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Abstract Successful antibiotic
therapy in the critically ill requires
sufficient drug concentrations at the
site of infection that kill or suppress
bacterial growth. The relationship
between antibiotic exposure and
achieving the above effects is referred
to as pharmacokinetics/pharmacody-
namics (PK/PD). The associated
indices therefore provide logical tar-
gets for optimal antibiotic therapy.
While dosing regimens to achieve
such targets have largely been estab-
lished from studies in animals and
non-critically ill patients, they are
often poorly validated in the ICU.
Endothelial dysfunction, capillary
leak, altered major organ blood flow,
deranged plasma protein

concentrations, extremes of body
habitus, the application of extracor-
poreal support modalities, and a
higher prevalence of intermediate
susceptibility, independently, and in
combination, significantly confound
successful antibiotic treatment in this
setting. As such, the prescription of
standard doses are likely to result in
sub-therapeutic concentrations, which
in turn may promote treatment failure
or the selection of resistant patho-
gens. This review article considers
these issues in detail, summarizing
the key changes in antibiotic PK/PD
in the critically ill, and suggesting
alternative dosing strategies that may
improve antibiotic therapy in these
challenging patients.
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Introduction

The management of infection in the intensive care unit
(ICU) represents an ongoing challenge for critical care
clinicians. The critically ill represent a unique population,
either presenting with infection complicated by systemic
inflammation (sepsis) or being predisposed to such com-
plications by virtue of the underlying disease process.
Multitrauma, hematological malignancy, and acute kid-
ney injury (AKI) are relevant examples, where organ
function is already significantly disturbed, while sub-
sequent infection is common.

Successful therapy relies on early recognition of
infection and the timely application of antibiotics against
the contributing pathogen. Modest evidence supports this
as an effective intervention that will improve outcomes
[1]. However, mortality rates in this setting remain high,
while antibiotic resistance is becoming more prevalent,
suggesting further improvements are urgently needed.
Optimization of antibiotic dosing, such that predefined
pharmacokinetic/pharmacodynamic (PK/PD) targets for
maximal bacterial killing are achieved, has been pro-
posed as one such approach [2]. This premise is based
on the growing body of literature demonstrating grossly
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altered antibiotic pharmacokinetics (PK) in the critically
ill [3].

Utilizing contemporary data, the aims of this review
are therefore to (1) illustrate how critically ill patients
differ from the non-critically ill in terms of their antibiotic
dosing requirements, (2) examine the role of alternative
dosing strategies in critical illness, and (3) provide clini-
cians with practical prescribing advice, which attempts to
improve antibiotic exposure and patient outcomes in this
setting.

Antibiotic PK/PD in critical illness: volume
of distribution, clearance, protein binding,
and microbial susceptibility

Critical illness is characterized by marked homeostatic
disturbance, altered end-organ function, variable pre-
existing comorbidity, and anthropometric irregularity.
Such changes will significantly distort the normal anti-
biotic PK profile, resulting in drug exposure that is
markedly different from the ‘healthy volunteer.’ Com-
plicating this is the increasing prevalence of microbial
isolates with decreased susceptibility, mandating the
application of higher antibiotic concentrations for suc-
cessful bacterial killing. Figure 1 graphically summarizes
some of the key issues that frequently complicate effec-
tive antibiotic administration in this setting.

Volume of distribution (Vd)

Key physicochemical properties including molecular
weight, degree of ionization, protein binding, and lipid
solubility will greatly influence antibiotic distribution.
Lipophilic agents (such as fluoroquinolones) typically
have a large Vd with greater tissue and intracellular
penetration. Alternatively, hydrophilic antibiotics will
primarily distribute into the extracellular space. As
such, an increased Vd has been demonstrated with
aminoglycosides [4], beta-lactams [5], daptomycin [6],
and glycopeptides [7] in the critically ill. This likely
reflects significant capillary leak coupled with aggres-
sive fluid loading [8], which expands the interstitial
space. Higher acute physiology and chronic health
evaluation (APACHE) II scores have also been corre-
lated with a larger Vd for aminoglycosides [9] and
vancomycin [10]. These data suggest an important
interaction between illness severity and antibiotic PK,
which is infrequently considered in most contemporary
dosing regimens.

