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Introduction 

REVIEW 

Sleep in the intensive care unit 

Abstract Abnormalities of sleep are 
extremely common in critically ill pa­
tients, but the mechanisms are poorly 
understood. About half of total sleep 
time occurs during the daytime, and 
circadian rhythm is markedly dimin­
ished or lost. Judgments based on in­
spection consistently overestimate 
sleep time and do not detect sleep dis­
ruption. Accordingly, reliable poly­
graphic recordings are needed to mea­
sure sleep quantity and quality in criti­
cally ill patients. Critically ill patients 
exhibit more frequent arousals and 
awakenings than is normal, and de­
creases in rapid eye movement and 
slow wave sleep. The degree of sleep 
fragmentation is at least equivalent to 
that seen in patients with obstructive 
sleep apnea. About 20% of arousals 
and awakenings are related to noise, 
10% are related to patient care activi-

ties, and the cause for the remainder is 
not known; severity of underlying dis­
ease is likely an important factor. Me­
chanical ventilation can cause sleep 
disruption, but the precise mechanism 
has not been defined. Sleep disruption 
can induce sympathetic activation and 
elevation of blood pressure, which 
may contribute to patient morbidity. In 
healthy subjects, sleep deprivation can 
decrease immune function and pro­
mote negative nitrogen balance. Mea­
sures to improve the quantity and 
quality of sleep in critically ill patients 
include careful attention to mode of 
mechanical ventilation, decreasing 
noise, and sedative agents (although 
the latter are double-edged swords). 
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In his roman-a-clef, "Ravelstein", the Nobel Laureate 
Saul Bellow [1] describes being admitted to an intensive 
care unit and receiving mechanical ventilation: 

know little of the sleep experienced by a critically ill pa­
tient. But we do know that sleep is commonly disrupted 
in critically ill patients [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16], and that sleep disruption may adversely 
affect patient outcome [8, 17]. In this review, we discuss 
the nature of sleep disturbances in critically ill patients, 
potential causes, and possible therapies. 

"I was now the dying man. My lungs had failed. A 
machine did my breathing for me. Unconscious, I had no 
more idea of death than the dead have. But my head (I 
assume it was my head) was full of visions, delusions, 
and hallucinations. These were not dreams or night­
mares. Nightmares have an escape hatch .... " 

Despite the obvious importance of sleep and its desir­
ability in a patient with a serious illness, we know noth­
ing of the visions, hallucinations and dreams experienced 
by a critically ill patient such as Bellow. Indeed, we 

Normal sleep and circadian rhythm 

Healthy young adults experience two distinct states of 
sleep: rapid eye movement (REM) sleep and non-REM 
(NREM) sleep. REM sleep accounts for about 25% of 
sleep time and is characterized by episodic bursts of rapid 
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Table 1 Studies of sleep in critically ill patients 

More than 24 h Number of 
patients 

Patient type Sleep staging Arousals and 
awakenings 
per hour 

Mechanical 
ventilation 
(%) 

Polysomnography performed over 24 h 
Hilton [2] 10 Medical Yes Not listed Not listed 
Aurell [3] 9 Postoperative Yes Not listed Some patients 
Gottschlich [4] 11 Bum patients Yes >63 100 
Cooper [5] 20 Medical Yes 39 100 
Freedman [ 6] 22 Medical Yes >11 100 
Valente [7] 24 Head trauma Yes Not listed 100 
Gabor [8] 7 Medical Yes 22 100 

Polysomnography performed only at nighttime 
Johns [9] 5 Postoperative Yes Not listed Not listed 
Orr 10 9 Postoperative Yes Not listed Not listed 
Broughton [11] 12 Medical Yes >21 NA 
Knill [12] 12 Postoperative Yes >21 Not listed 
Edwards [13] 21 Medical Yes Not listed 95 
Aaron [14] 6 Medical Yes >19 Not listed 
Parthasarathy [15] 11 Medical Yes 58 100 
Richards [ 16] 64 Medical Not listed Not listed 0 

