
DOI: 10.1007/s00145-002-0146-4

J. Cryptology (2003) 16: 219–237

© 2003 International Association for
Cryptologic Research

Oblivious Transfers and Privacy Amplification∗

Gilles Brassard
Département IRO, Université de Montréal,

C.P. 6128, succursale centre-ville, Montréal,
Québec, Canada H3C 3J7
brassard@iro.umontreal.ca

Claude Crépeau
School of Computer Science, McGill University,

room 318, 3480 rue University, Montréal,
Québec, Canada H3A 2A7

crepeau@cs.mcgill.ca

Stefan Wolf
Département IRO, Université de Montréal,

C.P. 6128, succursale centre-ville, Montréal,
Québec, Canada H3C 3J7

wolf@iro.umontreal.ca

Communicated by Cynthia Dwork

Received April 2001 and revised July 2002
Online publication 5 March 2003

Abstract. Oblivious transfer (OT) is an important primitive in cryptography. In chosen
one-out-of-two string OT, a sender offers two strings, one of which the other party, called
the receiver, can choose to read, not learning any information about the other string. The
sender on the other hand does not obtain any information about the receiver’s choice. We
consider the problem of reducing this primitive to OT for single bits. Previous attempts
to doing this were based on self-intersecting codes. We present a new technique for the
same task, based on so-called privacy amplification. It is shown that our method has
two important advantages over the previous approaches. First, it is more efficient in
terms of the number of required realizations of bit OT, and second, the technique even
allows for reducing string OT to (apparently) much weaker primitives. An example of
such a primitive is universal OT, where the receiver can adaptively choose what type
of information he wants to obtain about the two bits sent by the sender subject to the
only constraint that some, possibly very small, uncertainty must remain about the pair
of bits.

Key words. Information-theoretic security, Oblivious transfer, Universal oblivious
transfer, Reduction among information-theoretic primitives, Privacy amplification.

∗ Earlier versions of this work have appeared as [4] and [28]. This work was supported in part by Canada’s
CRC, NSERC, and Québec’s FCAR.

219

220 G. Brassard, C. Crépeau, and S. Wolf

1. Introduction

One-out-of-two (k-bit-) string oblivious transfer, denoted (21)-OTk , is a primitive that
originates in [27] (under the name of “multiplexing”), a paper that marked the birth of
quantum cryptography. According to this primitive, one party A owns two secret k-bit
strings w0 and w1, and another party B wants to learn wc for a secret bit c of his choice.
A is willing to collaborate provided that B does not learn any information about wc̄, but
B will only participate ifA cannot obtain information about c. Independently from [27]
but inspired by [25], a natural restriction of this primitive was introduced subsequently
in [19] with applications to contract-signing protocols: one-out-of-two bit oblivious
transfer, denoted (21)-OT, concerns the case k = 1 in which w0 and w1 are single-bit
secrets, generally called b0 and b1 in that case.

Techniques were introduced in [5] and refined in [18] and [7] to reduce (21)-OTk

to (21)-OT: several constructions were given to achieve (21)-OTk based on the assumption
of the availability of a protocol for the simpler (21)-OT. The fact that (21)-OTk can in
principle be reduced to (21)-OT is not surprising because (21)-OT is sufficient to implement
any two-party computation, as has been shown by a number of authors [21], [13], [16].
Our interest in direct reductions is their far greater efficiency. With the exception of [17],
all previous direct reductions that we are aware of [5], [18], [7] are based on a notion
called zigzag functions, whose construction is reduced to finding particular types of error-
correcting codes called self-intersecting codes. In a nutshell, this approach consists of
selecting once and for all a suitable function f from1 Fn

2 toF k
2 for n as small as possible

(n > k), so that if x0 is a random pre-image of w0 and x1 is a random pre-image of w1,
and if B is given to choose via (21)-OT to see the i th bit of either x0 or x1, 1 ≤ i ≤ n,
then no information can be inferred on at least one ofw0 orw1. This approach has led to
various reductions with expansion factors β ranging from 4.8188 to 18: that is various
polynomial-time constructible methods using n = βk instances of (21)-OT to perform one
(21)-OTk on k-bit strings. Komlós proved that this approach cannot yield an expansion
factor β that is asymptotically better than 3.5277 as reported in [10]. It was proven in
1997 by Stinson that the same bound applies even to non-linear zigzags [26]. Consult
Section 9 for a discussion of the tight connection between our new protocol and the
self-intersecting codes approach.

This current paper exploits a new approach to the problem using privacy amplification,
a notion first introduced in the context of key exchange protocols [3]. The new approach
allows for a solution requiring only 2(k + s + 1) instances of (21)-OT (where s is a
security parameter) to perform one (21)-OTk , and it can be extended to a whole range of
generalizations of (21)-OT, including an extremely weak variant of bit OT, that could not
be used with the reductions based on zigzag functions. Reductions related to ours were
presented in [8].

An application of the simplest of our generalizations is also considered: (21)-OTk from
A to B can be reduced to (21)-OT in the other direction (from B to A) by only doubling
the cost of reducing to (21)-OT from A to B. This improves on an earlier result of [17]
by a factor of six.

1 Throughout this paper, F2 denotes the field G F(2) with two elements.

Oblivious Transfers and Privacy Amplification 221

It is important to note that throughout this paper we are concerned with information-
theoretic reductions between the described primitives. String OT offering only compu-
tational security can be realized directly and efficiently under certain computational
assumptions (see for example [24] and references within). An information-theoretic re-
duction of string OT to bit OT for instance shows that in every security model, the two
primitives are equivalent: bit OT offering any kind of security can be used to realize
string OT with the same kind of security.

2. Privacy Amplification versus Other Methods

We describe the main idea of our new construction. Assume A knows a random n-bit
string x about which B has partial information. Privacy amplification is a technique
invented in [3] and refined in [2] that allows A to shrink x to a shorter string w about
which B has an arbitrarily small amount of information even if he knows the recipe used
byA to transform x intow. Intuitively, this can be used to implement (21)-OTk(w0, w1)(c)
from (21)-OT becauseA can offerB to read one of two random strings x0 or x1 by a simple
sequence of (21)-OT(xi

0, xi
1)(ci). Subsequently,A tells B how to transform x0 intow0 and

x1 into w1 by way of privacy amplification. An honest B who accessed all the bits of xc

can reconstruct wc from this information. However, a dishonest B̃ who tried to access
some of the bits of x0 and some of the bits of x1 will not have enough information
on at least one of them to infer any information on the corresponding wi or even joint
information on both w0 and w1.

