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Extracorporeal CO2 removal (ECCO2R) was introduced 
in 1977 to control arterial CO2 tension and reduce ven-
tilation [1], thus allowing lung rest in patients with acute 
respiratory failure (ARF) [2].

Its feasibility has been tested in a clinical trial [3], but 
clear evidence of benefit is lacking. Furthermore, a recent 
randomized study comparing standard lung protec-
tive ventilation versus an ultra-protective strategy with 
ECCO2R, in moderate-severe ARF, showed no difference 
in 90-day survival, but greater adverse events and fewer 
ventilator-free days in the ECCO2R arm [4]. Unfortu-
nately, the relative contribution of ECCO2R on total CO2 
clearance and its effects on the natural lung are unex-
plored. Indeed, the CO2 excretion from artificial and nat-
ural lungs is generally not measured, and the ventilatory 
strategy does not account for the physiological changes 
due to ECCO2R. In this brief report, we aim to describe 
the physiological basis of CO2 removal, extensively stud-
ied in healthy animal models. To which extent these 
concepts might be directly translatable to pathological 
conditions will require further clinical studies. However, 
a reappraisal of the physiological basis of ECCO2R–natu-
ral lung interactions may clarify the rationale behind its 
clinical application.

Physical–chemical characteristics of ECCO2R
The key concept underlying low-flow ECCO2R is that 
due to the high CO2 content in the venous blood (45–
50  ml/100  ml at venous PCO2 = 45  mmHg), the meta-
bolically produced CO2 (~ 150–200  ml/min) may be 

theoretically removed from 400 to 500 ml of blood. The 
amount of CO2 removed—for a given sweep gas flow—
increases linearly with the artificial lung surface area and 
the PCO2 of the pre-membrane blood; and logarithmi-
cally with the blood flow [5]. High ventilation/perfusion 
ratio of the artificial lung is required for an adequate 
CO2 removal with a post-membrane PCO2 as low as 
5–10 mmHg [6].

Artificial and natural lung interactions
Physiology
The ECCO2R was first studied in healthy lambs [1]. The 
key-finding was that the sum of VCO2 of the natural and 
artificial lungs remained unchanged when ECCO2R was 
increased. Consequently, the spontaneously breathing 
animals maintained a normal arterial PCO2. When 100% 
of the metabolic VCO2 was removed by the membrane 
lung, it was possible to maintain the animals “apneic” 
with normal PCO2, while the oxygenation was main-
tained through an intratracheal 100% oxygen inflow 
matching the oxygen consumption (“apneic oxygena-
tion”) [7] (Fig. 1). A similar linear decrease in minute ven-
tilation proportional to the ECCO2-R was described in 
spontaneously breathing patients with ARF [8].

Gas exchange
1.	 While the amount of oxygen exchanged through the 

natural lung is unmodified by ECCO2R, as the oxy-
gen added extracorporeally is negligible, the VCO2 
eliminated by the natural lung decreased in pro-
portion to the VCO2 eliminated through ECCO2R. 
Therefore, the respiratory quotient (RQ = VCO2/
VO2) decreases. The change in RQ modifies the 
alveolar PO2 which is function of both FiO2 and the 
PCO2/RQ ratio, according to the alveolar gas equa-
tion. Therefore, during ECCO2R, despite a constant 
FiO2, the alveolar and arterial PO2 may decrease 
due to a decrease in RQ [7, 9]). The cardiovascular 
effects of ECCO2R will depend on the net effect on 

*Correspondence:  gattinoniluciano@gmail.com 
1 Department of Anesthesiology, Medical University of Göttingen, 
University Medical Center Göttingen, Robert Koch Straße 40, 
37075 Göttingen, Germany
Full author information is available at the end of the article

http://orcid.org/0000-0001-5380-2494
http://crossmark.crossref.org/dialog/?doi=10.1007/s00134-022-06827-6&domain=pdf


1323

the pulmonary vascular resistance resulting from the 
reduction in alveolar and arterial PO2, and hypercap-
nia (increase in pulmonary arterial pressure); and 
the PO2 and PCO2 in the mixed venous blood which 
results from the extracorporeal support.