Polysomnography not performed 
Woods [18] 4 Postoperative Not listed 
Helton [19] 62 Not listed Not listed 
Tweedie [20] 15 Medical and postoperative 80 
Kong [21] 60 Medical 100 
Hurel [22] 223 Medical and postoperative 0 
Freedman [23] 203 Medical and postoperative 0 
Simini [24] 162 Medical and postoperative 0 
Treggiari [25] 40 Postoperative 0 
Walder [26] 17 Postoperative 60 
Shilo [27] 8 Medical 50 
Olson [28] 843 Medical and postoperative Not listed 
Topf [29] 97 Postoperative Not listed 
Nelson [30] 100 Medical 60 
Mundigler [31] 24 Medical and postoperative 100 
McKinley [32] 14 Medical and postoperative 0 

eye movements, irregularities in respiration and heart rate, 
and paralysis of major muscle groups with the exception 
of the diaphragm and upper airway muscles. NREM sleep 
is divided into four stages (1, 2, 3 and 4). The progression 
of sleep from stage 1 through to stage 4 is accompanied 
by a progressive increase in the arousal threshold (the 
ability to wake in response to a stimulus). Stage 1 occurs 
at sleep onset and is also a transitional state between sleep 
stages. Up to 50% of the night is spent in stage 2 sleep, 
which is characterized by spindles and K complexes on 
the electroencephalograph (EEG). Progression of stage 2 
is accompanied by the gradual appearance of high-voltage 
slow wave activity on the EEG (greater than 75 JN and 
less than 2 Hz). When such slow-wave activity exceeds 
20% of the time in a 30-s epoch, sleep is categorized as 
stage 3; when it exceeds 50%, sleep is categorized as 
stage 4. Slow wave sleep is considered the most restor­
ative. NREM sleep normally cycles with REM sleep every 
90 min. The cycling of sleep and wakefulness, in tum, is 
regulated by a biological clock that operates over a 24-h 
period (circadian rhythm). In addition to sleep, the biolog-

ical clock regulates several physiological, behavioral, and 
biochemical rhythms. Hormone secretion (cortisol, growth 
hormone), body temperature, immune function, coronary 
artery muscle tone, and bronchial smooth muscle tone, to 
name a few, exhibit marked circadian variability. 

Abnormalities of sleep in critically ill patients 

Just as with ambulatory patients, sleep in critically ill pa­
tients is assessed in terms of quantity, distribution over 
24 h, and lack of continuity. Also assessed is the type 
and depth of sleep-rapid eye movement (REM) and 
non-REM (stages 1, 2, 3 and 4)-and the pattern from 
day to day in the distribution of sleep over a 24-h period 
(circadian rhythm). Accurate measurement of sleep 
quantity and quality requires reliable polygraphic record­
ings. Judgments based on inspection consistently overes­
timate sleep time [3] and do not detect sleep disruption 
[3, 13]. Table 1 classifies research reports on sleep in 
critically ill patients into studies involving polysomno-



graphic recordings over 24 h [2, 3, 4, 5, 6, 7, 8], poly­
somnographic recordings during nighttime alone [9, 10, 
11, 12, 13, 14, 15, 16], and studies without polysomno­
graphic recordings [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 
28, 29, 30, 31, 32]. Also indicated is the type of patient 
population, whether patients were receiving mechanical 
ventilation, and whether sleep stages and disruption were 
adequately reported. Of the 28 studies listed in Table 1, 
15 employed polysomnography [2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16], and 7 included continuous re­
cordings for 24 h or longer [2, 3, 4, 5, 6, 7, 8]. These 
studies reveal that almost half of total sleep time in criti­
cally ill patients can occur during the daytime [5, 8]. 