An important fact about the method based on zigzag functions considered in earlier
papers is that there is no way for B to learn information about both w0 and w1 even
though the zigzag function is known before he gets to choose which bits of x0 and x1 to
obtain through the (21)-OT instances. In the new approach based on privacy amplification,
A reveals the function to B after the necessary (21)-OTs have been performed. This
allows for a protocol that is simpler, more general and more efficient, but at the cost
of a vanishingly small probability of failure. (Throughout the paper, failure denotes the
event that a dishonest B can collect more information than he is supposed to. In all the
protocols presented an honest receiver B obtains no information at all about the string he
did not choose.) A drawback of this approach is that a new function must be generated
and transmitted at each run of the protocol.

Table 1 compares the efficiency of the earlier methods to that of privacy amplification.
The column “expansion factor” gives a number β such that a (21)-OTk can be achieved
with βk instances of (21)-OT, s is a security parameter, and ε = s/k is arbitrarily small
in the limit of large k. Thus we see that the privacy amplification method is preferable
provided a probability of failure can be tolerated.

3. The New Protocol

Protocol 3.2 below realizes a randomized primitive (21)-ROTk(c) = (21)-OTk(R0, R1)(c)
similar to OTk , whereA transmits one-out-of-two uniformly distributed independent k-
bit strings r0, r1 toB (R0, R1 are the corresponding random variables). These two random
strings r0, r1 are then used as one-time pads to transfer the actual k-bit strings w0, w1.

222 G. Brassard, C. Crépeau, and S. Wolf

Table 1. Efficiency of earlier methods and of privacy amplification.

Expansion Failure Construction
Method factor probability time

Monte Carlo Zigzaga 4.8188+ ε 2−s O(k(k + s))
Las Vegas Zigzagb 9.6377+ ε 0 O(k2)

Zigzag à la Justesenc 18 0 O(k4)

Zigzag à la Goppad 6.4103 0 O(k32)

Privacy amplification 2+ ε 2−s O(k(k + s))

aAttributed to Cohen and Lempel in [7].
bAttributed to Kilian in [7].
cFrom [7].
d From [11] based on a method of [18].

Protocol 3.1. ((21)-OTk(w0, w1)(c))

1. A transfers a random rc ← (21)-ROTk(c) to B.
2. A sets y0 ← r0 ⊕ w0, y1 ← r1 ⊕ w1 and announces y0, y1 to B.
3. B obtains wc ← rc ⊕ yc.

Let s be a security parameter chosen by A and B so that they agree to tolerate a
probability 2−s of failure. Let γ be a constant to be determined later, and let n = γ (k+s).

Privacy amplification is based on the general notion of universal classes of hash
functions [9]. For sake of simplicity, we use a specific class of hash functions in our
protocol to implement (21)-ROTk from (21)-OT:

{h | h(x) = Mx, for M a k × n rank k matrix over F2}.

Note however that our proofs are tailored for this specific class of functions and that
a general result for any universal class of hash functions or similar objects such as
extractors is left as an open problem.

Protocol 3.2. ((21)-ROTk(c))

1. A picks two random n-bit strings x0 and x1.
2. DOn

i=1 A transfers t i ← (21)-OT(xi
0, xi

1)(c) to B.
3. A picks two random k × n rank k matrices M0 and M1 over F2;

she sets r0 ← M0x0, r1 ← M1x1 and announces M0,M1 to B.
4. B obtains rc by computing Mct .

In the following sections we will show that this protocol allows for reducing string OT
to bit OT (Section 5) as well as to apparently much weaker primitives such as XOR-OT
(Section 6), generalized OT (Section 7), and universal OT (Section 8). In all cases, we
show security of Protocol 3.2 and conclude security of Protocol 3.1 by the properties of
the one-time pad.

Oblivious Transfers and Privacy Amplification 223

4. Information Theoretic Definition of Oblivious Transfers

A protocol is a multi-party synchronous program that describes for each party the com-
putations to be performed or the messages to be sent to some other party at each point
in time. The protocol terminates when no party has any message to send or information
to compute. The protocols we describe in this paper all take place between two parties
A and B. We denote by Ā and B̄ the honest programs to be executed by A and B:
honest parties behave according to Ā and B̄ and no other program. In the following
definitions of correctness and privacy we also consider alternative dishonest programs
Ã and B̃ executed byA or B in an effort to obtain illegal information from one another.
The definitions specify the result of honest parties interacting together through a specific
protocol as well as the possible information leakage of an honest party facing a dishon-
est party. We are not concerned with the situation where both parties may be dishonest
as they can do anything they like in that case; we are only concerned with protecting
an honest party against a dishonest party. At the end of each execution of a protocol,
each party will issue an “accept” or “reject” verdict regarding their satisfaction with the
behavior of the other party. Two honest parties should always issue “accept” verdicts at
the end of their interactions. An honest party will issue a “reject” verdict at the end of a
protocol if he received some message from the other party of improper format or some
message not satisfying certain conditions specified by the protocol. We also implicitly
assume certain time limits for each party to issue messages to each other: after a specified
amount of time a party will give up interacting with the other party and issue a “reject”
verdict.

As discussed in the Introduction, a (21)-OT is a cryptographic protocol for two partic-
ipants that enables a sender A to transfer one of two bits b0 or b1 to a receiver B who
chooses secretly which bit bc he gets. This is done in an all-or-nothing fashion, which
means that B cannot get partial information about b0 and b1 at the same time, however
malicious or (computationally) powerful he is, and that A finds out nothing about the
choice c of B. Generalization of (21)-OT include (21)-OTk , in which the bits b0 and b1 are
replaced by k-bit strings w0 and w1, and (t1)-OTk , in which A has several k-bit strings
w0, w1, . . . , wt−1 from which B is given to choose one. The choice c is then from the set
T = {0, 1, . . . , t − 1}. Note that a simple reduction from (t1)-OTk to 2t calls of (21)-OTk

may be found in [5]. We thus focus solely on the latter for the rest of this paper.
Formally speaking, we describe a two-party protocol that satisfies the following con-

straints of correctness and privacy. These notions have been defined before for general
protocols by Crépeau [14], Micali and Rogaway [23], and Beaver [1] using simulators.
In this paper we use the language of information theory to express definitions similar to
those introduced by Crépeau [15] and Brassard et al. [7].

Let [P0, P1](a)(b) be the random variable (since P0, P1 may be probabilistic pro-
grams) that describes the outputs obtained by A and B when they execute together the
programs P0 and P1 on respective inputs a and b. Similarly, let [P0, P1]∗(a)(b) be the
random variable that describes the total information (including not only messages re-
ceived and issued by the parties but also the result of any local random sampling they
may have performed) acquired during the execution of protocol [P0, P1] on inputs a, b.
Let [P0, P1]P(a)(b) and [P0, P1]∗P(a)(b) be the marginal random variables obtained by
restricting the above to only one party P . The latter is often called the view of P [20]. In

224 G. Brassard, C. Crépeau, and S. Wolf

the following definition, the equality sign (=) means that the distributions on the left-hand
side and the right-hand side are the same.

