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Abstract Objective: The primary
objective was to test the hypothesis
that clinical re-expansion pulmonary
edema is predominantly due to in-
creased permeability of the alveolar-
capillary barrier. A secondary objec-
tive was to determine if the alveolar
epithelium was functionally intact in
patients with re-expansion pulmonary
edema by measuring net alveolar
epithelial fluid transport in a subset of
patients. Design: Retrospective study
of mechanically ventilated patients
with re-expansion pulmonary edema.
Setting: Two academic tertiary care
hospitals. Patients: Seven patients
with acute onset of re-expansion
pulmonary edema after tube thora-
costomy or thoracentesis. Interven-
tions: Pulmonary edema fluid and
plasma were collected at the time of
onset of re-expansion edema.
Measurements and results: Contrary
to our hypothesis, the mean initial
edema fluid to plasma protein ratio
was 0.58€0.21, supporting a hydro-

static mechanism of edema forma-
tion. Four of the patients had an ini-
tial edema fluid to plasma protein
ratio of less than 0.65, consistent with
pure hydrostatic pulmonary edema,
while the others had a slight increase
in permeability (edema fluid to plas-
ma ratios of 0.67, 0.71 and 0.77),
perhaps due to capillary stress failure
from hydrostatic stress. Alveolar
fluid clearance (mean 9.8€8.0%/h)
was intact in the subset of three
patients in whom it was measured.
Conclusions: This study provides the
first direct evidence that hydrostatic
forces may contribute to the devel-
opment of re-expansion pulmonary
edema.
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Introduction

Re-expansion pulmonary edema is a rare condition as-
sociated with the re-expansion of a collapsed lung after
the drainage of fluid or air from the pleural space [1, 2, 3,
4, 5]. Re-expansion edema usually develops within 24 h
of the drainage procedure and is characterized by acute
arterial hypoxemia, decreased pulmonary compliance and
patchy or diffuse alveolar infiltrates in the re-expanded
lung with histologic evidence of pulmonary edema [6, 7].

Although most patients recover, re-expansion pulmonary
edema can be fatal [8].

The mechanisms underlying re-expansion pulmonary
edema have been investigated experimentally [9, 10, 11,
12] and indicate a possible role for neutrophils and in-
creased capillary permeability. However, the pathogene-
sis of clinical re-expansion pulmonary edema has been
studied in very few patients [6, 12, 13, 14] and the
mechanisms in the clinical setting remain unclear. Fur-
thermore, the capacity of the alveolar and distal airway
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epithelium to remove edema fluid in the setting of re-
expansion pulmonary edema has never been studied.

We therefore collected undiluted pulmonary edema
fluid and plasma from seven patients with acute re-ex-
pansion pulmonary edema. The primary objective was to
test the hypothesis that re-expansion edema is predomi-
nantly due to increased permeability of the alveolar-cap-
illary barrier. By sampling undiluted pulmonary edema
fluid and plasma near the onset of re-expansion edema, it
was possible to measure the edema fluid to plasma protein
ratio, a direct measure of permeability of the alveolar
capillary barrier [15, 16, 17]. In addition, in three patients
we were able to determine if the alveolar epithelium was
functionally intact by measuring changes in the protein
concentration in serial pulmonary edema fluid samples; a
rise in edema fluid protein concentration indicates net
alveolar epithelial fluid transport [16, 18].

Methods

Patient selection and clinical data collection

Between 1984 and 2001, seven patients were identified with acute
clinical re-expansion pulmonary edema within 24 h of thoracentesis
or tube thoracostomy. Clinical criteria for the diagnosis of re-ex-
pansion pulmonary edema included the development of hypoxemia
and new infiltrates in the re-expanded lung within 24 h of thora-
centesis or tube thoracostomy. Medical records were comprehen-
sively reviewed. All chest radiographs for each patient were re-
viewed by two of the investigators in conjunction with a radiolo-
gist. This study was approved by the Committee for Human Re-
search at the University of California, San Francisco and the In-
stitutional Review Board at the University of California, Los An-
geles with a waiver of informed consent.

