output(B),output(Cideal(σ,Kβ)),β).

Real model At some initialization stage, A and B receive w
R←D. C has oracle access

to a single copy of A(w) and a single copy of B(w). The adversary C controls which
party (A or B) concludes first. If the first party concludes with ⊥, then C is given ⊥.
If the first party concluding outputs locally a session key K , then a bit β

R← {0,1} is
chosen and C is given the session-key challenge Kβ where K1 = K and K0

R←{0,1}n.
C completes its interaction with the other party.
The augmented real distribution is defined by:

REAL-SKC(D, σ ) = (w,output(A),output(B),output(CA(w),B(w)(σ,Kβ)),β).

Definition 2.2 (Security with respect to the session-key challenge [15]). A protocol
for password-based authenticated session-key generation is (1 − γ )-secure with respect
to the session-key challenge for the dictionary D ⊆ {0,1}n if for every real adversary C,
there exists Cideal such that for every auxiliary input σ ∈ {0,1}poly(n),

{IDEAL-SKCideal(D, σ )} O(γ )≡ {REAL-SKC(D, σ )}.

Goldreich and Lindell give some intuition as to why the session-key challenge solves
the flaw mentioned earlier. First, note that the ideal adversary cannot distinguish be-
tween the case β = 0 and the case β = 1 since in the ideal model, both K0 and K are
truly uniform strings. Consider the real adversary who has been given the session-key
challenge: if C has been given K0, then the session-key challenge does not help C in
attacking the protocol, since C could generate K0 on its own. Suppose that instead C

has been given K and that C can somehow use it to attack the protocol (this corresponds
to the situation where A uses the session-key K ; C(K) can simulate A’s use of the key),
then it would mean that C can tell whether β = 0 or β = 1, which is not possible if the
protocol is secure with respect to the session-key challenge.

2.3. Security with Respect to the Environment

Suppose that A completes the protocol first and outputs a session key K . Our intu-
itive notion of security is that no matter how A uses its session-key K before the ex-
ecution (C,B) is completed, the ideal and real distributions should be (1 − O(γ ))-
indistinguishable. It is not immediate that the session-key challenge captures this. Thus
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we propose an alternative augmentation to Definition 2.1 that corresponds more directly
to this goal.

We model the different ways the party A could use its session-key K by considering
an arbitrary probabilistic polynomial time machine Z that is given the key K (as soon
as A outputs a session-key K) and interacts with the adversary in both the ideal and real
models. This is similar to the “application” queries in Shoup’s model for (non-password-
based) secure key-exchange [25], which was later extended to password protocols in [7].
Z can also be thought of in terms of “environment” as in Canetti’s notion of UC security
[8]: Z models an arbitrary environment (or application) in which the key generated
by the session-key generation protocol is used (note that this is not as general as the
definition of Canetti since the environment Z is only given the session-key and not the
password w).

Examples of environments follow:

1. Z(K) = ⊥: A does not use its session-key.
2. Z(K) = K : A publicly outputs its session-key.

3. Z(K) =
{

K with probability 1/2,

Un with probability 1/2.

This corresponds to the session-key challenge.
4. Z(K) = EncK(0n): A uses its session-key for secure private-key encryption.
5. C sends a query m1, Z(K) answers with EncK(m1), C sends a query m2, Z(K)

answers with EncK(m2) and so on. This corresponds to an interactive environment
Z which models a chosen plain-text attack.

We call the definition obtained by adding (in both the ideal and real models) the
environment Z security with respect to the environment. Informally, a real protocol is
secure with respect to the environment if every adversary attacking the real protocol and
interacting with an arbitrary environment can be simulated, with probability 1 − O(γ ),
by an ideal adversary attacking the ideal functionality and interacting with the same
environment in the ideal model. (More precisely, for every real adversary, there should
be a single ideal adversary that simulates it well for every environment.)

Ideal model Let A and B be the honest parties, Cideal any probabilistic polynomial-
time ideal adversary with auxiliary input σ and Z any probabilistic polynomial-time
with auxiliary input τ .

1. A and B receive w
R←D.

2. A and B both send w to the trusted party.
3. Cideal decides which party i ∈ {A,B} concludes first and whether it is a suc-

cessful execution or not, i.e., Cideal sends (i,deci
C) to the trusted party.

4. The trusted party chooses K
R← {0,1}n. If deci

C = 1, it sets L1 = K ; otherwise,
L1 = ⊥. The trusted party sends L1 to party i and Z.

5. Cideal interacts with Z(L1, τ ).
6. Cideal decides whether the second party’s execution is successful or not, i.e.,

Cideal sends decj
C for j 
= i to the trusted party.

7. If decj
C = 1, the trusted party sets L2 = K ; otherwise, L2 = ⊥. It sends L2 to

party j .
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The ideal distribution is defined by:

IDEALZ,τ,Cideal(D, σ ) = (w,output(A),output(B),output(Z(L1, τ )),

output(Cideal
Z(L1,τ )(σ ))).

Real model At some initialization stage, A and B receive w
R←D. C has oracle access

to a single copy of A(w) and a single copy of B(w). The adversary C controls which
party (A or B) concludes first. Let M1 ∈ {0,1}n ∪ ⊥ be the output of the first con-
cluding party. C interacts with Z(M1, τ ) and completes its interaction with the other
party.
The real distribution is defined by:

REALZ,τ,C(D, σ ) = (w,output(A),output(B),output(Z(M1, τ )),

output(CA(w),B(w),Z(M1,τ )(σ ))).

Definition 2.3 (Security with respect to the environment). A protocol for password-
based authenticated session-key generation is (1−γ )-secure with respect to the environ-
ment for the dictionary D ⊆ {0,1}n if for every probabilistic polynomial-time C, there
exists Cideal such that for every auxiliary input σ ∈ {0,1}poly(n) and every probabilistic
polynomial-time Z with every auxiliary input τ ∈ {0,1}poly(n),

{IDEALZ,τ,Cideal(D, σ )} O(γ )≡ {REALZ,τ,C(D, σ )}.

Note that security with respect to the environment implies security with respect to
the session-key challenge since it suffices to consider the probabilistic polynomial-time
Z(K) which generates β

R← {0,1} and outputs the key K if β = 1 or a truly random
string K0 if β = 0. We show that the two definitions are actually equivalent:

Theorem 2.4. A protocol (A,B) is (1 − γ )-secure with respect to the session-key
challenge iff it is (1 − γ )-secure with respect to the environment.

This is similar to a result of Shoup [25] showing the equivalence of his definition and
the Bellare–Rogaway [3] definition for non-password-based key exchange. The “ap-
plication” queries in Shoup’s definition are analogous to our environment Z, and the
“test” queries in [3] are analogous to the session-key challenge. Though both of these
definitions have been extended to password-authenticated key exchange [2,7], it is not
immediate that Shoup’s equivalence result extends directly to our setting. For exam-
ple, the definitions of [2,3] are not simulation-based and do not directly require that the
password remain pseudorandom, whereas here we are relating two simulation-based
definitions that do ensure the password’s secrecy.

Given Theorem 2.4, the relationship between security with respect to the environ-
ment and security with respect to the session-key challenge is analogous to the relation-
ship between semantic security and indistinguishability for encryption schemes [16,20].
Though both are equivalent, the former captures our intuitive notion of security better,
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but the latter is typically easier to establish for a given protocol (as it involves only
taking into account a specific environment Z).

The intuition for the proof of Theorem 2.4 is that for every adversary C against secu-
rity with respect to the environment, there exists an adversary C′ against security with
respect to the session-key challenge that can simulate both the environment Z and C.
Indeed, C′ is given the session-key challenge Kβ and can simulate both Z(Kβ) and C

(interacting with Z(Kβ)) on its own using Kβ . Note that here Z is only run with the
actual session key with probability 1/2 (namely, when β = 1), whereas the definition
of security with respect to the environment always refers to Z run with the true ses-
sion key. Intuitively, however, this difference should not matter, because the two cases
β = 0 and β = 1 are indistinguishable in the ideal model for security with respect to the
session-key challenge.

Proof. For conciseness of notation in the proof, we omit “output” in the distributions.
Let (A,B) be a protocol that is secure with respect to the session-key challenge. To

prove the theorem, it suffices to prove that Definition 2.3 holds that is, for every proba-
bilistic polynomial-time C, there exists a probabilistic polynomial-time Cideal such that
for every Z and every auxiliary input τ :

{w,A,B,Z(M1, τ ),CA(w),B(w),Z(M1,τ )(σ )}O(γ )≡ {w,A,B,Z(L1, τ ),Cideal
Z(L1,τ )(σ )},

where M1 is the output of the first concluding party in the real execution CA(w),B(w)

and L1 is the output of the first concluding party in the ideal execution.
We denote by M2 the output of the second concluding party in the real execution

CA(w),B(w) and by L2 the output of the second concluding party in the ideal execution.
Hence, we want to prove that for every probabilistic polynomial-time C, there exists a
probabilistic polynomial-time Cideal such that for every Z and every auxiliary input τ :

{w,M1,M2,Z(M1, τ ),CA(w),B(w),Z(M1,τ )(σ )}
O(γ )≡ {w,L1,L2,Z(L1, τ ),Cideal

Z(L1,τ )(σ )}
where we also require that if Cideal sets i ∈ {A,B} as the first concluding party, then i

concludes first in the simulated view Cideal outputs.
Let us consider the session-key challenge given to the adversary in both the ideal and

real models of Definition 2.2:

• In the ideal model of Definition 2.2, the trusted party gives the adversary Cideal the
session-key challenge Kβ

Kβ =
{

L1 if β = 1 or L1 = ⊥,

Un if β = 0 and L1 
= ⊥.

• In the real model of Definition 2.2, the trusted party gives the adversary C the
session-key challenge Kβ

Kβ =
{

M1 if β = 1 or M1 = ⊥,

Un if β = 0 and M1 
= ⊥.
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We fix the real adversary C (against security with respect to the environment)
and define the real adversary C′ (against security with respect to the session-key
challenge) that, on auxiliary input (σ, τ ) and upon receiving K from the first con-
cluding party, simulates Z(K,τ) and C on its own. Hence C′A(w),B(w)(σ, τ,K) ≡
{K,τ,CA(w),B(w),Z(K,τ)(σ )}. We now apply Definition 2.2 for the real adversary C′.