Definition 1 (Correctness). Protocol [Ā, B̄] is correct for (21)-OTk if

• ∀w0, w1 ∈ F k
2 , c ∈ F2,

[Ā,B̄](w0, w1)(c) = (ε, wc), (1)

• ∀Ã ∃ Ã′ s.t. ∀w0, w1 ∈ F k
2 , c ∈ F2,

([Ã, B̄]B(w0, w1)(c),B accepts) = ((Ã′(w0, w1))c,B accepts). (2)

Intuitively, condition (1) means that if the protocol is executed as described, it will
accomplish the task it was designed for: B receives word wc and A receives nothing.
Condition (2) means that in situations in which B does not abort, A cannot induce a
distribution on B’s output using a dishonest Ã that she could not induce simply by
changing the input words and then being honest (which she can always do without being
detected).

Let (W0,W1) and C be the random variables taking values over F2k
2 and F2 (later

denoted RV(F2k
2) and RV(F2)) that describeA’s and B’s inputs. We assume that bothA

and B are aware of the arbitrary joint probability distribution of these random variables
PW0,W1,C . A sample w0, w1, c is generated from that distribution and w0, w1 is provided
as A’s secret input while c is provided as B’s secret input.

We assume that the reader is familiar with the notion of entropy H(X) of a random
variable X . The mutual information of two random variables X, Y is given by I(X; Y) =
H(X)−H(X | Y) and conditioned by a third random variable Z , I(X; Y | Z) = H(X |
Z)−H(X | Y, Z).

Definition 2 (Privacy). Protocol [Ā, B̄] is private for (21)-OTk if ∀(W0,W1) ∈ RV
(F2k

2),C ∈ RV(F2),

• ∀w0, w1 ∈ F k
2 , ∀Ã,

I(C; [Ã, B̄]
∗
A(W0,W1)(C) | (W0,W1) = (w0, w1)) = 0, (3)

• ∀c ∈ F2, ∀B̃, ∃C̃ ∈ RV(F2) s.t.

I(W¬C̃ ; [Ā, B̃]
∗
B(W0,W1)(C) | WC̃ ,C = c) = 0. (4)

The above two conditions are designed to guarantee that each party is limited to the
information he or she should get according to the honest task definition. Condition (3)
means that Ã cannot acquire any information about C through the protocol. On the other
hand, condition (4) means that B̃ may acquire information about only one of W0,W1

through the protocol. In particular, no joint information about the two words may be
obtained by the protocol. This is why our condition assumes that B̃ is given one of the
words. (We do not require that B̃ be given WC because there is no way to prevent him
from obtaining any other WC̃ through otherwise honest use of the protocol.)

Oblivious Transfers and Privacy Amplification 225

Definition 3. A protocol for (21)-OTk with security s ((21)-OTk
s for short) is correct

(Definition 1) and has the property that there exists an event S with probability at least
1− 2−s , taken over all possible choices of B̃ and over all the coin tosses of Ā, such that
given that S occurs, the receiver B̃ obtains no information about one of the k-bit strings,
even when given the other (Definition 2).

In the following sections we focus only on the non-trivial aspects of the above def-
initions. In particular, we do not demonstrate correctness which immediately follows
from the design of each protocol. Also, each protocol is such that the only informationA
might obtain throughout the protocol is via the use of the bit primitive ((21)-OT, (21)-XOT,
(21)-GOT, . . .). Since we assume they all satisfy condition (3), it follows immediately
that our protocols also satisfy condition (3).

Thus our proofs of security focus solely on demonstrating that our protocols satisfy
condition (4) with probability at least 1− 2−s .

5. Reducing String OT to Bit OT

We show first that Protocol 3.1 combined with Protocol 3.2 (in the following referred
to simply as Protocol 3.1) allows for reducing string OT to ordinary bit OT, where the
number of required realizations of bit OT is only twice the length of the strings plus
the security parameter s. We assume bit OT to be given as a black-box where the only
thing the parties can do is to provide legitimate inputs at their choosing and get the
corresponding outputs.

Theorem 1. Protocol 3.1 allows for reducing (21)-OTk
s to n realizations of (21)-OT for

any

n ≥ 2(k + s + 1). (5)

Before proving Theorem 1, we show that for the security of string OT it is sufficient
that the receiver is not able to get any (non-negligible) information about any non-
trivial linear function from one of the strings to a single bit, and additionally any such
function from the pair of strings to one bit that depends non-trivially on both strings
(Theorem 4).

Lemma 2. Let S be a random variable taking k-bit strings as values, i.e., S ⊆ F k
2 .

Assume that for all non-constant linear functions g mapping F k
2 to F2, the bit g(S) is

symmetric, i.e., Prob[g(S) = 1] = 1/2. Then S is uniformly distributed over F k
2 .

Proof. Let (g1, g2, . . . , g2k−1) and (s1, s2, . . . , s2k−1) be lists of all non-constant linear
functions from F k

2 to F2 and of all non-zero k-bit strings, respectively. We consider the
following mapping from distributions PS over F k

2 to lists of probabilities

(Prob[g1(S) = 1],Prob[g2(S) = 1], . . . ,Prob[g2k−1(S) = 1]).

226 G. Brassard, C. Crépeau, and S. Wolf

This is a mapping from R2k−1 to R2k−1:

PS(s1)

PS(s2)
...

PS(s2k−1)

 �→

Prob[g1(S) = 1]
Prob[g2(S) = 1]

...

Prob[g2k−1(S) = 1]

 .

It is clear that this mapping is linear and that the corresponding real (2k−1)×(2k−1)
matrix has the property that all the row vectors consist of 2k−1 − 1 zeros and 2k−1 ones,
and every pair of row vectors has a pair of ones at exactly 2k−2 of the positions. (The row
vectors are the non-zero codewords of the dual code to a Hamming code.) The described
matrix is called the Hadamard matrix and is well known to be invertible. For the sake of
transparence, however, we give a short proof of this fact.

We show that the row vectors of the matrix are linearly independent over R, and that
hence the matrix is invertible.