Investigators differ in their conclusions as to whether 
critically ill patients are sleep deprived. Three groups of 
investigators found that critically ill patients have a nor­
mal or near normal total sleep time, an average of 
7-10.4 h a day [4, 5, 6]. Three other groups of investiga­
tors found a decrease in total sleep time, 3.6-6.2 h a day 
[2, 3, 8]. The investigators in one of the studies revealing 
decreased sleep time had deliberately restricted sedatives 
and hypnotics [3], although patients received sedatives 
in the other two studies that revealed sleep deprivation 
[2, 8]. Even in the studies revealing adequate amounts of 
sleep, the investigators noted large variations in total 
sleep time among the patients. Cooper and co-workers 
found that some patients slept for hardly an hour and 
other patients for nearly 15 of 24 h [5] (Fig. 1). Total 
sleep time in the study of Freedman and co-workers var­
ied from 1.7 to 19.4 h [6]. Patients falling in the lowest 
quartile for total sleep time in these studies are clearly 
suffering from major sleep deprivation. In addition to 
variation in sleep quality from patient to patient, sleep 
quality may vary from night to night within a patient as a 
result of changes in acuity of illness [33], pain, and seda­
tive and analgesic infusions. As such, sleep deprivation 
occurs in many, if not all, critically ill patients. To 
achieve better clarification of the frequency and severity 
of sleep deprivation, longitudinal studies in a large num­
ber of patients are needed; it will be essential to control 
for the effects of sedation, analgesia, and acuity of ill­
ness when conducting such studies. 

In 11 critically ill patients, Parthasarathy and Tobin 
[15] noted 19 arousals (abrupt shifts in EEG frequency 
lasting more than 3 s) and 35 awakenings (EEG features 
compatible with wakefulness) per hour. Total sleep dis­
ruption, 54 arousals and awakenings per hour, was more 
than twice that seen in healthy individuals similarly inst­
rumented. Cooper and co-workers [5] also reported fre­
quent sleep disruption, with 42 arousals and awakenings 
per hour, and Gabor and co-workers [8] reported some­
what less frequent disruption, 22 arousals and awaken­
ings per hour. With the exception of the three preceding 
studies [5, 8, 15], the remaining investigators who ob­
tained EEG recordings in critically ill patients did not 
specify the sum of arousals and awakenings [3, 7, 9, 10, 
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Fig. 1 Sleep stages, along the vertical axis, over a 24-h period in 
three critically ill patients with disrupted sleep. The hypnogram in 
patient 1 (top) reveals a normal nocturnal sleep pattern. Patients 2 
(middle) slept for 65% of time, predominantly stages 1 and 2, and 
wakened repeatedly. Patient 3 (bottom) had isolated episodes of 
stage 1 sleep but was awake for most of 24 h. (Modified from [5] 
with permission) 

16], making it impossible to compare studies in that re­
spect (Table 1). The degree of sleep fragmentation in 
studies of critically ill patients, however, is equivalent to 
that in patients with obstructive sleep apnea [34]. 

Sleep is normally divided into rapid eye movement 
(REM) and non-REM (NREM) sleep. Critically ill pa­
tients spend 6% or less of sleep time in REM sleep as 
opposed to the normal of 25% [5, 6, 12]. The decrease in 
REM sleep has been attributed to medications (narcotics) 
[12], lack of sustained sleep needed to reach REM sleep 
[6], disturbance of circadian rhythm, underlying disease, 
and endotoxin release [35, 36]. The reduction in REM 
sleep might also be an adaptive response to critical ill­
ness because REM is a time of sympathetic-parasympa­
thetic imbalance and increased susceptibility to breath­
ing abnormalities. Critically ill patients also experience 
less of stages 3 and 4 of NREM, which are characterized 
by stable respiratory control and are devoid of sympa­
thetic-parasympathetic imbalances. 

Critically ill patients may not exhibit the EEG fea­
tures of sleep and wakefulness conventionally seen in 
ambulatory patients [5]. Cooper and co-workers found 
that 7 of 20 mechanically ventilated patients were in co­
ma and 5 patients did not exhibit EEG characteristics of 
stage 2 sleep (spindles or K complexes). Four patients 
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exhibited pathological wakefulness (a combination of 
behavioral correlates of wakefulness and EEG features 
of slow wave sleep), occupying 26--68% of the 24-h re­
cording. Only 8 of the 20 patients demonstrated EEG 
characteristics of sleep, and even these patients had an 
average of 39 arousals and awakenings per hour [5] 
(Fig. 1). 