Obesity represents an increasing challenge for accu-
rate drug dosing in the critically ill. Of note, recent data
suggested an association between obesity and antibiotic

treatment failure in a large community-based cohort study
[11]. In addition, separate reports have documented sub-
therapeutic concentrations of linezolid [12] and cefoxitin
[13] in this setting, potentially contributing to adverse
clinical outcomes. As current data are relatively sparse,
few absolute recommendations can be made, although
useful guidelines are provided elsewhere [14].

Recent data concerning doripenem in critically ill
patients C100 kg with nosocomial pneumonia indicate
that extended infusions (over 4-h) provide improved tar-
get attainment with susceptible bacteria [15]. Similar data
have been reported with piperacillin/tazobactam in obese
patients [16], where higher doses and extended infusions
were required to achieve adequate drug exposure. As

Fig. 1 Altered physiology in the critically ill and the impact on
antibiotic PK/PD. ARC augmented renal clearance, AKI acute
kidney injury, CL clearance, IV intravenous, MIC minimum
inhibitory concentration, Vd volume of distribution
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such, at extremes of body habitus, higher empirical beta-
lactam dosing should be regularly considered.

Practical Tip: Aminoglycoside dosing should be
calculated on the basis of adjusted body weight
(ABW), daptomycin, and beta-lactam adjustments
should utilize lean body weight (LBW) and vanco-
mycin dosing should be based on total body weight
(TBW).

Clearance (CL)

Many commonly prescribed antibiotics are primarily
cleared from the body by renal elimination, including
beta-lactams [17], aminoglycosides [18], and vancomycin
[19].

Acute kidney injury and continuous renal replacement
therapy

The application of extracorporeal support for acute kidney
injury (AKI), in the form of intermittent or continuous
renal replacement therapy (CRRT), significantly con-
founds antibiotic dosing. In this circumstance, factors
such as drug molecular weight, protein binding and
hydrophilicity, mode of renal replacement therapy, filter
porosity, blood flow rate, and total effluent rate will all
influence extracorporeal drug handling [20]. Varying
clinical characteristics, timing of CRRT, filter lifespan,
and circuit changes make accurate PK/PD modeling
problematic [21]. As such, antibiotic dosing is generally
empiric, producing significant intra- and inter-patient
variability in drug concentrations, which are often sub-
optimal [22]. How this impacts clinical outcomes remains
uncertain, although AKI frequently complicates sepsis
[23] and remains an independent predictor of poor out-
comes [24].

As an illustration, studies investigating piperacillin
dosing in the setting of CRRT are summarized in Table 1.
These demonstrate inconsistent recommendations, pri-
marily related to the heterogeneity in CRRT prescription
and clinical characteristics. Emerging data suggest that
the intensity of CRRT [25] and the degree of residual
renal function [26] are crucial factors in accurately
determining antibiotic requirements. A loading dose of
35 mg/kg vancomycin followed by 14 mg/kg/day con-
tinuous infusion has recently been recommended during
CRRT [25], although very high concentrations were noted
initially, suggesting that 20 mg/kg may be a more
appropriate loading dose [21]. Other recommendations
include cefepime 2 g 12 hourly [27], daptomycin 8 mg/
kg 48 hourly [28, 29], and use of non-AKI doses with
both polymyxin B [30] and colistin [31]. In contrast,

higher doses (400 mg 12 hourly) of fluconazole are nee-
ded because of the absence of renal tubular reabsorption
[32].

Practical Tip: Antibiotic pharmacokinetics during
CRRT is highly variable, and dosing regimens rel-
evant to institutional practice should be established
locally. Current data suggests that beta-lactam
dosing should be similar to that employed in patients
without renal failure in the first 48hrs of treatment
[34].

Augmented renal clearance

Augmented renal clearance (ARC) refers to the enhanced
renal elimination of circulating solute (such as waste
products and drugs) [41]. This is based in part on PK
studies demonstrating elevated renal clearances of beta-
lactams [5, 17, 42], aminoglycosides [18], and glyco-
peptides [43], in varying subsets of critically ill patients.