First, all the row vectors vi have the same norm |vi | =
√

2k−1 in R2k−1, and secondly,
every pair of such vectors has the same scalar product 〈vi , vj 〉 = 2k−2 (i �= j). We show
that any set of vectors with these properties must be linearly independent. It is sufficient
to show this for a set of vectors vi with the property

〈vi , vi 〉 = 1, 〈vi , vj 〉 = α (if i �= j)

for some 0 < α < 1.
Assume that we have a set of r + 1 such vectors with

vr+1 =
r∑

i=1

λivi .

Then we get for 1 ≤ i ≤ r ,

α = 〈vr+1, vi 〉 = λi +
∑
j �=i

λjα = (1− α)λi +
r∑

j=1

λjα,

hence λi = α(1 −∑j λj)/(1 − α) for all i , as a result all λi are the same (because it
does not depend on i) and thus λi = α/(1+ (r − 1)α) for all i . Then

1 = 〈vr+1, vr+1〉 =
(

α

1+ (r − 1)α

)2

(r + r(r − 1)α)

implies r = −1/α, which is a contradiction. Hence the row vectors of the described
matrix must be linearly independent, and the matrix itself is thus invertible. Therefore,
the distribution PS satisfying Prob[gi (S) = 1] = 1/2 for all i is uniquely determined.

This concludes the proof, since the uniform distribution is clearly a distribution for
which all the bits gi (S) are unbiased.

The proof of Lemma 2 actually shows the following stronger statement on general
distributions and “linear-functional characteristics.”

Oblivious Transfers and Privacy Amplification 227

Lemma 3. Let S be a random variable taking k-bit strings as values, i.e., S ⊆ F k
2 .

Then PS is uniquely determined by the values Prob[g(S) = 1] for all linear functions g
mapping F k

2 to F2.

Theorem 4. Let S be a random variable taking as values 2k-bit strings, S ⊆ F2k
2 ,

and let S1 and S2 denote the first and second halves of S, respectively. Assume that the
distribution PS (i.e., the joint distribution of S1 and S2) has the following two properties:

1. For every linear function h mapping F k
2 to F2, h(S1) is a symmetric bit, i.e.,

Prob[h(S1) = 1] = 1/2, and
2. for all linear functions g(·, ·) mapping F k

2 × F k
2 to F2 and such that g depends

non-trivially on both inputs, g(S1, S2) is a symmetric bit.

Then S1 and S2 are independent, i.e.,

PS1 S2(s1, s2) = PS1(s1) · PS2(s2),

and S1 is uniformly distributed.

Proof. First, it is straightforward to see that the product distribution PS1 · PS2 , where
PS1 is the uniform distribution overF k

2 , is a particular distribution with the given “linear-
functional characteristic”. Here, this characteristic is completed by the functionals that
are non-trivial only on the second input which uniquely determine, and are uniquely
determined by, the marginal distribution PS2 . By Lemma 3, the distribution PS1 S2 is
uniquely determined by this characteristic, and this concludes the proof.

We are now ready to prove Theorem 1. In fact, we even prove a statement stronger
than Theorem 1, since we will give B more possibility of choice: instead of choosing
one of the bits sent, B is also allowed to obtain the XOR of the two bits. (In this case,
B’s choice “trit” is equal to “⊕”, and x⊕ stands for x0 ⊕ x1. However, an honest Bob
would never choose ⊕. See Section 6 for a detailed discussion of so-called XOR-OT.)

Proof of Theorem 1. We first show that with high probability, one of the two strings
r0 and r1 is perfectly uniformly distributed from B̃’s point of view. First, it is clear that
for (at least) one of the strings x0 and x1, B̃ has no information about at least half the bits
x1

0 , x2
0 , . . . , xn

0 or x1
1 , x2

1 , . . . , xn
1 , respectively. More precisely, there exists a bit c̃ ∈ {0, 1}

and a subset S ⊆ {1, . . . , n} of size at least n/2 such that for all i ∈ S, we have

H(Xi
c̃ | X1

c1
X2

c2
· · · Xn

cn
) = 1,

where X1
c1

X2
c2
· · · Xn

cn
summarizes the entire information B̃ has obtained during the exe-

cution of the n bit OTs (where every choice ci is in {0, 1,⊕}). We can assume without
loss of generality that this string is x0, i.e., c̃ = 0.

Let now h be any specific non-constant linear function mapping F k
2 to F2. Then we

have

h(r0) = hM0x0 = m0 � x0 =
⊕

i

mi
0xi

0,

228 G. Brassard, C. Crépeau, and S. Wolf

where the second h is the name for the vector that represents the function h, which yields
a random non-zero vector of bits m0 = hM0 (where the sum is modulo 2). Since B̃ has
no information at all about at least n/2 bits among the xi

0, he has, with probability at
least 1− (1/2)n/2, no information at all about the bit h(r0). By the union bound, we can
conclude that with probability at least 1 − 2k(1/2)n/2, B̃ has no information about the
bit h(r0) for any linear function h. By Lemma 2, this event implies that in B̃’s view, r0

is perfectly uniformly distributed.
We now describe the condition under which B̃ learns g(r0, r1) at Step 3 of Proto-

col 3.2 for some specific non-trivial linear function g defined by two strings g0 and g1:
g(r0, r1) := g0 � r0 ⊕ g1 � r1. By definition

g(r0, r1) = g0 � r0 ⊕ g1 � r1 = g0 M0x0 ⊕ g1 M1x1 = z0 � x0 ⊕ z1 � x1,

where z0 = g0 M0 and z1 = g1 M1. Because x0 and x1 are random, B̃ cannot learn anything
about g(r0, r1) at Step 3 unless he is lucky enough that his choices ci simultaneously
follow

ci =

0 when (zi
0, zi

1) = (1, 0),

1 when (zi
0, zi

1) = (0, 1),

⊕ when (zi
0, zi

1) = (1, 1)

in all the instances of (21)-OT such that zi
0 and zi

1 are not both zero. (The value of ci is
unimportant when (zi

0, zi
1) = (0, 0) since neither xi

0 nor xi
1 nor xi

0⊕ xi
1 is required in that

case to compute g(r0, r1).)
Remember that M0 and M1 are picked at random among rank k matrices and neither g0

nor g1 is zero. Therefore z0 = g0 M0 and z1 = g1 M1 are random non-zero binary strings
of length n chosen independently according to the uniform distribution. In particular, z0

and z1 are independent of B̃’s choice of the ci ’s. It follows that, for each i , the probability
that either (zi

0, zi
1) = (0, 0) or B̃’s choice ci turns out to have been appropriate according

to the above case analysis is at most

1− 3
4 · 2

3 = 1
2 .