By security with respect to the session-key challenge, there exists an ideal adversary
C′

ideal such that

IDEAL-SKC′
ideal

O(γ )≡ REAL-SKC′

⇒ {w,L1,L2,C′
ideal(σ, τ,Kβ),β} O(γ )≡ {w,M1,M2,C

′A(w),B(w)(σ, τ,Kβ),β}.
Moreover, as β has only two possible values, we know that:

{w,L1,L2,C′
ideal(σ, τ,L1)} O(γ )≡ {w,M1,M2,C

′A(w),B(w)(σ, τ,M1)}, (1)

{w,L1,L2,C′
ideal(σ, τ,K0)} O(γ )≡ {w,M1,M2,C

′A(w),B(w)(σ, τ,K0)}. (2)

We will first prove that the real outputs of the honest parties are indistinguishable
from ideal outputs, even when the environment Z is present. This is formalized by the
following claim:

Claim 2.5. For every Z, every τ and every σ ,

{w,M2,M1, τ,C
A(w),B(w),Z(M1,τ )(σ )} O(γ )≡ {w,L2,L1, τ,C

A(w),B(w),Z(L1,τ )(σ )},
where Mi is the output of the ith concluding party in the real execution CA(w),B(w) and
L1,L2 are defined as follows:

• if the first party in the real execution CA(w),B(w) accepts, then L1 = Un. Otherwise,
L1 = ⊥.

• if the second party in the real execution CA(w),B(w) accepts and L1 
= ⊥, then
L2 = L1. If the second party accepts and L1 = ⊥, then L2 = Un. If the second
party rejects, then L2 = ⊥.

Proof of claim. By definition of C′ and (1), we know that

{w,M2,M1, τ,C
A(w),B(w),Z(M1,τ )(σ )} ≡ {w,M2,C

′A(w),B(w)(σ, τ,M1)}
O(γ )≡ {w,L2,C′

ideal(σ, τ,L1)}.
Again, by definition of C′, we have

{w,L2,L1, τ,C
A(w),B(w),Z(L1,τ )(σ )} ≡ {w,L2,C

′A(w),B(w)(σ, τ,L1)}.
Note that in both the real and ideal models, the string K0 is distributed identically to
L1, hence by (2), we have
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{w,C′A(w),B(w)(σ, τ,L1)} O(γ )≡ {w,C′
ideal(σ, τ,L1)}

⇒ {w,L2,C
′A(w),B(w)(σ, τ,L1)} O(γ )≡ {w,L2,C′

ideal(σ, τ,L1)}. �

We will now prove that if the real outputs of the honest parties are replaced by ideal
outputs, then the protocol leaks no information about the password w.

Claim 2.6. For every Z, every τ and every σ ,

{w,L2,L1, τ,C
A(w),B(w),Z(L1,τ )(σ )} O(γ )≡ {w̃,L2,L1, τ,C

A(w),B(w),Z(L1,τ )(σ )},

where w̃
R←D and L1,L2 are defined as follows:

• if the first party in the real execution CA(w),B(w) accepts, then L1 = Un. Otherwise,
L1 = ⊥.

• if the second party in the real execution CA(w),B(w) accepts and L1 
= ⊥, then
L2 = L1. If the second party accepts and L1 = ⊥, then L2 = Un. If the second
party rejects, then L2 = ⊥.

Proof of claim. We define the real adversary C′′ (against security with respect
to the session-key challenge) that, on auxiliary input (σ, τ ) and upon receiving L1
from the first concluding party, simulates Z(L1, τ ) and C on its own such that
C′′A(w),B(w)(σ, τ,L1) ≡ {L2,L1, τ,C

A(w),B(w),Z(L1,τ )}, where L2 is computed accord-
ing to the above rule. Since L1 is distributed identically to K0, by security with respect
to the session-key challenge (for the case where β = 0) there exists C′′

ideal such that

{w,C′′
ideal(σ, τ,L1)} O(γ )≡ {w,C′′A(w),B(w)(σ, τ,L1)}, (3)

which in turn implies (by non-uniform indistinguishability or samplability of D)

{w̃,C′′
ideal(σ, τ,L1)} O(γ )≡ {w̃,C′′A(w),B(w)(σ, τ,L1)}, (4)

where w̃
R←D. Note that in the ideal model, the adversary C′′

ideal(σ, τ,L1) learns nothing
about the password w since L1 is independent of the password w. Hence we have

{w̃,C′′
ideal(σ, τ,L1)} ≡ {w,C′′

ideal(σ, τ,L1)}. (5)

From (3), (4), (5) and transitivity of indistinguishability, we conclude that

{w,C′′A(w),B(w)(σ, τ,L1)} O(γ )≡ {w̃,C′′A(w),B(w)(σ, τ,L1)}. �

Note that the distributions {w̃,L2,L1, τ,C
A(w),B(w),Z(L1,τ )(σ )} and {w,L2,L1, τ,

CA(w̃),B(w̃),Z(L1,τ )(σ )}, where w̃
R← D, are equivalent. Combining Claims 2.5 and 2.6,

we obtain

{w,M1,M2, τ,C
A(w),B(w),Z(M1,τ )(σ )} O(γ )≡ {w,L1,L2, τ,C

A(w̃),B(w̃),Z(L1,τ )(σ )}.



66 M.-H. Nguyen and S. Vadhan

We now describe the ideal adversary Cideal
Z(L1,τ )(σ ) that simulates

CA(w̃),B(w̃),Z(L1,τ )(σ ):

1. Cideal generates a random password w̃
R← D and simulates the honest parties A

and B in the interaction (A(w̃),B(w̃)).
2. Let i ∈ {A,B} be the first party to conclude in the simulated execution. Party i

outputs a decision bit deci and a key L1 in the simulated execution. As soon as
the first party in the simulated execution concludes, Cideal sends (i,deci ) to the
trusted party.

3. Cideal interacts with Z(L1, τ ) and continue the simulated execution.
4. Let j ∈ {A,B} be the second party to conclude in the simulated execution. Party

j outputs a decision bit decj and a key L2 in the simulated execution. As soon
as the second party in the simulated execution concludes, Cideal sends (j,decj ) to
the trusted party.

Hence, for any probabilistic polynomial-time C, there exists Cideal such that for
every Z and every τ :

{w,M1,M2,Z(M1, τ ),CA(w),B(w),Z(M1,τ )(σ )}
O(γ )≡ {w,L1,L2,Z(L1, τ ),Cideal

Z(L1,τ )(σ )}.
Note that the O(·) in O(γ ) hides a constant factor lost in the proof. Specifically,

the proof shows that if the real and ideal distributions in Definition 2.3 are (1 − γ )-
indistinguishable, then the real and ideal distributions in Definition 2.2 are (1 − 3γ )-
indistinguishable. �

3. An Overview of the Protocol

Before presenting our protocol, we introduce the polynomial evaluation functionality,
which is an important tool for the rest of the paper. In [21], it is observed that a secure
protocol for polynomial evaluation immediately yields a protocol for session-key gen-
eration that is secure against passive adversaries. In [15], Goldreich and Lindell work
from the intuition (from [6]) that by augmenting a secure protocol for polynomial evalu-
ation with additional mechanisms, one can obtain a protocol for session-key generation
that is secure against active adversaries. Our protocol also comes from this intuition,
but the additional tools we are using are different.

3.1. Secure Polynomial Evaluation

In a secure polynomial evaluation, a party A knows a polynomial Q over some field F

and a party B wishes to learn the value Q(x) for some element x ∈ F such that A learns
nothing about x and B learns nothing else about the polynomial Q but the value Q(x).
More specifically, for our problem, we will assume that F = GF(2n) ≈ {0,1}n, Q is a
non-constant linear polynomial over F, and x is a string in {0,1}n.

Definition 3.1 (Polynomial evaluation). The polynomial evaluation functionality is
defined as:
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Inputs The input of A is a non-constant linear polynomial Q over GF(2n). The input
of B is a value x ∈ GF(2n).

Outputs B receives Q(x). A receives nothing.

As observed in [21], a secure protocol for polynomial evaluation yields immediately a
protocol for session-key generation that is secure against passive adversaries as follows:
A chooses a random linear non-constant polynomial Q, and A and B engage in a secure
polynomial evaluation protocol, where A inputs Q and B inputs w, so that B obtains
Q(w). Since A has both Q and w, A can also obtain Q(w), and the session key is set
to be K = Q(w).

This protocol is secure against passive adversaries because the key K is a random
string (since Q is a random polynomial), and it can be shown that an eavesdropper
learns nothing about w or Q(w) (due to the security of the polynomial evaluation).

However, the protocol is not secure against active adversaries. As illustrated in Fig. 1,
an active adversary C can input a fixed polynomial QC in its interaction with B , say the
identity polynomial id , and a fixed password wC in its interaction with A. A outputs
the session key QA(w) and B outputs the session key QC(w) = w. With probability
1 − 2−n, the two session keys are different, whereas the definition of security requires
them to be equal with probability 1 − O(γ ).

3.2. Motivation for Our Protocol

The main deficiency of the secure polynomial evaluation protocol against active adver-
saries is that it does not guarantee that A and B output the same random session key.
Somehow, the parties have to check that they computed the same random session key
before starting to use it. It can be shown that A’s session key KA = QA(w) is pseudo-
random to the adversary, so A can start using it without leaking information. However,
B cannot use its key KB = QC(w) because it might belong to a set of polynomial size
(for example, if QC = id , then QC(w) ∈D where the dictionary is by definition a small
set). Hence Goldreich and Lindell added a validation phase in which A sends a message
to B so that B can check if it computed the same session key, say A sends f 2n(KA)

where f is a one-way permutation. Since f 2n is a 1–1 map, this uniquely defines KA

(the session-key used now consists of hardcore bits of f i(KA), for i = 0, . . . , n − 1): B

will compute f 2n(KB) and compare it with the value it received.
But it is still not clear that this candidate protocol is secure. Recall that the secu-

rity of the polynomial evaluation protocol applies only in the stand-alone setting and
guarantees nothing in the concurrent setting. In particular, it might be that C inputs a

Fig. 1. Protocol that is insecure against active adversaries
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polynomial QC in the polynomial evaluation between C and B such that the polynomi-
als QA and QC are related in some manner, say for any w ∈D, it is easy to compute the
correct validation message f 2n(QC(w)) given the value of f 2n(QA(w)); yet B’s key
does not equal A’s key.

To prevent this from happening, Goldreich and Lindell force the polynomial Q input
in the polynomial evaluation phase to be consistent with the message sent in the valida-
tion phase (which is supposedly f 2n(Q(w))). The parties have to commit to their inputs
at the beginning and then prove in a zero-knowledge manner that the messages sent in
the validation phase are consistent with these commitments. Because of the person-
in-the-middle attack and the concurrency issues mentioned earlier, Goldreich and Lin-
dell cannot use standard commitment schemes and standard zero-knowledge proofs but
rather they use non-malleable commitments and the specific zero-knowledge proof of
Richardson and Kilian.

Our approach is to allow C to input a polynomial QC related to QA, but to prevent
C from being able to compute a correct validation message with respect to B’s session-
key, even given A’s validation message. Suppose that the parties have access to a family
of pairwise-independent hash functions H. In the validation phase, we require A to send
h(f 2n(KA)) = h(f 2n(QA(w))) for some function h

R←H. Then, even if KA = QA(w)

and KB = QC(w) are related (but distinct), the values h(f 2n(KA)) and h(f 2n(KB))

will be independent and C cannot do much better than randomly guess the value of
h(f 2n(KB)).