Collection of pulmonary edema fluid

The first pulmonary edema fluid sample was collected in all seven
patients at the onset of clinically evident re-expansion pulmonary
edema. Serial edema fluid samples at sequential time points up to
12 h after the initial sample were collected in three of the seven

patients. Pulmonary edema fluid was collected by the authors or
trained respiratory therapists as previously reported [16]. Briefly, a
soft 14-Fr-gauge suction catheter was advanced into a wedged
position in a distal bronchus via the endotracheal tube. Pulmonary
edema fluid was collected in a suction trap by gentle suction. Si-
multaneous plasma samples were obtained. Pulmonary edema fluid
was centrifuged at 14,000 g for 20 min and plasma samples were
centrifuged at 3,000 g for 10 min. The supernatants were aspirated
and stored at -70�C.

Protein determination and cell counts

Protein concentrations were measured in duplicate in thawed edema
fluid supernatants and plasma by the Biuret method, as previously
described [16]. Edema fluid cell and differential counting were
carried out using standard methods in the hospital laboratory.

Calculation of edema fluid to plasma protein ratios
and alveolar fluid clearance

The ratio of the protein concentration in pulmonary edema fluid to
simultaneous plasma protein was calculated as previously described
[16]. A ratio equal to or less than 0.65 is diagnostic of a hydrostatic
mechanism of pulmonary edema, as we and other investigators
have reported [16, 17, 19]. The net rate of alveolar fluid clearance
was calculated by comparing the final and initial pulmonary edema
fluid protein concentrations in patients with sequential samples.
This rate was expressed as a percent clearance per hour to estimate
the net clearance of fluid across the distal airway and alveolar
epithelium [20]. These methods have been previously validated in
dog and sheep lungs [21, 22, 23], as well as in clinical studies of
human pulmonary edema [16, 17, 24, 25, 26].

Results

A summary of patient clinical characteristics is presented
in Table 1. All patients had the acute onset of radio-
graphically confirmed pulmonary edema after thoracen-
tesis or tube thoracostomy that was clinically severe and
required intubation and mechanical ventilation. Prior to
the drainage procedure there was no evidence of pulmo-
nary edema in any patient. No patient had evidence of any

Table 1 Characteristics of seven patients with re-expansion pulmonary edema

Pa-
tient

Age/
Gender

Diagnosis Proce-
dure

Volume
drained
(l)

Initial-
PaO2/
FIO2

a

4 h
PaO2/
FIO2

a

Edema
fluid
protein
(g/dl)

Plasma
protein
(g/dl)

Edema-
plasma
protein
ratio

Alveolar
fluid
clearance
(%/h)

Days
ventilated/
outcome

1 66/F Post coronary artery
bypass graft with
pneumothorax

CT Air 224 314 0.6 4.9 0.12 NA 2/Died

2 41/F Post pericardotomy CT 2.0 120 79 3.9 6.8 0.58 NA 3/Survived
3 24/M Lymphoma T 1.6 61 Expired 2.9 4.8 0.59 NA 1/Died
4 31/M Lymphoma T 2.4 61 71 3.9 6.0 0.65 4 1/Died
5 39/M Hepato-hydrothorax T 2.5 76 147 3.4 5.1 0.67 7 17/Survived
6 58/F Post pericardotomy O 1.5 310 375 3.8 5.3 0.71 NA 1/Survived
7 32/F Iatrogenic pneumo-

thorax
CT Air 225 350 4.0 5.2 0.77 19 5/Survived

CT chest tube drainage, T thoracentesis, O operative drainage
a Initial PaO2/FIO2 ratio at time of edema fluid sampling and 4 h after edema fluid sampling
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other underlying cause of pulmonary edema, such as
acute lung injury or heart failure, that would alter the
protein concentrations present in the airspace fluid or the
fluid-absorbing capability of the alveolar epithelium.
Three patients ultimately died. Patient 1 died from the
consequences of a cardiac arrest. Patient 3 died from
widespread lymphoma; at autopsy there was evidence of
pulmonary edema, but no histologic evidence of diffuse
alveolar damage. Patient 4 died from pericardial tam-
ponade due to lymphomatous involvement of the peri-
cardium.

Pulmonary edema fluid analysis

The mean initial edema fluid to plasma protein ratio, a
measure of alveolar-capillary barrier permeability was
0.58€0.21, suggesting that hydrostatic forces contributed
to the formation of pulmonary edema in these patients.
Four of the seven patients had an initial edema fluid to
plasma protein ratio less than 0.65 (Table 1), consistent
with pure hydrostatic pulmonary edema. Three patients
had edema fluid to plasma protein ratios greater than 0.65
(mean value of 0.72), a finding that is consistent with a
modest increase in protein permeability [16, 17, 19].
There was no correlation between the time interval from
drainage to edema fluid sampling and the initial edema
fluid to plasma protein ratios (Table 2).