Since B̃ must have been lucky for each i , 1 ≤ i ≤ n,

Prob[B̃ learns g(r0, r1)] ≤ 2−n

for each non-trivial linear function g, whatever choices B̃ makes for the ci ’s. Finally,
given that there are less than 22k such linear functions, we conclude that

Prob[there exists a non-trivial g such that B̃ learns g(r0, r1)] < 22k−n.

Here, the fact that B̃ does not learn g(r0, r1) means that a dishonest receiver does not
get any information at all about this bit.

Altogether, we get that the probability that both strings r0 and r1 are not uniformly
distributed in B̃’s view or that B̃ has some information about g(r0, r1) for any non-trivial
g is upper bounded by

2k−n/2 + 22k−n ≤ 2k−n/2+1 ≤ 2−s

Oblivious Transfers and Privacy Amplification 229

if inequality (5) is satisfied. We thus conclude that except with probability 2−s for
uniformly distributed independent R0, R1, ∀c ∈ F2, ∀B̃, ∃C̃ ∈ RV(F2) s.t.

I(R¬C̃ ; [Ā, B̃]
∗
B(R0, R1)(C) | RC̃ ,C = c) = 0.

Finally, since these two strings R0, R1 are used as one-time pads for W0,W1 the same
property transfers to these as well:

I(W¬C̃ ; [Ā, B̃]
∗
B(W0,W1)(C) | WC̃ ,C = c) = 0.

6. XOR-OT and Reversing OT

A (21)-XOT is an extension of (21)-OT that enables a sender A to transfer to a receiver
B either one bit among b0 and b1 or their exclusive-or, at B’s choice. More formally,
A inputs b0 and b1 into the protocol, B inputs c ∈ {0, 1,⊕}, and B learns bc while A
learns nothing, where, again, for convenience we use b⊕ to denote b0 ⊕ b1. As usual,
this is done in an all-or-nothing fashion: B cannot get more information about b0 and
b1 than b0, b1, or b⊕, however malicious or computationally powerful he is. Note that
in our application of (21)-XOT, which is to use it instead of (21)-OT inside Protocol 3.2,
an honest B would never request b⊕. Therefore we can safely use any protocol in which
it is merely tolerated that B̃ might learn b⊕ in cheating attempts even though A is not
required to provide it upon request.

The (21)-XOT comes naturally in a specific implementation of (21)-OT: in [6] a protocol
for (21)-OT is given under the assumption that deciding quadratic residuosity modulo a
composite number is hard. In that implementation, the possibility that B̃ obtains b⊕ arises
naturally and some effort is made to prevent it. The current paper shows that this effort
was unnecessary if the final goal is to implement (21)-OTk rather than simply (21)-OT.
Indeed, the proof of Theorem 1 already shows that Protocol 3.1 reduces string OT to
(21)-XOT, so no additional proof is required. We assume (21)-XOT is given as a black-box
where the only thing the parties can do is to provide legitimate inputs at their choosing
and get the corresponding outputs.

Theorem 5. Protocol 3.1 allows for reducing (21)-OTk
s to n realizations of (21)-XOT

for any

n ≥ 2(k + s + 1).

As an application of Theorem 5 we consider the problem of inverting the direction of
an OT. More precisely, consider that A wants to send one of two words w0 or w1 to B
when they only have a (21)-OT channel running from B to A. A very efficient protocol
for sending one of two bits from A to B is given in [17] provided A does not mind the
possibility that B might learn the exclusive-or of her two bits: two instances of reversed
(21)-OT are sufficient to implement (21)-XOT. For completeness we include this very

230 G. Brassard, C. Crépeau, and S. Wolf

simple protocol:

Protocol 6.1. ((21)-XOT(b0, b1)(c))

1. B picks four random bits u0, u1, v0, v1 such that ui = vi iff ¬i = c.
2. B transfers ti ← (21)-OT(ui , vi)(bi) to A, i ∈ {0, 1}.
3. A announces t ← t0 ⊕ t1 to B.
4. B recovers bc by computing t ⊕ u0 ⊕ u1.

We leave it as an easy exercise to the reader to check that the following table is correct:

u0, v0 u1, v1 t0 ⊕ t1 ⊕ u0 ⊕ u1 c

�= = b0 0
= �= b1 1
�= �= b0 ⊕ b1 ⊕
= = 0

No known construction efficiently implements (21)-OT from so few instances of re-
versed (21)-OT. In other words, it is currently much easier to implement (21)-XOT rather
than (21)-OT from A to B given a (21)-OT channel from B to A. This is fine because
we just showed that (21)-XOT is just as good as (21)-OT for the purpose of implement-
ing (21)-OTk . Therefore, (21)-OTk from A to B can be implemented from slightly more
than 4k instances of (21)-OT from B to A. This is a sixfold improvement over [17].

Corollary 6. (21)-OTk
s can be reduced to n realizations of (21)-OT from B to A for any

n ≥ 4(k + s + 1).

7. Generalized OT: Uncertainty Concentration and Erasure Channels

A (21)-GOT is a cryptographic primitive for two participants that enables a sender A to
transfer a one-bit function evaluated on (b0, b1) to a receiver B who chooses secretly
which one-bit function f he gets from her input bits. This is, again, done in an all-or-
nothing fashion: B cannot get more information about b0 and b1 than f (b0, b1) for some
f , however malicious or computationally powerful he is, andA finds out nothing about
the choice f of B. As was the case with (21)-XOT in Section 6, one may think of a
(21)-GOT protocol as merely tolerating the fact that a cheating B̃ might learn f (b0, b1)

for some f rather than specifying that any such f can be learned at B’s whim.
Table 2 enumerates all 14 possible non-constant functions from two bits to one. (We ig-

nore the two constant function since they would yield no information if used.) The sym-
bols used refer to the common boolean functions. Example: ∧ stands for b0 ∧ b1. The
notations 0 and 1 are used for the projection functions b00b1 = b0 and b01b1 = b1.
We say that a function f (b0, b1) is biased if the probability that f (b0, b1) = 1 is not

Oblivious Transfers and Privacy Amplification 231

Table 2. Enumeration of non-constant functions.

Function

b0 b1 ∨ → 1 ← 0 ⊕ ∧ ∧ ⊕ 0 ← 1 → ∨
0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1

Biased
√ √ √ √ √ √ √ √

1/2 when b0 and b1 are chosen randomly and independently according to the uniform
distribution. The ordinary (21)-OT is a special case of (21)-GOT where B is limited to the
functions 0 and 1.