One difficulty arises at this point: the parties have to agree on a common random hash
function h

R←H. But the honest parties A and B only share the randomness coming from
the password w so this password w has to be enough to agree on a random hash func-
tion. To make this possible, we assume that the password is of the form (w,w′) where
w and w′ are chosen independently of one another: w is chosen at random from an
arbitrary dictionary D ⊆ {0,1}n and w′ is uniformly distributed in D′ = {0,1}d ′

. (For
example, these can be obtained by splitting a single random password from {0,1}d ′′

into two parts.) The first part of the password, w, will be used in the polynomial eval-
uation protocol whereas the second part of the password, w′, will be used as the index
of a hash function. Indeed, if we assume that D′ = {0,1}d ′

, there exists a family of
almost pairwise-independent hash functions H = {h : {0,1}n → {0,1}m}, where each
hash function is indexed by a password w′ ∈ D′ and m = �(d ′) (see proof in Appen-
dix B).

We formalize these ideas in the protocol described below.

3.3. Tools Used in Our Protocol

As in [15], we will need a secure protocol for an augmented version of polynomial
evaluation. We refer the reader to Appendix A for more details on secure two-party
computation.

Definition 3.2 (Augmented polynomial evaluation). The augmented polynomial eval-
uation functionality is defined as:

Initial phase A sends a commitment cA = Commit(QA, rA) to a linear non-constant
polynomial QA for a randomly chosen rA. B receives a commitment cB . We assume
that the commitment scheme used is perfectly binding and computationally hiding.
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Inputs The input of A is a linear non-constant polynomial QA, a commitment cA to
QA and a corresponding decommitment rA. The input of B is a value x ∈ GF(2n)

and a commitment cB .
Outputs

• In the case of correct inputs, i.e., cA = cB and cA = Commit(QA, rA), B re-
ceives QA(x) and A receives nothing.

• In the case of incorrect inputs, i.e., cA 
= cB or cA 
= Commit(QA, rA), B re-
ceives a special failure symbol ⊥ and A receives nothing.

The other cryptographic tools we will need are:

Commitment scheme: Let Commit be a perfectly binding, computationally hiding
string commitment.

Seed-committed pseudorandom generator: similarly to [15], we will use the seed-
committed pseudorandom generator G(s) = (b(s)b(f (s)) . . . b(f n+�−1(s))f n+�(s))

where f is a one-way permutation with hardcore bit b.
One-time MAC with pseudorandomness property: Let MAC be a message authen-

tication code for message space {0,1}p(n) (for a polynomial p(n) to be specified later)
using keys of length � = �(n) that is secure against one query attack, i.e., a proba-
bilistic polynomial-time A that queries the tagging algorithm MACK on at most one
message of its choice cannot produce a valid forgery on a different message. Addi-
tionally, we will require the following pseudorandomness property:

• Let K be a uniform key of length �.
• The adversary queries the tagging algorithm MACK on the message m of its

choice.
• The adversary selects m′ 
= m. We require that the value MACK(m′) be pseudo-

random with respect to the adversary’s view.

Two examples of such a MAC are:

• MACs(m) = fs(m) where {fs}s∈{0,1}� is a pseudorandom function family.
• MACa,b(m) = am + b where �(n) = 2p(n) and a, b ∈ GF(2�/2).

Almost pairwise-independent hash functions: The family of functions H = {hw′ :
{0,1}n → {0,1}m}

w′∈{0,1}d′ is said to be almost pairwise-independent with parameter
μ if:

1. (Uniformity) ∀x ∈ {0,1}n, hw′(x) is uniform over {0,1}m.
2. (Pairwise independence) ∀x1 
= x2 ∈ {0,1}n,∀y1, y2 ∈ {0,1}m,

Pr
w′∈{0,1}d′ [hw′(x2) = y2|hw′(x1) = y1] ≤ μ.

We also require that for a fixed w′ ∈ {0,1}d ′
the function hw′ be regular i.e., it is 2n−m

to 1. In other words, hw′(Un) ≡ Um.

Lemma 3.3 (Appendix B). For D′ = {0,1}d ′
there exists a family of almost

pairwise-independent hash functions H = {hw′ : {0,1}n → {0,1}m}w′∈D′ with pa-
rameter μ = O( n

|D′|1/3 log |D′| ).
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3.4. Description of Our Protocol

The formal description of the protocol follows (see Fig. 2 for an overview).

Protocol 3.4.

1. Inputs: The parties A and B have a joint password (w,w′), where w is chosen at
random from an arbitrary dictionary D ⊆ {0,1}n and w′ is uniformly distributed in
D′ = {0,1}d ′

. (Throughout, we will view D′ as a subset of {0,1}n after appropriate
padding for consistency with Sect. 2 where the security parameter is defined to be
the length of the password). w and w′ are chosen independently.

2. Commitment: A chooses a random non-constant linear polynomial QA over
GF(2n) and random coins rA and sends cA = Commit(QA, rA). B receives some
commitment cB .

3. Augmented polynomial evaluation
(a) A and B engage in a polynomial evaluation protocol: A inputs the polynomial

QA, the commitment cA and the random coins rA it used for the commitment;
B inputs the commitment cB it received and the password w viewed as an
element of GF(2n).

(b) The output of B is denoted 	B , which is supposed to be equal to QA(w).
(c) A internally computes 	A = QA(w).

4. Validation
(a) A sends the string yA = hw′(f n+�(	A)), where f is a one-way permutation

and H = {hw′ }
w′∈{0,1}d′ is a family of almost pairwise-independent hash func-

tions.
(b) Let tA be the session transcript so far as seen by A. A computes k1(	A) =

b(	A) . . . b(f �−1(	A)) and sends the string zA = MACk1(	A)(tA).

Fig. 2. Overview of our protocol
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5. Decision
(a) A always accepts and outputs k2(	A) = b(f �(	A)) . . . b(f �+n−1(	A))

(b) B accepts (this event is denoted by decB = accept) if the strings yB and zB

it received satisfy the following conditions:

• yB = hw′(f n+�(	B))

• Verk1(	B)(tB, zB) = accept, where tB is the session transcript so far as
seen by B and k1(	B) is defined analogously to k1(	A).

If 	B = ⊥, then B will immediately reject.
If B accepts, it outputs k2(	B) = b(f �(	B)) . . . b(f �+n−1(	B)).

4. Main Security Theorems

We begin by stating our protocol’s security against passive adversaries.

Theorem 4.1. Protocol 3.4 is secure for the dictionary D×D′ = D×{0,1}d ′
against

passive adversaries. More formally, for every passive probabilistic polynomial-time real
adversary C, there exists an ideal adversary Cideal that always sends (decA

C,decB
C) =

(1,1) to the trusted party such that for every auxiliary input σ ∈ {0,1}poly(n):

{IDEALCideal(D ×D′, σ )} comp≡ {REALC(D ×D′, σ )}.

The proof of Theorem 4.1 is given in Sect. 5.
Next we state the basic security theorem against active adversaries, in the plain model

with a dictionary of the form D × {0,1}d ′
.

Theorem 4.2. Protocol 3.4 is (1 − γ )-secure with respect to the environment (equiv-
alently, with respect to the session-key challenge) for the dictionary D × D′ = D ×
{0,1}d ′

, for γ = max { 1
|D| , (

poly(n)

|D′| )�(1)}. More precisely, γ = max { 1
|D| ,O( n

|D′|1/3 )}.

In Sect. 9 we show how the shared dictionary of the form D × {0,1}d required in
Theorem 4.2 can be realized from several other types of dictionaries D′′, achieving
security bounds of the form (poly(n)/|D′′|)�(1) in all cases.

4.1. Overview of the Proof of Theorem 4.2

Notations

• Without loss of generality, we will assume that the real adversary’s output equals
its view of the execution (since the output is efficiently computable from the view).
We will also often omit the auxiliary input σ of the adversary.

• Recall that we denote by CA(w,w′),B(w,w′) an execution of C when it communicates
with A and B , with common input (w,w′). We denote by CA(QA,w,w′),B(w,w′) the
execution of C with A and B where QA specifies the random non-constant linear
polynomial to be used by A.
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• A channel C is reliable in a given protocol execution if C runs the (A,C) and
(C,B) executions in a synchronized manner and does not modify any message
sent by A or B . If C was reliable in the given execution, we denote this event by
reliableC = true; otherwise, we write reliableC = false.

Structure of the proof We will mostly focus on the basic GL definition (Definition 2.1),
but after each step we will describe the modifications needed to handle the session-key
challenge of Definition 2.2. (This is easier than directly proving security for an arbitrary
environment as in Definition 2.3 because it only requires taking into account a specific
environment Z corresponding to the session-key challenge.)

Similarly to [15], the proof of Theorem 4.2 is in four steps:

1. Key-Match Property: In Sects. 6 and 7, we show that if 	A 
= 	B , then B will
reject with probability 1 − O(γ ).

2. Simulation of the (C,B) interaction: In Sect. 8.2, we show that if the Key-Match
Property holds, then the interaction (C,B) can be simulated by an adversary C′
interacting only with A, even if the interaction (A,C) is concurrent.

3. Simulation of the (A,C′) interaction: In Sect. 8.1, we show that the interaction
(A,C′) as a stand-alone can be simulated.

4. In Sect. 8.3, we combine the above steps and obtain a proof of security against
active adversaries. The real adversary’s view of the concurrent interactions (A,C)

and (C,B) can be simulated by a probabilistic polynomial-time C′′ that is non-
interactive and can therefore be simulated by an ideal adversary with no input.

As in [15], the main part of the proof of Theorem 4.2 is the Key-Match Property.
Once the Key-Match Property is established, we can easily adapt the proofs in [15] to
our specific protocol to build an ideal adversary that simulates the real adversary’s view.

Theorem 4.3 (Key-Match Property). For every probabilistic polynomial-time real ad-
versary C and all sufficiently large values of n

Pr[decB = accept∧ 	A 
= 	B ] < 2μ + ε + neg(n)

where ε = 1
|D| and μ = O( n

|D′|1/3 log |D′| ).

The main part of our proof that is new (and simpler than [15]) is the Key-Match Prop-
erty. As noted in the introduction, the adversary C has total control over the schedul-
ing of the two interactions (A,C) and (C,B). Hence the Key-Match Property will be
proved for every possible scheduling case, including those for which these interactions
are concurrent. Nevertheless, the Key-Match Property will be established by tools of se-
cure two-party computation, which a priori only guarantee security in the stand-alone
setting.

For each scheduling, we want to bound from above the probability [decB =
accept∧ 	A 
= 	B ]. Recall that B accepts iff two conditions are satisfied: the string
yB received must equal hw′(f n+�(	B)) and the MAC zB received must be a valid
MAC, i.e., Verk1(	B)(tB, zB) = accept. Hence, to obtain an upper bound we can omit
the verification of the MAC by B and only consider the probability that C succeeds in
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Fig. 3. First scheduling

sending the value hw′(f n+�(	B)) when 	A 
= 	B . (As in [15], the MAC is only used
to reduce the simulation of active adversaries to the simulation of passive adversaries
plus the key-match property.) For convenience, we will decompose the adversary into
two algorithms.