In five patients, sufficient pulmonary edema fluid was
obtained to analyze cell counts. The edema fluid white
blood cell counts were 0.013–207 cells/ml (mean
42.0 cells/ml) with 41–94% neutrophils. The edema fluid
red blood cell counts were 0.28–315 cells/ml (mean
64.4 cells/ml).

Resolution of alveolar edema

Serial sampling of pulmonary edema fluid allowed cal-
culation of the net rate of alveolar fluid clearance in three
patients. All of these patients had intact alveolar fluid
clearance (Table 1), ranging from 4–19%/h with a mean
of 9.8€8.0%/h. Over the time frame studied, the presence
of intact clearance was not associated with any change in
ventilator parameters, such as tidal volume or the level of

positive end-expiratory pressure (PEEP). All patients
were ventilated in an intermittent mandatory ventilation
mode with tidal volumes averaging 10 ml/kg (range 5.9–
14.9 ml/kg). PEEP levels ranged from 5 to 12 cmH20 and
the level of PEEP was not changed during the time of
sequential edema fluid sampling. There was no correla-
tion between higher tidal volumes or PEEP and higher
protein concentrations in the edema fluid.

Cardiac and hemodynamic data

Normal left ventricular systolic function was documented
in four of the seven patients by echocardiography. He-
modynamic monitoring (two patients with a central ve-
nous catheter, one with pulmonary artery catheter) was
performed on the day of the drainage procedure in three
patients. Patient 4 had a pulmonary arterial wedge pres-
sure of 16 mmHg at the time of edema fluid sampling.
Patients 1 and 6 had central venous pressures of 5–9 and
8–12 mmHg, respectively, on the day of edema fluid
sampling.

Radiographic data

All seven patients had patchy or diffuse infiltrates in the
re-expanded lung consistent with re-expansion edema.
Review of serial radiographs demonstrated that the infil-
trates developed after the re-expansion of the lung in all
patients. There was no radiographic evidence of pulmo-
nary edema prior to the drainage procedures.

Discussion

The primary objective of this observational study was to
test the hypothesis that re-expansion pulmonary edema is
due to increased protein permeability of the alveolar-
capillary barrier. This was accomplished by measuring
the ratio of pulmonary edema fluid to plasma protein
concentration at the onset of re-expansion edema. The
second objective was to study the alveolar fluid transport
capacity of the re-expanded lung by measuring the protein
concentration in serial pulmonary edema fluid samples in

Table 2 Relationship of sam-
pling interval to initial edema
fluid to plasma protein ratio

Patient Time from drainage
procedure to intubation (h)

Time from drainage
procedure to edema sampling (h)

Edema fluid
to plasma protein ratio

1 6 6 0.12
2 3 4 0.58
3 2 2 0.59
4 4.5 4.75 0.65
5 Intubated prior to drainage 2.25 0.67
6 1.25 1.75 0.71
7 1 1 0.77
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a subset of the patients in whom serial samples were
available.

Unexpectedly, the mean edema fluid to plasma protein
ratio was 0.58€0.21 and the initial edema fluid to plasma
protein ratio was less than or equal to 0.65 in four of the
seven patients, suggestive of a contribution of hydrostatic
mechanisms to the edema formation. There was no evi-
dence that elevated intravascular pressures contributed to
edema formation. Analysis of the hemodynamic param-
eters and echocardiography did not reveal any evidence of
left ventricular systolic dysfunction or volume overload in
this group of patients. This finding is consistent with prior
reports in which re-expansion pulmonary edema has been
noted to occur in patients with documented hypovolemia
[27, 28].

The pathogenesis of re-expansion pulmonary edema is
unknown. A number of mechanisms have been suggested,
including increased permeability of pulmonary capillaries,
a decrease in perivascular pressure, ischemia reperfusion
injury, free radical injury, the effects of a high negative
pressure, decreased functional surfactant, atelectasis, hy-
poperfusion, tissue injury secondary to stretching, airway
obstruction, hypoxia and decreased lymph flow [8, 29].
During the re-expansion, heterogeneous areas of hypoxic
vasoconstriction may lead to areas of under-perfusion and
over-perfusion [30]. Higher perfusion in areas of high
negative pressure or decreased lymph flow as well as
pulmonary venous constriction may lead to hydrostatic
edema.