It has been shown in [5] that (21)-GOT is a sufficient primitive to implement (21)-OT.
The reduction they presented uses �(s) runs of (21)-GOT to achieve a single (21)-OT in
such a way that the reduction may fail and give both bits to B with probability 2−s . If
this protocol is combined with a standard reduction of (21)-OTk we obtain a global cost
of �(ks) runs of (21)-GOT per (21)-OTk . Contrary to reductions to (21)-OT, reductions
to (21)-GOT must involve a failure probability since it is always possible to get all the
information sent by A by selecting the appropriate biased function at each transfer by
sheer luck. For example, if B requests xi

0 ∧ xi
1 at Step 2 of Protocol 3.2 for some i , and

if he obtains the value 1, then he knows that both xi
0 and xi

1 are equal to 1. Using the new
privacy amplification method we obtain a direct reduction of (21)-OTk at a cost of only
slightly more than 4.8188 k instances of (21)-GOT.

We consider the variation of Protocol 3.2 in which (21)-OT is replaced by (21)-GOT.
We assume (21)-GOT is given as a black-box where the only thing the parties can do is to
provide legitimate inputs at their choosing and get the corresponding outputs. We show
that the reduction still works, where the number of required realizations of the (21)-GOT
is greater by a factor of roughly 2.4094 than for the reduction to (21)-XOT. This is an
improvement to the analysis of [4]. Moreover, the proof given below is considerably
simpler.

Theorem 7. Protocol 3.1 allows for reducing (21)-OTk
s to n realizations of (21)-GOT for

any

n ≥ 2

2− log2 3
(k + s + 1) ≈ 4.8188 (k + s + 1). (6)

For the proof of Theorem 7 we need the following lemma which states that among all
possible types of (partial) information about a bit which lead to the same error probability
when guessing the bit, the particular information that is obtained by sending the bit over
a symmetric erasure channel provides the largest amount of information about the bit.

More explicitly, and even stronger than that, we show that for every other type of
information U about a bit B, there exists additional information V (that can be thought
of as being provided by an oracle) such that given V together with U , the situation

232 G. Brassard, C. Crépeau, and S. Wolf

perfectly corresponds to information resulting when B is sent over an erasure channel,
and the probability of guessing B correctly given the additional information is unchanged.

This “additional-information argumentation” leads to a partial order on all possible
types of side information about a random variable in a very strict sense: the “stronger”
side information is “more powerful” than the weaker one in every respect because the
stronger information contains the weaker one.

Intuitively speaking, Lemma 8 states that the uncertainty about the bit B can be
concentrated in an event (called {V = �} here, where � stands for the erasure symbol
of the erasure channel) of probability 2p: given this event, B is symmetrically distributed,
i.e., its uncertainty is maximal.

Lemma 8. Let B be a symmetric binary random variable (i.e., its range is {0, 1} and
PB(0) = PB(1) = 1/2 holds), and let U be a random variable such that B and U have
joint distribution PBU . Let p be the average error probability of guessing B when given
U , using the optimal guessing strategy. Then there exists a random variable V with the
following properties:

1. The range of V is V = {0, 1,�},
2. PV (�) = 2p,
3. for every u ∈ U , we have

PB|U=u,V=�(0) = PB|U=u,V=�(1).

Proof. Let u ∈ U , and assume without loss of generality that a = PB|U=u(0) ≥
PB|U=u(1) = b. Let V be defined by

PV |B=0,U=u(0) = (a − b)/a,

PV |B=0,U=u(�) = b/a,

PV |B=1,U=u(�) = 1.

Note that PV |U=u(�) = 2p, i.e., twice the error probability for guessing B when given
U = u. This concludes the proof.

Proof of Theorem 7. First, we observe that for all i , B̃’s expected error probability
about at least one of the two bits xi

0 and xi
1 is 1/4. (This holds with equality if B̃ chooses

a biased function in the i th realization of GOT.) Hence we can assume, according
to Lemma 8, without loss of generality that B̃ receives the corresponding bit over a
symmetric erasure channel with erasure probability 1/2. Hence at least one of the two
strings x0 and x1 (say x0 without loss of generality) contains at least n/2 bits about which
B̃ has no information at all with probability at least 1/2. Consequently, if h is a fixed
non-constant linear function mapping F k

2 to F2, then B̃ has no information about h(r0)

with probability at least 1− (3/4)n/2 (the probability that a particular one of these n/2
bits appears in the sum, i.e., has to be known to get any information about the sum, but
is not known to B̃, is 1/4). By the union bound, B̃ has no information about any h(r0)

Oblivious Transfers and Privacy Amplification 233

with probability at least

1− 2k

(
3

4

)n/2

≥ 1− 2−s

2
.

Let now g(·, ·) be a fixed non-trivial linear function mapping (F k
2)

2 to F2. As shown
already in the proof of Theorem 1, B̃ needs, in order to obtain information about g(r0, r1),
one of the bits xi

0, xi
1, or xi

⊕ (or nothing with probability at most 1/4), depending on the
choice of the random linear functions, for all i . We have seen already that B̃’s expected
error probability about the bit he needs is at least 1/4 if he chooses to see an unbiased
function of the two bits. If he chooses a (non-constant) biased function, this probability
is as follows. For fixed i , B̃ needs one of the bits x0, x1, or x⊕ with probability at least
3/4. Given the choice of a biased function, with probability 1/4, the obtained value tells
him both bits x0 and x1, and otherwise (hence with probability 3/4), his error probability
about the required bit is 1/3. Altogether, the expected error probability is at least

3
4 · 3

4 · 1
3 = 3

16

(hence slightly smaller than when choosing an unbiased function).
According to Lemma 8, we can assume that B̃ obtains the bit over a binary and

symmetric erasure channel with erasure probability 3/8. In this case, the probability that
he learns all the n bits he needs is (5/8)n . (Note that otherwise, he has no information
at all about the corresponding bit.) Since

n ≥ 2

2− log2 3
(k + s + 1) ≥ 2k + s + 1

log2(8/5)
,

the probability that he learns some information about at least one of the values g(r0, r1)

is, by the union bound, at most

22k ·
(

5

8

)n

≤ 2−s

2
.

Using the union bound and Theorem 4 we thus conclude that except with probability
2−s/2 for uniformly distributed independent R0, R1, ∀c ∈ F2, ∀B̃, ∃C̃ ∈ RV(F2) s.t.

I(R¬C̃ ; [Ā, B̃]
∗
B(R0, R1)(C) | RC̃ ,C = c) = 0.

Finally, since these two strings R0, R1 are used as one-time pads for W0,W1 the same
property transfers to these as well:

I(W¬C̃ ; [Ā, B̃]
∗
B(W0,W1)(C) | WC̃ ,C = c) = 0.