• The first algorithm is denoted by C. C is the channel through which A and B

communicate. For a given execution, we denote by CA(QA,w,w′),B(w,w′) the view
of C when it communicates with A and B with respective inputs (QA,w,w′) and
(w,w′) until just before C sends a string yB to B .

• The second algorithm is denoted by Chash. Chash takes as an input the above view
CA(QA,w,w′),B(w,w′) and tries to compute the hash value hw′(f n+�(	B)).

Hence to establish the Key-Match Property, for each scheduling, we will bound from
above the probability

Pr[Chash(C
A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	A 
= 	B ].

Note that since B always rejects if 	B = ⊥, we can adopt the convention that

Pr[Chash(C
A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	B = ⊥] = 0.

We consider two scheduling cases (see Figs. 3 and 4):

Scheduling 1: C sends the commitment cB to B after A sends the hash value yA.
The intuition for this case is that we have two sequential executions (A,C) and
(C,B). Using the security of the polynomial evaluation (A,C), we show that even
if C receives yA, the hash index w′ is (1 − ε)-pseudorandom with respect to the ad-
versary’s view. Hence, by the uniformity property of the hash functions, C cannot do
much better than randomly guess the value of hw′(f n+�(	B)). The full proof for this
scheduling is in Sect. 6.
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Fig. 4. Second scheduling

Scheduling 2: C sends the commitment cB to B before A sends the hash value yA.
The almost pairwise independence property means that for fixed values x1 
= x2 ∈
{0,1}n, if the index w′ is chosen at random and independently of x1 and x2, then
being given the value hw′(x1) does not help one guess the value hw′(x2). Before yA

is sent, the hash index w′ is random (since it has not been used by A or B). Thus,
if we show that the values 	A and 	B are determined before yA is sent, then w′ is
independent of x1 = f n+�(	A) and x2 = f n+�(	B) and the adversary cannot guess
hw′(x2) even given yA = hw(x1). 	A is determined before yA is sent by the definition
of the protocol. 	B is determined because the commitment cB is a perfectly binding
commitment to some value QC , and thus the security of augmented polynomial eval-
uation implies that 	B equals QC(w) (or ⊥) except with negligible probability. The
full proof for this scheduling is in Sect. 7.

5. Proof of Security against Passive Adversaries

Theorem 5.1. Protocol 3.4 is secure for the dictionary D×D′ = D×{0,1}d ′
against

passive adversaries. More formally, for every passive probabilistic polynomial-time real
adversary C, there exists an ideal adversary Cideal that always sends (decA

C,decB
C) =

(1,1) to the trusted party such that for every auxiliary input σ ∈ {0,1}poly(n):

{IDEALCideal(D ×D′, σ )} comp≡ {REALC(D ×D′, σ )}.

Recall that a passive adversary just eavesdrops on the interaction between the honest
parties so in this case, the parties A and B output the same session-key (output(A) =
output(B)) and both accept. In the ideal model, the session-key Kideal is distributed
according to Un.

Thus, to prove Theorem 5.1, it suffices to prove the following proposition:
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Proposition 5.2. For every passive probabilistic polynomial-time real adversary C,
there exists an ideal adversary Cideal such that

{w,w′,output(A),output(CA(w,w′),B(w,w′))} comp≡ {w,w′,Un,output(Cideal)}.

Proof. The view of the real adversary consists of a transcript of the execution of the
protocol by A and B . We can think of this transcript as the concatenation of:

• The commitment to QA and the transcript of the augmented polynomial evaluation.
We denote these by T (QA,w).

• The hash value yA
def= hw′(f n+�(	A)) where 	A

def= QA(w).
• The MAC-key k1(	A) (it suffices to include the MAC-key rather than the MAC

itself, since the latter is easily computable from the MAC-key and the transcript so
far).

Claim 5.3.

{w,QA,T (QA,w)} comp≡ {w,QA,T (Q̃A, w̃)},
where QA and Q̃A are random non-constant linear polynomials and w, w̃ are taken
uniformly at random (and independently) from D.

Proof of sketch. The claim follows from the security of the augmented polynomial
evaluation.

The commitment scheme we consider is computationally hiding hence a commitment
to QA is indistinguishable from a commitment to Q̃A. Note that non-constant linear
polynomials are connected i.e., for every QA and Q̃A, there exists Q̂A and values x1

and x2 such that QA(x1) = Q̂A(x1) and Q̃A(x2) = Q̂A(x2). Combining this connected-
ness property with the security of the augmented polynomial evaluation, we know (see
Claim 5.2 in [15]) that ∀w,QA, w̃, Q̃A,

T (QA,w)
comp≡ T (Q̃A, w̃).

This implies that {w,QA,T (QA,w)} comp≡ {w,QA,T (Q̃A, w̃)}. �

Claim 5.3 implies that

{w,QA(w),T (QA,w)} comp≡ {w,QA(w),T (Q̃A, w̃)}
≡ {w,Un,T (Q̃A, w̃)} (6)

where (6) comes from the fact that for a random QA, 	A = QA(w) is uniformly dis-
tributed in {0,1}n and QA is independent of T (Q̃A, w̃).

Note that w′ is independent from the variables in (6) hence we have:

{w,w′,QA(w),T (QA,w)} comp≡ {w,w′,Un,T (Q̃A, w̃)}.
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We can then apply the deterministic polytime function G(·) = (f n+�(·), k1(·), k2(·)) to
the third component of each distribution to obtain:

{w,w′, k2(	A),f n+�(	A), k1(	A),T (QA,w)}
comp≡ {w,w′, k2(Un), f

n+�(Un), k1(Un), T (Q̃A, w̃)}.
Since G(s) = (f n+�(s), k1(s), k2(s)) is a pseudorandom generator, we have:

{w,w′, k2(	A),f n+�(	A), k1(	A),T (QA,w)} comp≡ {w,w′,U1
n ,U2

n ,U�,T (Q̃A, w̃)}
⇒ {w,w′, k2(	A),hw′(f n+�(	A)), k1(	A),T (QA,w)}

comp≡ {w,w′,U1
n ,hw′(U2

n ),U�,T (Q̃A, w̃)}.
For a fixed w′ ∈ D′, hw′ is a regular map, so we obtain

{w,w′, k2(	A),hw′(f n+�(	A)), k1(	A),T (QA,w)}
comp≡ {w,w′,U1

n ,Um,U�,T (Q̃A, w̃)}.
The ideal adversary Cideal will do the following:

1. Generate a random password w̃ ∈ D and a random non-constant linear polyno-
mial Q̃A.

2. Simulate the honest parties in the augmented polynomial evaluation to produce
the transcript T (Q̃A, w̃).

3. Generate random strings Um and U�.
4. Output (Um,U�,T (Q̃A, w̃)). �

6. Key-Match Property for the First Scheduling

Scheduling 1 is defined as “C sends the commitment cB to B after A sends yA”. Without
loss of generality we can assume that C sends the commitment cB to B after A sends
zA (since obtaining zA can only help C). As outlined in Sect. 4, we want to upperbound
the probability that B accepts and 	A 
= 	B for this scheduling.

The intuition for the Key-Match Property for Scheduling 1 is that we have two se-
quential executions (A,C) and (C,B). Using the security of the polynomial evaluation
(A,C), we show that even if C receives yA, the hash index w′ is (1 − ε)-pseudorandom
with respect to the adversary’s view. Hence, by the uniformity property of the hash func-
tions, C cannot do much better than randomly guess the value of hw′(f n+�(	B)), and
thus B will reject this hash value with high probability. Note that this argument only
uses the uniformity of the hash functions (rather than their pairwise independence) and
does not explicitly rely on the condition 	A 
= 	B . (Nevertheless, the analysis implies
that 	A 
= 	B with high probability in this scheduling; otherwise, the adversary could
compute the hash value by just copying.) In the second scheduling, we will directly
exploit both the pairwise independence and the condition 	A 
= 	B .
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Proposition 6.1. For every probabilistic polynomial-time real adversary C and all
sufficiently large values of n

Pr[decB = accept∧ 	A 
= 	B ∧ Sch1] < ε + μ + neg(n)

where ε = 1
D and μ = O( n

|D′|1/3 log |D′| ). Sch1 denotes the event that the execution fol-

lows the first scheduling.

Proof. From the discussion in Sect. 4, recall that:

Pr[decB = accept∧ 	A 
= 	B ∧ Sch1]
≤ Pr

[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	A 
= 	B ∧ Sch1
]
,

where we denote by CA(QA,w,w′),B(w,w′) the view of the channel C when it commu-
nicates with A and B with respective inputs (QA,w,w′) and (w,w′) until just before
C sends a string yB to B and Chash is a probabilistic polynomial-algorithm that takes
as an input the above view CA(QA,w,w′),B(w,w′) and tries to compute the hash value
hw′(f n+�(	B)).

We decompose the adversary into two algorithms:

• C1 refers to the adversary until just before the commitment cB is sent. Let
(τ, yA, zA) denote the view of the adversary C1 when interacting with
A(QA,w,w′).

• C2 refers to the adversary once the (A,C) interaction is over, i.e., C2 will be given
as inputs (τ, yA, zA). Since C2 and B are executing the secure (augmented) poly-
nomial evaluation in the stand-alone setting, we know that there exists an ideal
adversary C2,ideal such that for every τ, yA, zA,

{	B,ideal,C2,ideal
B(w,cB)(τ, yA, zA)} comp≡ {	B,C

B(w,cB)
2 (τ, yA, zA)},

where

	B,ideal
def= output(BC2,ideal(τ,yA,zA)(w, cB))

and

	B
def= output(BC2(τ,yA,zA)(w, cB)).

Let use this ideal adversary C2,ideal in the above expression:

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	A 
= 	B ∧ Sch1
]

≤ Pr
[
Chash(C

B(w,cB)
2 (τ, yA, zA)) = hw′(f n+�(	B)) ∧ Sch1

]
≤ Pr

[
Chash(C2,ideal

B(w,cB)(τ, yA, zA)) = hw′(f n+�(	B,ideal)) ∧ Sch1
] + neg(n)

(7)
≤ Pr

[
C′

hash(τ, hw′(f n+�(	A)), k1(	A)) = hw′(f n+�(QC(w)))
] + neg(n)

where C′
hash simulates C2,ideal’s view of the ideal polynomial evaluation with B and

QC is C2,ideal’s input (wlog we will assume that we are in the correct input case in



78 M.-H. Nguyen and S. Vadhan

the augmented polynomial evaluation (C,B) since by convention we define Chash(σ ) 
=
hw′(f n+�(	B)) if 	B = ⊥). Equation (7) comes from the fact that the security of the
augmented polynomial evaluation (C,B) holds even for fixed inputs (w, cB, τ, yA, zA)

and with advice string (w′,	A) given to the distinguisher.
We will now prove that the hash index w′ is (1−ε)-pseudorandom with respect to the

inputs given to C′
hash (as well as w). This will imply that the value hw′(f n+�(QC(w)))

is (1 − ε)-indistinguishable from uniform. Thus hw′(f n+�(QC(w))) will be predicted
by C′

hash with probability at most ε +2−m and this will establish the key-match property
for this scheduling.