A clinically useful measure of this phenomenon is a
timed urinary creatinine clearance (CLCR). Use of this
surrogate is reinforced by its significance as a PK
covariate for renally eliminated agents [41] and the
observed association between elevated measures
(C130 ml/min/1.73 m2) and suboptimal antibiotic con-
centrations [44–46]. Numerous ‘at-risk’ populations have
been reported, including multitrauma [47], traumatic
brain injury [48], meningitis [49], postoperative patients
[50], burn injury [51], ventilator-associated pneumonia
[52], and pregnancy [53]. Overall, the prevalence of ARC
varies considerably (30–85 % of study participants),
although this is heavily influenced by case mix and
definitions.

Younger age and lower illness severity scores have
been repeatedly identified in patients manifesting ARC
[47, 54–56]. As such, the interaction between physio-
logical reserve (most marked in younger patients) and
systemic inflammation appears to be a key driver. This
was further substantiated in a recent report by Shimamoto
et al. [57] in which an increasing number of SIRS criteria
were strongly associated with higher drug clearance and
lower plasma concentrations in non-ventilated critically
ill patients receiving standard doses of vancomycin. The
relevance of this finding to future dosing schedules is
uncertain.

While outcome data are limited, a recent prospective,
single-center observational study has demonstrated an
association between ARC and therapeutic failure in crit-
ically ill patients receiving anti-infective therapy [56].
The implications for future clinical study of new or
emerging antibiotics are therefore significant [2]. As an
illustration, interim data analyses revealed greater

2072



mortality and lower clinical cure in patients with venti-
lator-associated pneumonia treated with a fixed course of
doripenem compared with imipenem/cilastatin [58].
These findings were most marked in the subgroup with an
estimated CLCR C 150 ml/min. Of note, separate PK/PD
modeling has suggested that significantly higher daily
doripenem doses (up to 2 g 8 hourly) might have been
required for adequate drug exposure in these patients [15].

The role of mathematical estimates in identifying
ARC remains controversial. Plasma creatinine-based
equations, such as the Cockcroft-Gault [59], modification
of diet in renal disease (MDRD) [60] and chronic kidney
disease epidemiology collaboration (CKD-EPI) [61],
were primarily designed for use in an ambulatory or ward-
based setting. They fail to consider the unique setting of
critical illness, such that comparisons with measured
CLCR values have revealed limited accuracy [62–64],
particularly in patients manifesting ARC [65, 66]. As
such, a urinary CLCR appears to be the most pragmatic,
repeatable measure of renal function available to accu-
rately guide dose selection [67].

Practical Tip: A measured CLCR C 130ml/min/
1.73m2 has been associated with sub-therapeutic
beta-lactam concentrations in critically ill patients
receiving standard doses [46], and should prompt
the clinician to consider alternative dosing. Eight-

hour urinary collections appear to provide the best
balance between feasibility and accuracy [68].

Protein binding

The free (unbound) fraction of drug (fu) is that responsible
for pharmacological efficacy and toxicity, in addition to
being the fraction readily available for clearance via
elimination pathways [69]. Measurement of the free drug
concentration will therefore provide more useful PK/PD
data, although this is not widely available. Using estab-
lished PK principles, an increase in fu will result in a
larger Vd, as has been noted with beta-lactams, amino-
glycosides and glycopeptides [70]. Similar changes are
appreciable for drug CL, where increasing fu prompts
more rapid renal drug elimination [43].

Hypoalbuminaemia represents a common finding in
the critically ill [71], with the PK of ceftriaxone [5],
flucloxacillin [72], teicoplanin [43], daptomycin [6], and
ertapenem [73] all markedly altered in this setting. While
specific correction rules for dosing are currently lacking,
albumin concentrations were often \25 g/l in these
studies, providing a useful starting point to consider
higher empirical dosing. Additional PK/PD analyses are
required, although it is likely that higher total daily doses,
more frequent administration, or use of extended or

Table 1 Clinical studies investigating piperacillin pharmacokinetics during continuous renal replacement therapy

Reference Mode(s) Settings Dose employed Recommendation

Asin-Prieto et al. [26] CVVHF BFR, 140–230 ml/min 4 g 4–8 hourly Dosing dependent on residual
renal function and target MICUFR, 1–2.15 l/h

Bauer et al. [33] CVVHD DR, 25 ml/kg/h 2–3 g
6–12 hourly

C9 g/day

CVVHDF TER, 35 ml/kg/h (1:1
UFR ? DR)

Seyler et al. [34] CVVHDF or
CVVHF

BFR, 150 ± 24 ml/min 4 g 6 hourly At least 4 g 6 hourly for first 48 h of
therapyUFR, 22 ± 12 ml/kg/h

DR, 23 ± 9 ml/kg/h
Joos et al. [35] CVVHF BFR, 100 ml/min 1–4 g

4–12 hourlyUFR, 13.2 ± 4.6 ml/min
van der Werf et al.