2.	 During apnea, the alveolar gas composition is 
affected by the nitrogen concentration in the artificial 
lung, to which the alveolar nitrogen equilibrates. If 
the nitrogen in the artificial is lower than the natural 
lung, i.e., if the fraction of oxygen delivered through 
the membrane lung is greater than FiO2, the natural 
lung will be progressively depleted of nitrogen [7]. 
This may favor reabsorption atelectasis in the regions 
of the natural lung with low ventilation/perfusion 
ratio, increasing the pulmonary units instability [10]. 
This phenomenon was proved experimentally in con-
ditions of apnea but may theoretically occur region-
ally during clinical conditions.

Lung mechanics
As tidal volume is reduced, the mean transpulmonary 
pressure decreases, and the lung tends to collapse. Exper-
imental data on healthy animals show that the lung vol-
ume is halved after 24 h of apnea at 5 cmH2O of positive 
end-expiratory pressure (PEEP) [7]. To prevent this phe-
nomenon in healthy lungs, two alternatives are possible:

1.	 Raising the mean airway pressure. It must be noted, 
however, that a PEEP of ~ 20–25 cmH2O may be 
required to preserve lung volumes in lambs during 
apnea [11], as well as to keep the lungs fully open 
in patients with acute respiratory distress syndrome 
(ARDS) [12]. These pressures are generally associated 
to important hemodynamic consequences, worse 
fluid balance and kidney function.

2.	 Adding an adequate short inflation “sigh”. In healthy 
animals, it is sufficient to add one sigh of 10–12 ml/
kg every 90  s to preserve lung volumes [13]. The 
role of sigh, in this context, is not to increase gas 
exchange, but only to preserve lung-volume [14, 15].

Discrepancies between physiology and actual 
current ECCO2R applications
Gas exchange
The effects of the decrease in respiratory quotient (RQ) 
during ECCO2R is usually ignored in clinical practice. 
However, this phenomenon may be relevant when FiO2 
is reduced, as during weaning. In this phase, the low RQ 
may cause hypoxemia, which may be incorrectly inter-
preted as caused by derecruitment.

The reabsorption atelectasis resulting from the lung 
de-nitrogenization when using 100% oxygen through the 
artificial lung may   occur in the ARDS lung due higher 

Fig. 1  Physiology of ECCO2R: The amount of CO2 removed (VCO2) by the membrane lung is proportional to the gas-flow, the logarithm of extra-
corporeal blood-flow; the pre-membrane PCO2 and the membrane lung surface. The sum of the VCO2 of the membrane and the natural lungs, at 
equilibrium, equals the metabolic VCO2. A reduction in the VCO2 of the natural lung decreases the respiratory quotient (RQ) and, therefore, alveolar 
PO2 (PAO2). The alveolar nitrogen may decrease if the membrane lung is ventilated with fractions of oxygen higher than those delivered to the natu-
ral lung. The decrease of VCO2 of the natural lung allows the decrease in tidal volume and mean airways pressure, which can promote lung collapse
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prevalence of low ventilation/perfusion regions, the 
higher weight of the lung, and the loss of diaphragmatic 
tone which favors the formation of compression atelec-
tasis. This problem may be prevented by ventilating the 
artificial and natural lungs with the same oxygen fraction.

Lung mechanics
During “ultraprotective” lung strategy and ECCO2R, 
PEEP is usually increased, and plateau pressure 
decreased, while the respiratory rate is maintained con-
stant. Actually, in the intervention group of the REST 
trial, the mechanical ventilation was very similar to the 
controls [4]. The potential advantages of ECCO2R on 
mechanical ventilation were, therefore, not exploited, 
leading only to an increase in the complications associ-
ated to ECCO2R and anticoagulation. During ultraprotec-
tive ventilation strategy, three conditions may promote 
atelectasis: (a) lower tidal volume and plateau pressure; 
(b) lung de-nitrogenization when using 100% oxygen 
through the artificial lung; c) PEEP levels insufficient to 
keep the lung open (≥ 20–25 cmH2O). A combination of 
low frequency plus the addition of sighs and equal FiO2 
in the natural and artificial lungs—as suggested by physi-
ology—could enhance lung protection and prevent pro-
gressive lung collapse.

Take‑home message
Understanding the physiology of ECCO2R and the con-
sequent modification in the natural lung is necessary 
to optimize the ventilatory management and design 
stronger future clinical trials.
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