To establish that the hash index w′ is (1−ε)-pseudorandom with respect to the inputs
given to C′

hash, we will show that (QA(w)) is (1 − ε)-pseudorandom to the adversary
hence the hash hw′(f n+�(	A)) is a uniform string to the adversary that does not convey
information about the hash index w′. This is formalized by the following lemma.

Lemma 6.2. For every probabilistic polynomial-time adversary C′ interacting with

A(QA) who halts after the augmented polynomial evaluation, {w,QA(w),C′A(QA)} ε≡
{w,Un,C

′A(QA)}.

Proof. C′ receives a commitment cA = Commit(QA, rA) from A before executing
the secure protocol for augmented polynomial evaluation. By security of the augmented
polynomial evaluation, we know that there exists an ideal adversary C′

ideal such that

for every QA,cA, rA, we have C′A(QA,cA,rA)
comp≡ C′

ideal
A(QA,cA,rA)

(cA). Without loss of
generality, we will assume that we are in the correct input case so that C′

ideal always
receives QA(wC) for some input wC = C′

ideal(cA). Hence for every w,QA, cA, rA, we

have C′A(QA,cA,rA)
comp≡ C′

ideal(cA,wC,QA(wC)).
We want to show that

{w,QA(w),Commit(QA),wC,QA(wC)} ε≡ {w,Un,Commit(QA),wC,QA(wC)},
where wC = C′

ideal(Commit(QA)).

• By the hiding property of the commitment scheme, we can replace the com-
mitment to QA by a commitment to 02n in the distributions. This makes wC =
C′

ideal(Commit(02n)), which is independent of QA.
• Since wC is independent of w, the probability that wC = w is at most ε = 1

|D| .
• If w 
= wC , QA(w) is within 2−n statistical distance of Un (since QA(w) cannot

take the value QA(wc)) and independent of QA(wC) by pairwise independence of
(non-constant linear) polynomials. Hence we have:

{w,QA(w),Commit(02n),wC,QA(wC)|wC 
= w}
comp≡ {w,Un,Commit(02n),wC,QA(wC)|wC 
= w}. �

By Lemma 6.2, we have:

{w,	A, τ } ε≡ {w,Un, τ }.



Simpler Session-Key Generation from Short Random Passwords 79

Note that w′ is independent of all the above variables; hence we have:

{w,w′,	A, τ } ε≡ {w,w′,Un, τ }.
We can then apply the deterministic polytime function (hw′(f n+�(·)), k1(·)) using the
second component w′ to the third component of each distribution to obtain:

{w,w′, τ, hw′(f n+�(	A)), k1(	A)} ε≡ {w,w′, τ, hw′(f n+�(Un)), k1(Un)}.
By applying the polytime function C2,ideal(·) to the last three components of each dis-
tribution, we have:

{w,w′, τ, hw′(f n+�(	A)), k1(	A),QC} ε≡ {w,w′, τ, hw′(f n+�(Un)), k1(Un), Q̃C},
(8)

where QC = C2,ideal(τ, yA, zA) and Q̃C = C2,ideal(τ, hw′(f n+�(Un)), k1(Un)).
We will now give an upper bound on the probability that Chash

′ computes a correct
validation message:

Pr
[
C′

hash(τ, hw′(f n+�(	A)), k1(	A),QC) = hw′(f n+�(QC(w)))
]

≤ Pr
[
C′

hash(τ, hw′(f n+�(Un)), k1(Un), Q̃C) = hw′(f n+�(Q̃C(w)))
] + ε + neg(n)

(9)

≤ Pr
[
C′

hash(τ,Um,U�, Q̃C) = hw′(f n+�(Q̃C(w)))
] + ε + neg(n) (10)

≤ ε + 2−m + neg(n).

Equation (9) follows from (8), and (10) follows from the fact that G(s) =
(f n+�(s), k1(s)) is a pseudorandom generator. The last inequality follows because the
inputs to C′

hash are independent of w′. �

7. Key-Match Property for the Second Scheduling

Recall that Scheduling 2 is defined as “C sends the commitment cB to B before A

sends yA”.
The proof for this case relies on the almost pairwise independence property of the

hash function hw′ , which says that for any two distinct values x1, x2 ∈ {0,1}n, if the
index w′ is chosen at random and independently of x1 and x2, then being given the value
hw′(x1) does not help one guess the value hw′(x2). Before yA is sent, the hash index w′
is random (since it has not been used by A or B). Thus, if we show that the values 	A

and 	B are determined before yA is sent, then w′ is independent of x1 = f n+�(	A) and
x2 = f n+�(	B) and the adversary cannot do much better than randomly guess hw′(x2).

	A is certainly determined before yA is sent (since A computes yA based on 	A).
For 	B , we observe that the security of augmented polynomial evaluation implies that,
except with negligible probability, 	B = QC(w) for a polynomial QC such that cB =
Commit(QC) (unless 	B = ⊥, in which case B will certainly reject). Since cB is sent
before yA (by the definition of Scheduling 2) and the commitment is perfectly binding,
it follows that QC (and hence 	B ) is determined before yA is sent.
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7.1. Mental Experiment

Before proving the Key-Match Property for Scheduling 2, we will first consider a “Men-
tal Experiment” where the adversary must explicitly output the polynomial QC . In the
next section, we will reduce the Key-Match Property for Scheduling 2 to this Mental
Experiment.

Protocol 7.1 (Mental Experiment).

1. Inputs: There are three parties A,B,Cm involved in the protocol. A and B have a
joint password (w,w′) R←D ×D′. In addition, A is given a random non-constant
linear polynomial QA.

2. A sends QA to Cm.
3. Cm computes QC = Cm(QA) and sends it to B .
4. B sends w to C.
5. A computes QA(w) and sends yA = hw′(f n+�(QA(w))) to C. Note that the

scheduling “QC is sent before yA” is enforced.
6. Cm sends a string yB to B .

The Mental Experiment is derived from the original protocol by giving A’s inputs to
the adversary Cm so that Cm can simulate the (A,C) interaction on its own. The crucial
point of the Mental Experiment is that Cm sends the polynomial QC to B in the clear,
therefore committing to it. Hence the points QA(w) and QC(w) are well-defined and
independent of the hash index w′ so that we can apply almost pairwise independence.

Proposition 7.2. In the above Mental Experiment, for every (even computationally
unbounded) adversary Cm, we have

Pr[Chash(C
A(QA,w,w′),B(w,w′)
m ) = hw′(f n+�(QC(w))) ∧ QA(w) 
= QC(w)] ≤ μ,

where Chash is a probabilistic polynomial-algorithm that takes as an input the above

view C
A(QA,w,w′),B(w,w′)
m and tries to compute the hash value hw′(f n+�(QC(w))).

Proof. By definition of the Mental Experiment, (QA(w),QC(w)) can be computed
from the view of the adversary Cmbefore yA = hw′(f n+�(QA(w))) is sent. Thus the
values (QA(w),QC(w)) are independent of the hash index w′. Hence we obtain:

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)
m ) = hw′(f n+�(QC(w))) ∧ QA(w) 
= QC(w)

]
≤ Pr

[
Chash(Cm(QA,QC,w,hw′(f n+�(QA(w))))) = hw′(f n+�(QC(w)))

∧ QA(w) 
= QC(w)
]

≤ μ

where the last inequality follows from almost pairwise independence (the index of
the hash function w′ is random and independent from the points f n+�(QA(w)) and
f n+�(QC(w))). �
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7.2. Reduction to the Mental Experiment

Proposition 7.3. For every probabilistic polynomial-time real adversary C,

Pr[Chash(C
A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	A 
= 	B ∧ Sch2] ≤ μ + neg(n).

Proposition 7.3 will be proved via a reduction to the Mental Experiment. We want
to show that if an adversary succeeds in computing the correct hash value yB in the
original protocol, then we can build an adversary that computes the correct hash value
in the Mental Experiment (and we know how to upper bound this success probability
by Proposition 7.2).

In the Mental Experiment, the adversary Cm is forced to send the value QC in the
clear before receiving yA = hw′(f n+�(	A)). This is analogous to forcing the adversary
C to open its commitment cB = Commit(QC) in the original protocol. Thus, given an
adversary C for the original protocol, we can build a corresponding adversary Cm in
the mental experiment in the following natural way: run C until the commitment cB

must be opened, open the commitment to QC by exhaustive search, and then continue
to run the adversary C. Note that we can afford the exhaustive search because the Men-
tal Experiment is secure even against computationally unbounded adversaries Cm (cf.
Proposition 7.2).

Actually, another difference between Scheduling 2 and the mental experiment is the
possibility that B’s output 	B from the polynomial evaluation (B,C) may differ from
QC(w). However, we will argue that, by the security of augmented polynomial evalu-
ation, 	B equals either QC(w) or ⊥ (except with negligible probability). In case B’s
output is ⊥, B will certainly reject and the Key-Match Property will be satisfied.

Proof. Since Commit is a perfectly binding commitment, the commitment cB can be
opened to a unique value, which we denote as QC . (Actually, it may be the case that cB

has no valid opening, in which case we write QC = ⊥.)
Then we can break the analysis into three cases, depending on whether 	B equals

QC(w), ⊥, or some other value. (In case QC = ⊥, we define QC(w) = ⊥.)

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	A 
= 	B ∧ Sch2
]

≤ Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	A 
= 	B ∧ Sch2

∧ 	B = QC(w)
]

+ Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	A 
= 	B ∧ Sch2

∧ 	B = ⊥]
+ Pr

[
Chash(C

A(QA,w,w′),B(w,w′)= hw′(f n+�(	B)) ∧ 	A 
= 	B ∧ Sch2

∧ 	B /∈ {QC(w),⊥}].
Thus it suffices to bound each of the three probabilities on the right-hand side

above. The second probability (case 	B = ⊥) is zero by convention (recall that, in
the original protocol, B always rejects when 	B = ⊥). The third probability (case
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	B /∈ {QC(w),⊥}) is negligible by the security of augmented polynomial evaluation.
To see this, note that we can simulate the polynomial evaluation (C,B) by an ideal poly-
nomial evaluation, where we give the ideal adversary the entire state of A and C after
the commitment cB is sent. In the ideal setting, it always holds that 	B ∈ {QC(w),⊥}.
Thus, the same must hold with probability 1 − neg(n) in the real evaluation; otherwise,
the real and ideal settings could be distinguished by a polynomial-time algorithm that
has QC(w) hardwired in as auxiliary input.