[36]
CVVHF UFR, 25.9 ± 9.8 ml/min 4 g 8 hourly Dose piperacillin alone intermittently

Capellier et al. [37] CVVHF BFR, 150 ml/min 4 g 8 hourly 4 g 12 hourly
UFR, 646 ± 49 ml/h

Valtonen et al. [38] CVVHF BFR, 100 ml/min 4 g 4 g 8 hourly
UFR, 0.8 l/h

CVVHDF BFR, 100 ml/min
UFR, 0.8 l/h
DR, 2 l/h

Mueller et al. [39] CVVHD BFR, 150 ml/min 2–4 g
8–24 hourly

4 g 12 hourly or 2 g 8 hourly
DR, 1.5 l/h
UFR, 80–200 ml/h

Arzuaga et al. [40] CVVHF BFR, 150–220 ml/min 4 g 6–8 hourly Dosing dependent on residual renal
functionUFR, 27.1 ± 7.8 ml/min

BFR blood flow rate, CVVHD continuous veno-venous haemodialysis, CVVHDF continuous veno-venous haemodiafiltration, CVVHF
continuous veno-venous haemofiltration, DR dialysis rate, MIC minimum inhibitory concentration, TER total effluent rate, UFR ultra-
filtration rate
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continuous infusions may be required to achieve optimal
drug exposure.

Practical Tip: Hypoalbuminaemia (Alb \ 25 g/l) is
only likely to influence antibiotic PK when the agent
is highly protein bound ([90%), and predominantly
renally eliminated [69]. Examples include flucloxa-
cillin, ertapenem, ceftriaxone and teicoplanin

Microbial susceptibility

Changes in bacterial susceptibility represents a growing
concern for medical practice globally. Knowledge of the
likely MIC of the infecting pathogen is crucial to accu-
rately guide dose selection, as this denotes the
denominator in the PK/PD relationship. Not surprisingly,
dosing simulations suggest that with higher MIC values,
conventional strategies are unlikely to achieve the
required antibiotic exposure [15]. While local institutional
data are preferred, where these are not available, a ‘worst-
case scenario’ approach to dosing should be employed. In
this respect, less susceptible pathogens are frequently
isolated in the critical care unit [74], while wide varia-
tions in susceptibility patterns have been observed
internationally [75].

The role of alternative dosing strategies in the setting
of less susceptible bacteria remains untested in a pro-
spective fashion. In a retrospective cohort analysis,
improved outcomes with P. aeruginosa infection were
observed with the use of extended infusions of beta-lac-
tams [76]. Higher colistin doses have also been
demonstrated to independently predict microbiological
success in patients with multidrug-resistant gram-negative
infection [77]. Of concern, current ciprofloxacin dosing
regimes may promote the development of bacterial
resistance, particularly with P. aeruginosa and A. bau-
mannii infection [78].

Practical Tip: The European Committee on Anti-
microbial Susceptibility and Testing (available at
http://www.eucast.org) provides useful epidemiolo-
gical susceptibility data for dose optimization, in the
absence of local laboratory antibiograms.

These considerations make it clear that a ‘one dose fits
all’ approach to antibiotic therapy, although logistically
attractive, is grossly flawed in the ICU. This stems from
drug development programs, in which dosing schedules
(largely established from in vivo animal models) are
assessed for clinical tolerability and efficacy in non-crit-
ically ill cohorts. Dosing regimens are then simply
extrapolated into varying subpopulations, which in the
critically ill may result in suboptimal outcomes [79]. Over
the last decade, a number of alternative dosing strategies
have been proposed in order to improve antibiotic expo-
sure in this setting. These are summarized in Table 2.