8. Universal OT and Fano’s Lemma

The most general (i.e., weakest) primitive in the described context appears to be the so-
called universal OT proposed in [4]. Here,B is allowed to choose any type of information,
in particular probabilistic information, about the bits sent by A, not exceeding a certain
bound on Shannon entropy. Obviously, this primitive is much more general than GOT.
For instance, B can choose here to receive slightly noisy versions of both bits b0 and b1

(with some arbitrarily small error probability ε).

234 G. Brassard, C. Crépeau, and S. Wolf

Definition 4. Let α > 0. A universal oblivious transfer with parameter α (α-UOT
for short) is a cryptographic primitive involving two parties A (called the sender) and
B (the receiver). The sender A’s input is a pair of bits (b0, b1). The receiver B on
the other hand inputs an arbitrary discrete memoryless channel � with input alphabet
{(0, 0), (0, 1), (1, 0), (1, 1)} that must satisfy

H((B0, B1) | �(B0, B1)) ≥ α,
where �(B0, B1) is the random variable representing the channel’s output when its
input is the pair (B0, B1) of uniformly distributed independent bits. The receiver obtains
�(B0, B1), but no additional information about (B0, B1). Finally,A learns nothing about
B’s choice of the channel �.

It was stated as an open problem in [4] whether this primitive is as strong as string OT,
i.e., whether it is also possible to reduce (21)-OTk efficiently to general UOT. We assume
that α-UOT is given as a black-box where the only thing the parties can do is to provide
legitimate inputs at their choosing and get the corresponding outputs. Theorem 9 shows
that the answer to this question is yes, and that the number of required realizations of
α-UOT (for any fixed α > 0) is of order O(k + s).

Theorem 9. Protocol 3.1 reduces (21)-OTk
s to n realizations of α-UOT for every

n ≥ (k + s + 1) · 4 ln 2

pe
, (7)

where pe is the unique solution in (0, 1
2] to the equation

h(pe)+ pe log2 3 = α,

and where h(·) is the binary entropy function.

The crucial point in the proof of Theorem 9 is to apply Fano’s inequality which gives
a lower bound on the error probability of guessing the outcome of a random variable,
given its (conditional) entropy, and to apply Lemma 8 to the resulting situation.

Fano’s Lemma (see [12]). Let X and Y be two random variables, and let pe be the
error probability when guessing X with any strategy, given the outcome of Y . Then

H(X | Y) ≤ h(pe)+ pe · log2(|X | − 1)

(where X is the range of X).

Proof of Theorem 9. Let n be the length of the strings x0 and x1 in Protocol 3.2.
According to Fano’s inequality, the expected error probability, given �i (xi

0, xi
1), about

the pair of bits (xi
0, xi

1) is at least pe, where pe stands for the unique solution in (0, 1
2] to

the equation h(pe)+ pe · log2 3 = α. This means, by the union bound and since two of
the bits determine the third one, that for at least two of the bits xi

0, xi
1, xi

⊕ (:= xi
0 ⊕ xi

1),
the expected error probability is at least pe/2.

Oblivious Transfers and Privacy Amplification 235

From this we can conclude by Lemma 8 that in at least one of the strings x0 and x1

(say x0) there are at least n/2 bits xi
0 about which B̃ has no information with probability

at least pe. Let h be a fixed non-constant linear function mappingF k
2 toF2. Then B̃ does

not get any information about the bit h(r0) with probability at least 1 − (1 − pe/2)n/2.
By the union bound, he does not learn any of the bits h(r0) with probability at least

1− 2k(1− pe/2)
n/2.

From condition (7) we conclude that this probability is at least 1− 2−s/2.
Let now g(·, ·) be a linear function mapping [F r

2]2 to F2 depending non-trivially on
both inputs. We consider the probability that B̃ gets some information about the bit
g(r0, r1). For every i = 1, . . . , n, the bit g(r0, r1) can be written as

a0xi
0 ⊕ a1xi

1 ⊕ Li (x
1
0 , . . . , xi−1

0 , xi+1
0 , . . . , xn

0 , x1
1 , . . . , xi−1

1 , xi+1
1 , . . . , xn

1),

where a0, a1 ∈ F2 are independent and random (given that g depends non-trivially on
both inputs and that M0 and M1 are independent and random among rank k matrices),
and where Li is a linear function mapping to a bit.

We conclude that with probability at least 1− (1/4+ 3/4 · 1/3) = 1/2, B̃’s expected
error probability about the bit a0xi

0 ⊕ a1xi
1 he needs is at least pe/2, hence his overall

expected error probability is at least (pe/2)/2 = pe/4. As Lemma 8 shows, the worst
case (for A) is when B̃ has full information about the required bit with conditional
probability 1− 2(pe/4) = 1− pe/2, and no information otherwise. Thus B̃ will in this
case have no information at all about g(r0, r1) with probability

1− (1− pe/2)
n.

Hence the probability Prob[S] of the event S that there exists a non-trivial bilinear
function g such that B̃ has some information about g(r0, r1) is, by the union bound,
bounded by

Prob[S] < 22k(1− pe/2)
n < 2−s/2

(we have used condition (7) here). Altogether, we can conclude by the union bound and
by Theorem 4 that with probability at least 1−2−s , for uniformly distributed independent
R0, R1, ∀c ∈ F2, ∀B̃, ∃C̃ ∈ RV(F2) s.t.

I(R¬C̃ ; [Ā, B̃]
∗
B(R0, R1)(C) | RC̃ ,C = c) = 0.

Finally, since these two strings R0, R1 are used as one-time pads for W0,W1 the same
property transfers to these as well:

I(W¬C̃ ; [Ā, B̃]
∗
B(W0,W1)(C) | WC̃ ,C = c) = 0.

9. Concluding Remarks

We have studied the problem of reducing string OT to bit OT and weaker primitives. The
key technique we used is privacy amplification, which was shown useful earlier in the
context of information-theoretic key agreement, in particular quantum key agreement.

236 G. Brassard, C. Crépeau, and S. Wolf

We have shown that privacy amplification not only allows for a reduction of string OT
to bit OT in a more efficient way than previously described approaches, but that it has the
additional advantage that string OT can be reduced to apparently much weaker primitives
such as generalized OT or universal OT. In conclusion, the privacy amplification method
is better than previous methods in any situation as long as one is willing to accept an
exponentially small probability of failure.

To emphasize the similarity of the protocol used in this paper to earlier proposals,
consider the following variation on the combination of Protocols 3.1 and 3.2 (we leave
it as an exercise to the reader to verify that this protocol is equivalent):

Protocol 9.1. ((21)-OTk(w0, w1)(c))

1. A picks two random k × n rank k matrices M0 and M1 over F2 and
two random n-bit strings x0 and x1 such that M0x0 = w0 and M1x1

= w1.
2. DOn

i=1 A transfers t i ← (21)-OT(xi
0, xi

1)(c) to B.
3. A announces M0,M1 to B.
4. B recovers wc ← Mct .