We are left with bounding the first probability, which corresponds to the case that
	B = QC(w). We handle this case by a reduction to the Mental Experiment. Specifi-
cally we convert C to an adversary Cm in the Mental Experiment by using exhaustive
search to open the commitment cB :

1. Simulating the (A,C) polynomial evaluation: Once A sends QA to Cm, Cm

simulates on its own the beginning of the augmented polynomial evaluation be-
tween A(QA) and C until C outputs its commitment cB .

2. Opening the commitment: Using exhaustive search, Cm computes the unique
value QC such that cB = Commit(QC, r) for some r . (If there is no such r , Cm

sets QC = ⊥.) Cm sends QC to B .
3. Simulating the (C,B) polynomial evaluation: Cm receives w from B and yA =

hw′(f n+�(	A)) from A. This gives Cm enough information to simulate the rest
of both the (A,C) and (C,B) interactions on its own. In particular, Cm obtains
and outputs the value yB = Chash(C

A(QA,w,w′),B(w,w′)).

Observe that:

Pr
[
Chash(C

A(QA,w,w′),B(w,w′)) = hw′(f n+�(	B)) ∧ 	A 
= 	B ∧ Sch2 ∧ 	B = QC(w)
]

≤ Pr
[
Chash(C

A(QA,w,w′),B(w,w′)
m ) = hw′(f n+�(QC(w))) ∧ QA(w) 
= QC(w)

]
≤ μ,

where the last inequality is by the security of the Mental Experiment (Proposition 7.2).
This completes the proof of the Key-Match Property for the Second Scheduling (Propo-
sition 7.3). �

8. Adapting the GL Techniques to Our Protocol

Now that we have established the Key-Match Property, we will adapt the proofs of [15]
to our protocol for the following steps:

Simulation of the (C,B) interaction: we show that the interaction (C,B) can be sim-
ulated by an adversary C′ interacting only with A, even if the interaction (A,C) is
concurrent.

Simulation of the (A,C′) interaction: we show that the interaction (A,C′) as a
stand-alone protocol can be simulated.

Combining the above steps: by combining the above simulations, we obtain a proof
of security against active adversaries.
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For the sake of simplicity, we will first present the simulation of the (A,C′) interaction.
For each step, the modifications necessary to take into account the session-key challenge
of Definition 2.2 are given.

8.1. Simulation of the (A,C′) Execution

We will show that the view of C′ when interacting with A only can be simulated by a
non-interactive machine C′′ in the following proposition.

Proposition 8.1. For the dictionary D×D′ = D×{0,1}d ′
, for every polytime channel

C′ interacting with A only, there exists a non-interactive C′′ such that for every auxiliary
input σ ,

{w,w′, k2(	A),output(C′A(QA,w,w′)(σ ))} ε≡ {w,w′,Un,output(C′′(σ ))}
where ε = 1

|D| .

Proof. By Lemma 6.2, we know that after the augmented polynomial evaluation,
{w,	A} is (1 − ε)-indistinguishable from {w,Un} with respect to C′’s view, that is,

{w,	A,C′A(QA)} ε≡ {w,Un,C
′A(QA)}.

Note that w′ is independent of all the above variables hence we have

{w,w′,	A,C′A(QA)} ε≡ {w,w′,Un,C
′A(QA)}. (11)

We will use (11) to establish that the session-key generated by A and the validation
messages sent by A are pseudorandom with respect to the adversary’s view. This is
formalized by the following lemma.

Lemma 8.2. For the dictionary D×D′ = D×{0,1}d ′
, for every polytime channel C′

interacting with A only, we have:

{w,w′, k2(	A), k1(	A),MACk1(	A)(tA),hw′(f n+�(	A)),C′A(QA)}
ε≡{w,w′,U1

n ,U�,MACU�
(tA),Um,C′A(QA)}.

Proof of Lemma 8.2. We first apply the polytime function G(·) = (f n+�(·),
k1(·), k2(·)) to the third component of the distributions in 11 hence:

{w,w′, k2(	A), k1(	A),f n+�(	A),C′A(QA)}
ε≡{w,w′, k2(Un), k1(Un), f

n+�(Un),C
′A(QA)}.

Since G is a pseudorandom generator, this implies that:

{w,w′, k2(	A), k1(	A),f n+�(	A),C′A(QA)} ε≡ {w,w′,U1
n ,U�,U

2
n ,C′A(QA)}.
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By uniformity of the almost pairwise-independent hash functions, we obtain:

{w,w′, k2(	A),MACk1(	A)(tA),hw′(f n+�(	A)),C′A(QA)}
ε≡{w,w′,U1

n ,MACU�
(tA),Um,C′A(QA)}, (12)

where tA is A(QA)’s transcript of the commitment and the augmented polynomial eval-
uation, which can be computed from C′A(QA). �

The non-interactive adversary C′′ will do the following:

1. Generate a random non-constant linear polynomial QA.
2. Simulate the interaction between C′ and A(QA), from which it can compute the

transcript tA.
3. Generate random strings U� and Um.
4. Output (C′A(QA),Um,MACU�

(tA)).

Since the view of the adversary C′ interacting with A only consists of C′A(QA), yA =
hw′(f n+�(	A)), and zA = MACk1(	A)(tA), (12) establishes that

{w,w′, k2(	A),output(C′A(QA,w,w′)} ε≡ {w,w′,Un,output(C′′)}. �

Augmented Definition for Proposition 8.1 Intuitively, handling the session-key chal-
lenge should be easy because the whole point of the session-key challenge is to deal
with two concurrent executions (A,C) and (C,B) but here we are only considering a
single execution (A,C′).

We know that

{w,w′, k2(	A),C′A(QA,w,w′)(σ )} ε≡ {w,w′,Un,C
′′(σ )}.

The session-key challenge is given to C′ only after the entire execution (A,C′)
has been completed (recall that in our protocol A always accepts). The session-key
challenge can be generated from each distribution by the distinguisher. We define

C′A(QA,w,w′)(σ,Kβ)
def= (C′A(QA,w,w′)(σ ),Kβ) and C′′(σ,Kβ)

def= (C′′(σ ),Kβ). By the
above discussion we have:

{w,w′, k2(	A),C′A(QA,w,w′)(σ,Kβ),β} ε≡ {w,w′,Un,C
′′(σ,Kβ),β}

where on the left-hand side Kβ is given when A concludes and is defined as:

Kβ =
{

k2(	A) if β = 1,

U ′
n if β = 0

and on the right-hand side Kβ is defined as

Kβ =
{

Un if β = 1,

U ′
n if β = 0.



Simpler Session-Key Generation from Short Random Passwords 85

8.2. Simulation of the (C,B) Execution

In the following proposition, we will show that the interaction (C,B) can be simulated
by an adversary C′ interacting only with A, even if the interaction (A,C) is concurrent.

Proposition 8.3. For the dictionary D × D′ = D × {0,1}d ′
, for every real adversary

C interacting with A and B , there exists a probabilistic polynomial-time C′ interacting
only with A such that for every auxiliary input σ ∈ {0,1}poly(n)

{w,w′, k2(	A),output(C′A(QA,w,w′)(σ ))}
ε+η≡ {w,w′, k2(	A),output(CA(QA,w,w′),B(w,w′)(σ ))}

where η = 2μ + ε.

The proof of Proposition 8.3 relies on two facts:

• It is easy to simulate B in the augmented polynomial evaluation by security of
two-party computation (see Lemma 8.4).

• B’s decision bit can be simulated with high probability because of the Key-Match
Property (see Lemma 8.6). We need for C′ to simulate B’s decision bit because the
view of the real adversary CA(QA,w,w′),B(w,w′) includes B’s decision bit.

Note that Proposition 8.3 only refers to simulating the view of the real adversary C

(which includes B’s decision bit) rather than the outputs of all the parties.
We first show that B can be simulated in the augmented polynomial evaluation in the

following lemma.

Lemma 8.4. Let C̃ be a real adversary interacting with A and a modified party B
dec

(B
dec does the same as B except that it does not output a decision bit). There exists C′
interacting only with A such that:

{w,w′, k2(	A),output(C′A(QA,w,w′)(σ ))}
comp≡ {w,w′, k2(	A),output(C̃A(QA,w,w′),B 
dec(w)(σ ))}

where on the left-hand side k2(	A) refers to the output of A in the execution
C′A(QA,w,w′)(σ ) and on the right-hand side k2(	A) refers to the output of A in the
execution C̃A(QA,w,w′),B 
dec(w)(σ ).

Proof. Note that these distributions do not refer to B
dec’s output from the polynomial
evaluation, hence we can switch B
dec’s input from w to a random password w̃ ∈ D via
the following claim.

Claim 8.5. For every w,w′,QA, w̃ and auxiliary input σ ∈ {0,1}poly(n),

{output(A), C̃A(QA,w,w′),B 
dec(w)(σ )} comp≡ {output(A), C̃A(QA,w,w′),B 
dec(w̃)(σ )},
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where on the left-hand side output(A) refers to the output of A in the execution
C̃A(QA,w,w′),B 
dec(w)(σ ) and on the right-hand side output(A) refers to the output of A

in the execution C̃A(QA,w,w′),B 
dec(w̃)(σ ).

Proof. Define C′ that on input (w,w′,QA) simulates the entire (A,C) execution,
including computing output(A), on its own:

C′B 
dec(w)(w,w′,QA,σ ) ≡ {output(A), C̃A(QA,w,w′),B 
dec(w)(σ )},
C′B 
dec(w̃)(w,w′,QA,σ ) ≡ {output(A), C̃A(QA,w,w′),B 
dec(w̃)(σ )}.

Since C′ and B
dec are executing the secure polynomial evaluation protocol in the stand-
alone setting, there exists an ideal adversary C′

ideal such that for every w,w′,QA, w̃, σ ,

C′
ideal(w,w′,QA,σ )

comp≡ C′B 
dec(w)(w,w′,QA,σ ),

C′
ideal(w,w′,QA,σ )

comp≡ C′B 
dec(w̃)(w,w′,QA,σ ).