The finding of a low edema fluid to plasma protein
ratio in the majority of our patients suggests that hydro-
static forces probably play an important role in the de-
velopment of re-expansion edema. Also, the edema fluid
to plasma protein ratio in three of the seven patients in
whom the level was greater than 0.65 was only very
modestly elevated with a mean value of 0.72. In our prior
studies of patients with clinical acute lung injury and the
acute respiratory distress syndrome, the alveolar capillary
barrier permeability was much higher, with mean initial
edema fluid to plasma protein ratios typically greater than
0.90. For example, in three recent studies of a total of 108
patients with acute lung injury and the acute respiratory
distress syndrome, the mean edema fluid/plasma protein
ratio was 0.92 [31], 0.94 [17] and 0.98 [25], indicating
that the level of 0.72 in three of the seven patients in this
study reflects only a modest increase in alveolar-capillary
permeability to protein.

Our findings stand in contrast to two previous reports
of increased protein concentrations in the pulmonary
edema fluid of some patients with re-expansion pulmo-
nary edema [6, 32]. However, only three patients were
included in these studies. Furthermore, the time interval
between the collection of pulmonary edema after the
onset of pulmonary edema was not reported. If there was
a delay in collecting the edema fluid, then re-absorption
of salt and water would result in an increased protein

concentration in the edema fluid, a finding that would
then be misinterpreted as indicative of increased perme-
ability edema as the primary mechanism for edema for-
mation. In our study, the initial samples were collected as
soon as clinically feasible after the onset of re-expansion
edema, and all were collected within 6 h of the inciting
drainage procedure (mean 3.1€1.8 h). There was no cor-
relation between the time of sampling and edema fluid to
plasma protein ratio (Table 2).

Based on the new data in this study, hydrostatic
mechanisms appear to contribute to the development of
acute lung edema in re-expansion pulmonary edema. In
some patients there is a small increase in protein per-
meability. One potential unifying explanation for the
findings in this study is that hydrostatic forces initiate
edema formation after acute re-expansion of the lung; but
in some patients there is an associated stress capillary
failure that results in a transient increase in protein per-
meability, as others have described [33, 34]. In fact, West
and colleagues have proposed that alveolar capillary
stress failure can occur in the setting of heterogeneous re-
expansion of atelectatic lung, leading to a mixed picture
of protein-poor (hydrostatic) and increased permeability
edema [34]. This concept of high pressure-induced
traumatic breaks in the basement membranes of the al-
veolar capillary barrier has been demonstrated in animal
models, cardiogenic pulmonary edema, neurogenic pul-
monary edema and high altitude pulmonary edema [34].
Thus, hydrostatic forces in patients with clinical re-ex-
pansion pulmonary edema may occur in some subjects
without injury to the alveolar capillary barrier, while
leading to injury in others.

This interpretation is also consistent with several pre-
vious experimental reports that have found that re-ex-
pansion pulmonary edema is characterized by the re-
cruitment of neutrophils, the release of neutrophil gran-
ular contents in the air spaces and increased vascular
permeability that are correlated with increased interleu-
kin-8 and monocyte chemotactic protein concentrations in
the bronchoalveolar lavage fluid [6, 10, 11, 35]. A number
of clinical studies have reported the presence of inflam-
matory biologic markers in patients with hydrostatic
pulmonary edema [36, 37]. In addition, patients with
hydrostatic edema have elevated levels of platelet acti-
vating factor in their bronchoalveolar lavage fluid and
significantly negative transpulmonary gradients of E-se-
lectin and L-selectin in their serum [38, 39]. Finally, in
experimental studies, a pure hydrostatic pressure eleva-
tion in lung capillaries increases the endothelial expres-
sion of P-selectin, suggesting that a hydrostatic stress
alone may induce white cell adhesion and inflammation
[40, 41]. In keeping with this hypothesis, patients with
hydrostatic pulmonary edema may have significant neu-
trophilia in their pulmonary edema fluid [24].

Alveolar fluid clearance, an important function of the
alveolar epithelium, was intact in the three patients in
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