Future dosing strategies: methods to improve
antibiotic exposure

Much of the data supporting newer approaches to anti-
biotic dosing in critical illness are based on PK/PD end
points, reinforcing the need for ongoing well-designed
large-scale clinical investigation. Dose selection should
always consider the unique PK/PD characteristics of the
chosen agent, the patients’ physiology and underlying
comorbidity, and the likely pathogen. Table 3 provides
examples of some common empirical antibiotic doses
employed in our ICU in patients without AKI. These are
based on existing data or our institutional experience with
therapeutic drug monitoring (TDM) of many different
antibiotics in critical illness [80].

Loading doses

Loading doses (LD) are primarily employed to ensure
therapeutic concentrations are achieved rapidly, pro-
moting fast, efficient bacterial killing. Mathematically,
this is expressed as the product of the desired plasma
concentration and the apparent Vd. After bolus IV
administration, plasma antibiotic concentrations fall
rapidly, primarily as a consequence of drug distribution
(Fig. 2a). As such, in the setting of a larger than
anticipated Vd, standard doses are likely to result in
suboptimal drug exposure.

Table 2 Potential dosing solutions for altered antibiotic PK/PD in
critical illness

PK consideration Dosing solution

Larger Vd Appropriately weight-adjusted loading doses
AKI requiring CRRT Individualized patient dosing based on

physicochemical properties, intensity of
CRRT, and native renal function

TDM
ARC Increased total daily dose

More frequent dosing (shorter dosing
interval)

Continuous/extended infusions
TDM

Altered fu Larger loading doses
Increased frequency of dosing
Continuous/extended infusions
TDM (of unbound concentrations)

Reduced bacterial
susceptibility

Increased total daily dose
Continuous or extended infusions
Application of PK/PD models
TDM (early in the antibiotic course)

AKI acute kidney injury, ARC augmented renal clearance, CRRT
continuous renal replacement therapy, fu unbound (free) drug
fraction, PK/PD pharmacokinetic/pharmacodynamics, PK phar-
macokinetics, TDM therapeutic drug monitoring
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In early studies of aminoglycosides, high Cmax:MIC
ratios were strongly associated with therapeutic success in
a graded fashion [92]. In patients without renal dysfunc-
tion, adequately weight-adjusted doses (7 mg/kg ABW
gentamicin or equivalent) are therefore mandatory to
ensure adequate PK/PD exposure is achieved [93]. Tac-
cone and colleagues [94] recently reinforced the
importance of this strategy, demonstrating that doses
C25 mg/kg amikacin were required to ensure therapeutic
concentrations against P. aeruginosa. This was largely
due to the [60 % increase in Vd when compared to
healthy volunteers.

The importance of employing loading doses in criti-
cally ill patients receiving vancomycin has also recently
been noted [95]. Specifically, doses of 30–35 mg/kg
TBW have been recommended to rapidly achieve thera-
peutic concentrations [84]. Convenience doses are

unlikely to be adequate [96], with recent data confirming
the benefit of establishing local dosing protocols [97, 98].
Loading doses are also recommended for teicoplanin
(12 mg/kg 12 hourly for 3 doses), with higher doses
advocated in septic patients [85]. Insufficient beta-lactam
concentrations, in association with a larger Vd, have also
been demonstrated in the critically ill [99], although
arguably more attention has focused on the role of con-
tinuous infusion with these agents.

In a small single-center study, Mohamed and col-
leagues examined the use of 480 mg colistin
methanesulfonate as an LD in ten critically ill patients
infected with multidrug-resistant gram-negative bacteria
[100]. Modeling predictions of bacterial growth (utilizing
a wild-type P. aeruginosa strain) demonstrated that this
approach significantly reduces the time to bacterial
eradication compared to maintenance therapy alone. Of
note, no significant nephrotoxicity was reported [100].
Similar data have emerged with tigecycline, where higher
loading doses have been associated with improved clini-
cal cure in patients with hospital-acquired pneumonia,
without additional safety concerns [90]. Loading doses
have also been recommended with polymixin B therapy
[101].

Practical Tip: Clinicians should consider use of
higher initial doses of aminoglycosides [94], beta-
lactams [99], glycopeptides [84], tigecycline [90]
and colistin [100] in septic, critically ill patients.
Subsequent dosing can then be modified on the basis
of drug eliminating organ function.