By transitivity of indistinguishability, we obtain the lemma. �

By Claim 8.5, we have that for every w,w′,QA, w̃,

{output(A), C̃A(QA,w,w′),B 
dec(w)(σ )} comp≡ {output(A), C̃A(QA,w,w′),B 
dec(w̃)(σ )}.
Applying this to w,w′ and QA chosen uniformly at random, we obtain:

{w,w′,QA(w),output(C̃A(QA,w,w′),B 
dec(w̃)(σ ))}
comp≡ {w,w′,QA(w),output(C̃A(QA,w,w′),B 
dec(w)(σ ))}. (13)

Hence for any adversary C̃ interacting with A and B
dec, we build an adversary C′ that
simulates B
dec on its own as follows:

1. Generate an arbitrary element w̃.
2. Simulate the polynomial evaluation between C and B
dec(w̃).

Thus C′ only interacts with A(QA,w,w′) and we have:

{w,w′,QA(w),output(C′A(QA,w,w′)
(σ ))}

comp≡ 1{w,w′,QA(w),output(C̃A(QA,w,w′),B 
dec(w̃)(σ ))}. (14)

Combining (13) and (14) and recalling that k2(	A) = k2(QA(w)), the lemma fol-
lows. �

Augmented Definition for Lemma 8.4 In the case of the augmented definition, the
proof of Lemma 8.4 still holds because Claim 8.5 will hold for every session-key chal-
lenge given by A. Hence we have

{w,w′, k2(	A),output(C′A(QA,w,w′)(σ,Kβ)),β}
comp≡ {w,w′, k2(	A),output(C̃A(QA,w,w′),B 
dec(w)(σ,Kβ)),β}
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where Kβ is given when A concludes and is defined as:

Kβ =
{

k2(	A) if β = 1,

U ′
n if β = 0.

To establish Proposition 8.3, it remains to show that B’s decision bit can be simulated
with high probability.

Lemma 8.6. Let C be a real adversary interacting with A and B . There exists C̃

interacting with A and B
dec such that

{w,w′, k2(	A),output(C̃A(QA,w,w′),B 
dec(w)(σ ))}
ε+η≡ {w,w′, k2(	A),output(CA(QA,w,w′),B(w,w′)(σ ))}.

Proof. The proof of Lemma 8.6 relies on the fact that the decision bit of B can be
predicted by C with high probability because of the Key-Match Property and the fol-
lowing claim. Claim 8.7 below states that if 	A = 	B and the adversary C was not
reliable (hence the transcripts tA and tB differ), then the adversary cannot compute a
MAC such that B will accept. Hence the decision bit of B can be predicted by C with
high probability: if C is reliable, then B will accept; otherwise, B will reject.

Claim 8.7. For every C interacting with A and B
dec, the probability that tB 
= tA
and C computes MACk1(	A)(tB) is at most ε + neg(n).

Proof. First, we will remove B by modifying C into C′ from Lemma 8.4, that simu-
lates B in the polynomial evaluation phase. We know from Lemma 8.2 that:

{w,w′, k2(	A), k1(	A),MACk1(	A)(tA),hw′(f n+�(	A)),C′A(QA)}
ε≡{w,w′,U1

n ,U�,MACU�
(tA),Um,C′A(QA)}.

We will bound the probability that the adversary computes the correct MAC for
t 
= tA:

Pr
[
Cmac(C

′A(QA), hw′(f n+�(	A)),MACk1(	A)(tA)) = MACk1(	A)(t)
]

≤ Pr
[
Cmac(C

′A(QA),Um,MACU�
(tA)) = MACU�

(t)
] + ε + neg(n)

≤ ε + neg(n)

where the last inequality comes from the one-time MAC with pseudorandomness prop-
erty. �

Using Claim 8.7, we obtain the following adversary C̃: C̃ interacts with A and B
dec

by passing their messages to C. Since C̃ has the transcript of the interactions (A,C)

and (C,B), C̃ can tell whether C was reliable or not. If C was reliable, C̃ predicts that
decB = accept (since B always accepts if C is reliable), otherwise, it predicts decB =
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reject. We know that Pr[C̃ predicts incorrectly] = Pr[decB = accept∧reliableC =
false]. In order to prove Lemma 8.6, it remains to show that for any C,

Pr[decB = accept∧ reliableC = false] < ε + η + neg(n).

We will break the probability that B accepts when C was not reliable into the following
cases:

Pr[decB = accept∧ reliableC = false]
= Pr[decB = accept∧ reliableC = false∧ 	A 
= 	B ]

+ Pr[decB = accept∧ reliableC = false∧ 	A = 	B ]
≤ (η + neg(n)) + (ε + neg(n))

≤ ε + η + neg(n).

The first step just considers whether the keys 	A and 	B are equal. The second step
follows from the Key-Match Property (we know that if 	A 
= 	B , then with high prob-
ability, B will reject) and Claim 8.7 (we know that if C was not reliable i.e., t 
= tA, then
with high probability C will not compute the correct MAC for t and B will reject). �

Augmented Definition for Lemma 8.6

C is not reliable and B concludes first: C̃ will set B’s simulated decision bit to be
decB = reject and its simulated session-key challenge to be ⊥. Note that if B

concludes first, then with high probability B would indeed reject (which follows from
the fact that if C is not reliable, then with high probability B will reject as shown
above).

A concludes first: Lemma 8.6 must be slightly modified. One can show using
Lemma 8.2 that the probability that tB 
= tA and C computes MACk1(	A)(tB) is at
most ε + neg(n) even if k2(	A) = kA is given.

From the above two arguments, we have:

{w,w′, k2(	A),output(C̃A(QA,w,w′),B 
dec(w)(σ,Kβ)),β}
ε+η≡ {w,w′, k2(	A),output(CA(QA,w,w′),B(w,w′)(σ,Kβ)),β},

where on left-hand side Kβ is given when A concludes and is defined as:

Kβ =
{

k2(	A) if β = 1,

U ′
n if β = 0

and on the right-hand side the session-key challenge Kβ is given once the first party
(either A or B) concludes with output L1 and is defined as:

Kβ =
{

L1 if β = 1 or L1 = ⊥,

U ′
n if β = 0 and L1 
= ⊥.
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8.3. Security Theorem

Combining Propositions 8.3 and 8.1, we will now prove our basic security theorem
against active adversaries. Using the simulations guaranteed by Propositions 8.3 and
8.1 we are guaranteed the existence of a non-interactive adversary C′′ whose view is
indistinguishable from that of a real adversary C interacting with A and B .

We will need to modify this non-interactive adversary C′′ into an ideal adversary (as
in Definitions 2.1 and 2.2) as well as include the inputs and outputs of the honest parties
A and B in the ideal and real distributions.

Theorem 8.8 (Theorem 4.2, restated). For the dictionary D ×D′ = D × {0,1}d ′
, for

every probabilistic polynomial-time real adversary C, there exists a polynomial-time
ideal model adversary Ĉ for Definition 2.2 such that for any σ ∈ {0,1}poly(n)

{IDEAL
Ĉ
(D, σ )} 3ε+2η≡ {REALC(D, σ )}

where η = 2μ + ε.

Theorem 4.2 follows from the above by noting that the two distributions are
(1 − O(γ ))-indistinguishable for γ = max{ε,μ}, where ε = 1/|D| and μ =
O(n/|D′|1/3 log |D′|) = O(n/|D′|1/3).

Proof. From the previous two sections, we know that there exists a non-interactive C′′
such that

{w,w′,Un,C
′′(σ )} 2ε+η≡ {w,w′, k2(	A),output(CA,B(σ ))}.

The ideal model adversary Ĉ does the following:

• Ĉ decides that A will conclude first and accept in the ideal model.
• C invokes C′′ that is non-interactive.
• According to the view output by C′′, Ĉ will decide whether B accepts or not in the

ideal execution.
• Ĉ outputs the output of C′′.

⇒ {w,w′,Un, Ĉ(σ )} 2ε+η≡ {w,w′, k2(	A),output(CA,B(σ ))}. (15)

We now need to include B’s output in the above distributions. Let D be a distinguisher
for IDEAL

Ĉ
and REALC . We will consider the different cases, whether B accepts or

not.

If B rejects

Pr[D(IDEAL
Ĉ
) = 1 ∧ decB = reject]

= Pr[D(w,w′,Un,⊥, Ĉ) = 1 ∧ decB = reject],
Pr[D(REALC) = 1 ∧ decB = reject]

= Pr[D(w,w′, k2(	A),⊥,CA,B) = 1 ∧ decB = reject].
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In the ideal model, we are guaranteed that when B rejects, Ĉ will send b = 0 to the
trusted party, causing B to output ⊥. In the real protocol, when B rejects, it always
outputs ⊥. But B’s decision bit is contained in the view Ĉ (as simulated by C′′) and
in the view CA,B so by (15) the difference between Pr[D(IDEAL

Ĉ
) = 1 ∧ decB =

reject] and Pr[D(REALC) = 1 ∧ decB = reject] is at most 2ε + η + neg(n).
If B accepts

• Suppose C was reliable: in the real model, B always accepts and outputs
k2(	A); in the ideal model, B outputs Un. C is acting like a passive adversary,

so we know that IDEAL
Ĉ

comp≡ REALC .
• Suppose C was not reliable, but B accepts. From the proof of Theorem 8.3, we

know that Pr[decB = accept∧reliableC = false] ≤ ε+η+neg(n), whether
in the real model or in the one simulated by Ĉ.∣∣Pr[D(IDEAL

Ĉ
) = 1 ∧ decB = accept∧ reliableC = false]

− Pr[D(REALC) = 1 ∧ decB = accept∧ reliableC = false]∣∣
≤ ε + η + neg(n).

Combining all the above cases, we have that the ideal distribution and the real distri-
bution are distinguishable with probability at most 3ε + 2η. �

Augmented Definition for Theorem 8.8 From the previous sections, we know that

{w,w′,Un,C
′′(σ,Kβ),β} 2ε+η≡ {w,w′, k2(	A),CA,B(σ,Kβ),β}

where on the left-hand side Kβ is defined as

Kβ =
{

Un if β = 1,

U ′
n if β = 0

and on the right-hand side the session-key challenge Kβ is given once the first party
(either A or B) concludes with output L1:

Kβ =
{

L1 if β = 1 or L1 = ⊥,

Un if β = 0 and L1 
= ⊥.

The ideal adversary Ĉ does the following:

• Ĉ decides that A will conclude first and accept. The trusted party chooses β
R←

{0,1} and gives Ĉ the string Kβ where

Kβ =
{

Un if β = 1,

U ′
n if β = 0.

• C invokes C′′(σ,Kβ) that is non-interactive.



Simpler Session-Key Generation from Short Random Passwords 91

• According to the view output by C′′, Ĉ will decide whether B accepts or not in the
ideal execution.

• Ĉ outputs the output of C′′(σ,Kβ).

9. Additional Security Theorems

We will now show the shared dictionary of the form D×{0,1}d required in Theorem 4.2
can be realized from several other types of dictionaries D′′, achieving security bounds
of the form (poly(n)/|D′′|)�(1) in all cases.

Single Random Password We can split a single random password from a dictionary
D′′ = {0,1}d ′′

into two parts, one of length d and one of length d ′ = d ′′ −d . Optimizing,
we set d = (d ′′ − 3 logn)/4, and obtain a security bound of

γ = max

{
1

2d
,O

(
n

2d ′/3

)}
= O

(
n3

|D′′|
)1/4

.

Arbitrary Password with Common Random String We can convert a password from
an arbitrary dictionary D′′′ ⊆ {0,1}n into a single random password (as in the previous
construction) in the common random string model, using randomness extractors, which
we define now.