Notice that this protocol is identical to the so-called Monte Carlo Zigzag method
from [7] except for the fact that B only learns M0,M1 after the (21)-OTs have taken
place, whereas in the Zigzag method B learns M0,M1 before the (21)-OTs take place.
It is known however that choosing a single M0 = M1 in the Zigzag method does not
change the asymptotic probability that the linear code, with generating matrix M0, (self-)
intersects.

Finally, although it is tempting to adopt generalizations of this apparently simpler
protocol, we believe that generalizing our main Protocols 3.1 and 3.2 is easier because
in the case of a general hash function h finding x0 and x1 such that h(x0) = w0 and
h(x1) = w1 may be much more time consuming than the forward calculations involved
in Protocol 3.2.

Acknowledgments

We thank Christian Cachin, Ueli Maurer, Dominic Mayers, and Louis Salvail for their
help, comments, suggestions, and support. We are also grateful to two anonymous ref-
erees for many helpful remarks and suggestions.

References

[1] D. Beaver, Foundations of secure interactive computing, Advances in Cryptology – CRYPTO ’91 Pro-
ceedings, Springer-Verlag, Berlin, 1992, pp. 377–391.

[2] C. H. Bennett, G. Brassard, C. Crépeau, and U. M. Maurer, Generalized privacy amplification, IEEE
Transactions on Information Theory, Vol. 41, no. 6, 1995, pp. 1915–1923.

[3] C. H. Bennett, G. Brassard, and J.-M. Robert, Privacy amplification by public discussion, SIAM Journal
on Computing, Vol. 17, 1988, pp. 210–229.

Oblivious Transfers and Privacy Amplification 237

[4] G. Brassard and C. Crépeau, Oblivious transfers and privacy amplification, Advances in Cryptography –
EUROCRYPT’ 97, LNCS, Vol. 1233, Springer-Verlag, Berlin, 1997. pp. 334–345.

[5] G. Brassard, C. Crépeau, and J.-M. Robert, Information theoretic reductions among disclosure problems,
Proceedings of 27th Annual IEEE Symposium on Foundations of Computer Science, 1986, pp. 168–173.

[6] G. Brassard, C. Crépeau, and J.-M. Robert, All-or-nothing disclosure of secrets, Advances in Cryptology:
Proceedings of Crypto ’86, Springer-Verlag, Berlin, 1987, pp. 234–238.

[7] G. Brassard, C. Crépeau, and M. Sántha, Oblivious transfers and intersecting codes, IEEE Transactions
on Information Theory, Vol. 42, no. 6, November 1996, pp. 1769–1780.

[8] C. Cachin, On the foundations of oblivious transfer, Advances in Cryptography – EUROCRYPT’ 98,
LNCS, Vol. 1403, Springer-Verlag, Berlin, 1998, pp. 361–374.

[9] J. L. Carter and M. N. Wegman, New hash functions and their use in authentication and set equality,
Journal of Computer and System Sciences, Vol. 22, 1981, pp. 265–279.

[10] G. D. Cohen and A. Lempel, Linear intersecting codes, Discrete Mathematics, Vol. 56, 1985, pp. 35–43.
[11] G. D. Cohen and G. Zémor, Intersecting codes and independent families, IEEE Transactions on Infor-

mation Theory, Vol. 40, no. 6, November 1994, pp. 1872–1881.
[12] T. M. Cover and J. A. Thomas, Elements of Information Theory, Series in Telecommunications, Wiley,

New York, 1992.
[13] C. Crépeau, Verifiable disclosure of secrets and application, Advances in Cryptology: Proceedings of

Eurocrypt ’89, Springer-Verlag, Berlin, 1990, pp. 181–191.
[14] C. Crépeau, Correct and private reductions among oblivious transfers, Ph.D. thesis, MIT, 1990.
[15] C. Crépeau, Quantum oblivious transfer, Journal of Modern Optics, Vol. 41, no. 12, December 1994,

pp. 2455–2466.
[16] C. Crépeau, J. van de Graaf, and A. Tapp, Committed oblivious transfer and private multi-party computa-

tions, Advances in Cryptology: Proceedings of Crypto ’95, Springer-Verlag, Berlin, 1995, pp. 110–123.
[17] C. Crépeau and M. Sántha, On the reversibility of oblivious transfer, Advances in Cryptology: Proceedings

of Eurocrypt ’91, Springer-Verlag, Berlin, 1991, pp. 106–113.
[18] C. Crépeau and M. Sántha, Efficient reductions among oblivious transfer protocols based on new

self-intersecting codes, in Sequences II, Methods in Communications, Security and Computer Science,
Springer-Verlag, Berlin, 1991, pp. 360–368.

[19] S. Even, O. Goldreich, and A. Lempel, A randomized protocol for signing contracts, Proceedings of
Crypto 82, Plenum, New York, 1983, pp. 205–210.

[20] S. Goldwasser, S. Micali, and C. Rackoff, The knowledge complexity of interactive proof-systems, SIAM
Journal on Computing, Vol. 18, 1989, pp. 186–208.

[21] J. Kilian, Founding cryptography on oblivious transfer, Proceedings of 20th Annual ACM Symposium on
Theory of Computing, 1988, pp. 20–31.

[22] U. Maurer, Information-theoretic cryptography, Advances in Cryptography – CRYPTO’ 99, LNCS,
Vol. 1666, Springer-Verlag, Berlin, 1999, pp. 47–64.

[23] S. Micali, and P. Rogaway, Secure computation, Advances in Cryptology – CRYPTO ’91 Proceedings,
Springer-Verlag, Berlin, 1991, pp. 392–404.

[24] M. Naor, and B. Pinkas, Efficient oblivious transfer protocols, Proceedings of the Twelfth Annual Sym-
posium on Discrete Algorithms, January 7–9, 2001, Washington, DC, pp. 448–457.

[25] M. O. Rabin, How to exchange secrets by oblivious transfer, Technical Memo TR-81, Aiken Computation
Laboratory, Harvard University, 1981.

[26] D. R. Stinson, Some results on nonlinear zigzag functions, Journal of Combinatorial Mathematics and
Combinatorial Computing, Vol. 29, 1999, pp. 127–138.

[27] S. Wiesner, Conjugate coding, Sigact News, Vol. 15, no. 1, 1983, pp. 78–88. Original manuscript written
circa 1970.

[28] S. Wolf, Reducing string oblivious transfer to universal oblivious transfer, Proceedings of ISIT 2000,
2000.