Continuous and extended infusions

Maintaining sufficient drug concentrations ([MIC)
throughout the dosing interval represents a logical
approach when prescribing time-dependent antibiotics,
such as beta-lactams (ideally fT[MIC [ 100 % [102]).
Options include more frequent administration, or use of
continuous or extended infusions (Fig. 2c, d). For inter-
mittent administration, the dosing interval will be
determined by drug clearance, which is often heavily
influenced by renal function. Adequate loading doses
should still be employed with continuous infusions in
order to prevent prolonged exposure to sub-therapeutic
concentrations (Fig. 2b). In this respect, numerous small
studies have demonstrated a distinct PK advantage to
continuous infusions [42, 103, 104], although a clear
clinical benefit remains to be fully established.

Practical Tip: Continuous infusions should be
commenced post loading dose at a point no further
than halfway through the usual dosing interval. For
convenience, we recommend starting the infusion at
the conclusion of administration of the loading dose.

Table 3 Intravenous antibiotic doses in critically ill patients
without acute kidney injury

Class of
antibiotic

Initial empirical dose (‘normal’ renal function)

Aminoglycosides Gentamicin 7 mg/kg ABW 24 hourly [4]
Amikacin 30 mg/kg ABW 24 hourly [81]
Dose adjusted by TDM [82]

Beta-lactamsa

[80]
Flucloxacillin 2 g 4 hourly
Amoxycillin 2 g 4–6 hourly
Ceftriaxone 1 g 12 hourly (2 g 12 hourly for

CNS infection)
Cefepime 2 g 8 hourly
Ceftazidime 2 g 6–8 hourly
Imipenem 0.5–1.0 g 6–8 hourly
Piperacillin/tazobactam 4.5 g 4–6 hourly
Ticarcillin/clavulanate 3.1 g 4–6 hourly
Meropenem 1 g 6–8 hourly (2 g 6–8 hourly for

CNS infection [83])
Ertapenem 1 g 12 hourly

Glycopeptides Vancomycin 35 mg/kg TBW loading dose
followed by 30 mg/kg/day continuous
infusion [84]

Dose adjusted by TDM
Teicoplanin 12 mg/kg 12 hourly 9 3 doses,

followed by 6–12 mg/kg 24 hourly [85]
Dose adjusted by TDM

Fluoroquinolones Ciprofloxacin 400 mg 8 hourly [86]
Levofloxacin 750–1,000 mg 24 hourly [87]
Moxifloxacin 400 mg 24 hourly [88]

Miscellaneous Linezolid 600 mg 12 hourly [89]
Daptomycin 8–12 mg/kg 24 hourly
Lincosamides 600–900 mg 8 hourly
Tigecycline 100 mg loading dose, followed by

50 mg 12 hourly (or 200 mg followed by
100 mg 12 hourly when borderline
susceptibility is suspected) [90]

Colistin—dosing according to Garonzik et al.
[91]

ABW adjusted body weight, TBW total body weight, TDM thera-
peutic drug monitoring
a Administering beta-lactams by extended or continuous infusions
should be considered where possible to optimize pharmacokinetics/
pharmacodynamics
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Lodise and colleagues examined the role of extended
infusions of piperacillin-tazobactam in a retrospective
cohort of critically ill patients with P. aeruginosa infec-
tion. Extended infusions were associated with a
significant improvement in 14-day survival in those
patients with higher illness severity [76]. Similar retro-
spective analyses have been performed in patients with
ventilator-associated pneumonia due to gram-negative
bacilli, with continuous infusions of meropenem [105],
ceftazidime [106], and piperacillin-tazobactam [107] all
associated with improved rates of clinical cure, particu-
larly with more difficult to treat organisms. In a small
prospective study, Roberts et al. [108] reported a clinical
advantage to continuous infusion of ceftriaxone when
patients received 4 or more days of therapy.

However, a systematic review and meta-analysis per-
formed in 2009 reported no significant clinical advantage to
continuous infusion of beta-lactams in hospitalized patients
[109]. More recently, Falagas and colleagues repeated this
analysis, focusing on piperacillin/tazobactam and carbe-
penems. Overall, lower mortality was demonstrated with
extended or continuous infusions, although only 3 of 14
included studies were randomized controlled trials [110].
Contrasting findings were recently reported from a single-
center before and after study in which extended infusions of

beta-lactams appeared to offer no advantage over intermit-
tent dosing [111]. Concurrently, a multicenter double-blind
randomized controlled trial of continuous infusion of beta-
lactams reported improved fT[MIC and clinical cure in
critically ill patients with severe sepsis, although no sig-
nificant difference was noted in ICU-free days or survival to
hospital discharge [112].