A random variable X is a k-source if for all x, Pr[X = x] ≤ 2−k . (In other words, X

has min-entropy at least k.) Note that the uniform distribution on D′′′ is a k-source for
k = log |D′′′|.

Definition 9.1 [23]. A function Ext : {0,1}n × {0,1}� → {0,1}m is a (strong) (k,α)-
extractor if for every k-source X on {0,1}n, the random variable (U�,Ext(X,U�)) is
α-close to (U�,Um).

That is, using a random seed of length �, the function Ext extracts m almost-uniform
bits from the k-source X. We call Ext explicit if it is computable in polynomial time (in
n and �).

We will use the following construction of “low min-entropy” extractors.

Lemma 9.2 [26]. For every n, k ≤ n, and α > 0, there exists an explicit (k,α)-
extractor Ext : {0,1}n × {0,1}� → {0,1}m with � = O(logn + m) + 2 log(1/α) and
m = k − 2 log(1/α) − O(1).

To use extractors with our protocol, we view the common random string as the seed
for the extractor, and apply the extractor to convert the password from the arbitrary
dictionary D′′′ ⊆ {0,1}n into d ′′ = m almost-uniform bits, which we use in place of
the “single random password” in the previous construction. We pay an additive loss
of α (the error of the extractor) in the security bound, and also lose because the ex-
tractor cannot extract all of the min-entropy in the source (i.e. d ′′ will be smaller
than log |D′′′|). Optimizing with the extractor of Lemma 9.2, we set k = log |D′′′| and
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α = (n3/|D′′′|)1/6, and obtain d ′′ = m = k − 2 log(1/α) − O(1), i.e. |D′′| = 2d ′′ =
�(α2 · 2k) = �(n · |D′′′|2/3). Then we have:

γ = O

(
n3

|D′′|
)1/4

= O

(
n3

n · |D′′′|2/3

)1/4

= O

(
n3

|D′′′|
)1/6

,

for a final security bound of

γ + α = O

(
n3

|D′′′|
)1/6

.

The length of our common random string is � = O(logn+k) = O(logn+ log |D′′′|).
Note that this is only logarithmic in the security parameter n, whereas the protocols of
[13,18] require common reference strings of length polynomially related to n. On the
other hand, using our protocol requires knowing (or assuming) a lower bound on the size
of the dictionary (and this lower bound is what determines the security). The protocols
of [13,15,18] do not require such a lower bound.

Two Independent Passwords If the parties share two independent passwords w1,w2

coming from arbitrary dictionaries D1,D2 ⊆ {0,1}r , then they can apply a (seedless)
extractor for 2 independent weak random sources [9] to convert these into a single ran-
dom password. Even better is to use the following variant of 2-source extractors:

Definition 9.3 [11]. A function Ble : {0,1}r × {0,1}r → {0,1}m is a (strong)
(k1, k2, α)-blender if for every k1-source X1 and independent k2-source X2 on {0,1}r ,
the random variable (X1,Ble(X1,X2)) is α-close to (X1,Um).

Thus, if the parties share two independent passwords w1,w2 coming from arbi-
trary dictionaries, a strong blender can be used to convert w2 into an almost-uniform
string w′ = Ble(w1,w2) that is essentially independent of the other password, and thus
(w1,w

′) can be used in our original construction. Nonconstructively, strong (k1, k2, α)-
blenders are known to exist with m = k2 − 2 log(1/α) − O(1), provided that k1 >

log r + 2 log(1/α) + O(1). If there were explicit constructions matching these para-
meters, we would obtain a protocol with security bound of

γ = O

(
max

{(
n

|D1|
)1/2

,

(
n3

|D2|
)1/4})

.

Unfortunately, explicit constructions of blenders (or 2-source extractors) are only
known in cases when either k1 or k2 are at least r/2. (See [12] and the references therein
for the current state-of-the-art.) Thus we would not obtain a protocol that could work
for arbitrary dictionaries D1,D2 ⊆ {0,1}n of size poly(n). However, these constructions
do allow us to obtain a protocol for arbitrary dictionaries D1,D2 ⊆ {0,1}r of size, say,
2.51r , for r ≤ n and even r = O(logn).
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Appendix A. Secure Two-Party Computation

This presentation is taken from [14]. We will describe secure two-party computation
for the special case of single-output functionalities, i.e., functionalities where only one
party obtains an output. Indeed, we will only use tools from secure two-party computa-
tion when dealing with the augmented polynomial evaluation functionality, which is a
single-output functionality. Furthermore, for simplicity, we will restrict our description
to the case where none of the parties aborts and at least one of the two parties is honest.

Let f : {0,1}∗ ×{0,1}∗ → {0,1}∗ ×{0,1}∗ be a deterministic single-output function-
ality, i.e., f is of the form f (x, y) = (f1(x, y), λ).

We first define the ideal model:

Inputs Each party obtains an input denoted x and y respectively.
Sending inputs to the trusted party An honest party will always send its input x or

y to the trusted party. A malicious party will send some input x′ or y′, which may
depend on its initial input and auxiliary input.

Answer of the trusted party Upon obtaining (x, y), the trusted party will reply with
f1(x, y) to the first party.

Output An honest party will always output the message obtained from the trusted
party. A malicious party may output a polytime computable function of its initial
input, its auxiliary input and the message obtained from the trusted party.

Let (B1,B2) be a pair of probabilistic polynomial-time strategies in the ideal model,
such that at least one of the two parties is honest. The joint distribution of f under
(B1,B2) in the ideal model, on input pair (x, y) and auxiliary input z, denoted by
IDEALf,B1(z),B2(z), is:

• In the case where B1 is honest, IDEALf,B1(z),B2(z)(x, y) = (f1(x,B2(y, z)),

B2(y, z, λ)).
• In the case where B2 is honest, IDEALf,B1(z),B2(z)(x, y) = (B1(x, z,

f1(B1(x, z), y)), λ).

We now describe the real model. Let 	 be a two-party protocol for computing f .
Let (A1,A2) be a pair of probabilistic polynomial-time representing strategies in the
real model, such that at least one of two parties is honest (i.e., follows the strategy
specified by 	). The joint execution of 	 under (A1,A2) in the real model, on input
pair (x, y) and auxiliary input z, denoted by REAL	,A1(z),A2(z) is defined as the output
pair resulting from the interaction between A1(x, z) and A2(x, z).
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Definition A.1. Let f : {0,1}∗ × {0,1}∗ → {0,1}∗ × {0,1}∗ be a deterministic single-
output functionality and 	 be a two-party protocol for computing f . Protocol 	 se-
curely computes f if for every probabilistic polynomial-time pair (A1,A2) (such that
at least one party follows the strategy specified by 	), there exists a probabilistic
polynomial-time pair (B1,B2) (such that the corresponding party is honest in the ideal
model) such that:

{IDEALf,B1(z),B2(z)(x, y)}x,y,z

comp≡ {REAL	,A1(z),A2(z)(x, y)}x,y,z.

Assuming the existence of enhanced trapdoor permutations, it is known how to obtain
a secure protocol for any two-party computation ([28], see [14]).

Appendix B. Almost Pairwise Independence

Here we recall a standard construction of almost pairwise-independent hash functions,
modified to ensure that all of the hash functions are regular (which is typically not
required in the definition of almost pairwise independence).

Lemma B.1. For a given dictionary D′ = {0,1}d ′ ⊆ {0,1}n, there exists a fam-
ily of almost pairwise-independent hash functions H = {hw′ : {0,1}n → {0,1}m} for
μ = O( n

d ′2d′/3 ) = O( n

|D′|1/3 log |D′| ).

Proof sketch. Set m = �d ′/3� and let F be the finite field GF(2m). Let k = �n/m�.
An element p = (p0,p1, . . . , pk−1) ∈ F

k can be seen as the coefficients of a polynomial
of degree at most (k − 1) over the finite field F.

Let the index w′ be a triple (α,β, γ ) ∈ F × F × F. We define the hash function hw′ =
hα,β,γ as follows:

hα,β,γ =
{

α · p(β) + γ, α 
= 0,

p(β) + γ, α = 0.

That is, we evaluate the polynomial p at the point β ∈ F, and then apply the linear
function x �→ α · x + γ (unless α = 0, in which case we use x �→ x + γ ). Note that it
requires 3m ≤ d ′ bits to specify w′ = (α,β, γ ) and the hash functions have input length
k · m ≥ n.

We will now verify that H = {hα,β,γ : Fk → F} is a family of almost pairwise-
independent hash functions. For the uniformity condition, note that for every p ∈ Fk ,
when we choose (α,β, γ ) uniformly at random from F × F × F, it holds that hα,β,γ (p)

is uniform over F; indeed this holds even when α,β are fixed and γ is chosen uni-
formly at random. For a fixed index (α,β, γ ) ∈ F × F × F and a fixed element y ∈ F,
Prp∈Fk [hα,β,γ (p) = y] = 1/|F|, hence the function hα,β,γ is regular.

For the almost pairwise-independence, we will show that

Pr
α,β,γ

[hα,β,γ (q) = y2|hα,β,γ (p) = y1] ≤ k + 1

|F| = O

(
n/d ′

2d ′/3

)
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for all p 
= q ∈ F
k , and y1, y2 ∈ F. To bound this, we first note that:

Pr
α,β,γ

[hα,β,γ (q) = y2|hα,β,γ (p) = y1] = Prα,β,γ [hα,β,γ (p) = y1 ∧ hα,β,γ (q) = y2]
Prα,β,γ [hα,β,γ (p) = y1]

= |F| · Pr
α,β,γ

[hα,β,γ (p) = y1 ∧ hα,β,γ (q) = y2].

Thus it suffices to show that

Pr
α,β,γ

[hα,β,γ (p) = y1 ∧ hα,β,γ (q) = y2] ≤ k + 1

|F|2 .

Let p,q, y1, y2 be fixed.

• Suppose p(β) = q(β) (i.e. β is a root of the polynomial (p − q), which happens
with probability at most (k − 1)/|F|). Then hα,β,γ (p) = hα,β,γ (q) for every α,γ ,
and this value is distributed uniformly at random in F (over the choice of γ ). Thus,
the probability that hα,β,γ (p) = y1 and hα,β,γ (q) = y2 is at most 1/|F| (given that
p(β) = q(β)).

• Suppose p(β) 
= q(β). Then, over the choice α,γ , the values α · p(β) + γ and
α ·q(β)+γ are uniform and independent in F. Thus, the probability that α ·p(β)+
γ = y1 and α · q(β) + γ = y2 equals 1/|F|2. However, we need to bound this
probability for hα,β,γ , which differs from these in case α = 0. But the probability
(over α and γ ) that α = 0 and h0,β,γ (p) = p(β) + γ = y1 is 1/|F|2.

In total, we have

Pr
α,β,γ

[hα,β,γ (p) = y1 ∧ hα,β,γ (q) = y2] ≤ k − 1

|F| · 1

|F| + 2

|F|2 = k + 1

|F|2 ,

as desired. �
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