Vancomycin represents the other most studied agent,
although data are currently conflicting on the clinical
efficacy of continuous infusions. Specifically, Rello et al.
[113] in a retrospective matched cohort analysis described
the clinical superiority of vancomycin infusions in
patients with MRSA ventilator-associated pneumonia,
although a large, prospective multicenter study failed to
demonstrate any significant microbiological or clinical
benefit to continuous dosing [114]. A recent systematic
review and meta-analysis has demonstrated comparable
results, although a lower risk of nephrotoxicity in patients
receiving continuous infusion [115].

Use of continuous or extended infusions of antibiotics in
patients manifesting ARC represents an attractive approach,
although to date there are no prospective data comparing
dosing regimens in this setting. However, a recent obser-
vational study by Carlier et al. [116] suggests that despite the
use of such strategies, elevated CLCR remains strongly

Fig. 2 Drug concentration-time profiles for varying dosing strategies
with time-dependent antibiotics. Hypothetical drug concentration
versus time data following a single bolus dose (a), continuous infusion

without a bolus dose (b), bolus dose followed immediately by a
continuous infusion (c), and an extended infusion over 4 h (d). The
dotted line represents the MIC of the infecting pathogen
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associated with suboptimal beta-lactam drug exposure. This
in combination with the inferior clinical outcomes demon-
strated in patients manifesting ARC [56] indicates that
higher daily doses are also likely to be required. This is
supported by dosing simulations reported for vancomycin
[84], doripenem [15], meropenem [117], cefepime [118],
and piperacillin-tazobactam [119], in which adjustments in
total dose in addition to use of extended or continuous
infusions are recommended.

Therapeutic drug monitoring

TDM is commonplace in the prescription of aminoglyco-
sides and glycopeptides, although outside of these classes, it
is infrequently available. However, the growing body of
literature supporting PK/PD optimization suggests that
TDM is likely to be beneficial for a number of agents, most
notably beta-lactams [120]. Recent data have confirmed the
utility of measuring beta-lactam concentrations [121, 122],
with dose adjustment required in approximately three-
quarters of patients [80]. Limited uncontrolled evidence
supports improved clinical outcomes with beta-lactam
TDM [123], although large-scale clinical investigation is
still lacking. If accurate, point-of-care devices can be
developed to allow real-time dose adjustment, beta-lactam
TDM will hopefully transition into wider clinical practice.
Logical recipients would include those with significantly
deranged PK (such as ARC or CRRT) or where an inter-
mediate pathogen has been isolated.

PK/PD modeling

For empirical dosing, or in the absence of TDM, improved
antibiotic dosing strategies are urgently needed to optimize
clinical outcomes in the critically ill. Integration of physi-
ological, pharmacokinetic, and susceptibility data in robust
PK/PD models derived from critically ill cohorts should
yield dosing recommendations that have a greater likelihood
of achieving optimal drug exposure [124]. While few out-
come data are available, Dalfino and colleagues recently

validated a previously published PK/PD model of colistin
administration in the critically ill [125]. Higher rates of
clinical cure without significant renal toxicity were dem-
onstrated [126]. In the future, large controlled clinical trials
should be planned to validate such dosing strategies for a
variety of antibiotics in the ICU.

Conclusions

Critically ill patients manifest physiology that is unlikely
to be encountered in an ambulatory or ward-based envi-
ronment. The application of ‘standard’ antibiotic doses is
therefore grossly flawed. Strategies to achieve improved
drug exposure, including adequate loading doses, exten-
ded/continuous infusions, and TDM, are supported by
increasing PK/PD data, although prospective clinical tri-
als are still needed. Optimal dosing should be determined
prior to such investigation to avoid scenarios where drug
development is prematurely curtailed. There is also sig-
nificant impetus to re-examine existing dosing schedules
in order to ensure ongoing therapeutic efficacy in an
environment where few new antibiotics are entering
clinical practice.
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