Obtaining reliable EEG recordings is difficult in criti­
cally ill patients. Electrical interference (60 Hz) arising 
from equipment such as infusion pumps or ventilators 
[37] is common; interference also arises from muscle 
contractions in agitated patients [38]. To achieve satis­
factory EEG signals, which may consist of only a few 
micro volts, it is necessary to apply electrodes to appro­
priate areas of the scalp; the skin also requires careful 
preparation to ensure low contact impedance (preferably 
less than 5 Ohms). To further minimize interference, all 
wires between a patient and preamplifier must be as 
short as possible [37]. Additional challenges in conduct­
ing research studies are avoiding a change in sedative 
medications, curtailing unnecessary visits by hospital 
personnel, and minimizing agitation. 

A few investigators have studied circadian rhythms in 
critically ill patients. Mundeglier and co-workers [31] 
measured urinary 6-sulfatoxymelatonin every 4 h over 
24 h. Compared with 7 non-septic critically ill patients 
and 21 healthy volunteers, the amplitude of circadian 
fluctuation in this melatonin metabolite was markedly 
lower in 17 critically ill patients suffering from septic 
shock. 

Relationship between sedation and sleep 

Critically ill patients are often given sedatives to in­
crease patient comfort, decrease anxiety and agitation, 
and promote amnesia and sleep [25, 39]. Continuous in­
fusion of sedatives, however, may prolong the duration 
of mechanical ventilation by 2.5 days and prolong ICU 
stay by 3.5 days [40]. The effect of sedative agents on 
the depth of sedation has been rigorously studied [39, 41, 
42], although little is known about its effect on sleep 
quality in critically ill patients [43]. Over a 5-day period, 
40 non-intubated critically ill patients were randomized 
to nocturnal midazolam and propofol [25]. On a 10-point 
self-rating scale, both groups reported a tendency to­
wards improved sleep quality: from 6.3 to 7.2. The infu­
sions were titrated to achieve a score of 3 or greater on 
the Ramsay sedation scale (a score of 3 indicates that a 
patient is asleep but awakens with a brisk response to a 
glabellar tap or a loud auditory stimulus) [42]. Self-per­
ception of sleep quality was not different for propofol 
and midazolam (range 0.1-9.7; mean of 7.2). Some pa­
tients continued to rate sleep quality close to zero on the 
fifth day. These data indicate that self-perception of 
sleep quality can be poor with high dosages of sedatives 

despite achieving adequate levels of sedation. Severe 
sleep fragmentation may also occur in mechanically ven­
tilated patients despite sedatives and analgesics [4, 5]. 

Some of the discrepancies between bedside assess­
ment of sedation and subjective scoring of sleep may re­
flect known limitations in the Ramsay sedation scale 
[43]. Kong and co-workers studied the efficacy of mid­
azolam and isoflurane in reducing plasma levels of cate­
cholamines when similar levels of sedation (on the Ram­
say scale) were achieved. Although both agents achieved 
comparable levels of sedation, isoflurane, but not mid­
azolam, lowered the plasma levels of catecholamines 
from baseline [21]. The persistently elevated catechola­
mines in the patients receiving midazolam may have pro­
duced sleep disruption, although the explanation is no 
more than a possibility because polysomnography was 
not performed. 

Benzodiazepines, narcotic analgesics, and propofol 
are commonly used to sedate critically ill patients [39]. 
Benzodiazepines improve behavioral aspects of sleep. 
They decrease the time needed to fall asleep, decrease 
awakenings, increase sleep duration, and increase sleep 
efficiency (duration of sleep as a percentage of time in 
bed). Benzodiazepines, however, also increase the num­
ber of spindles, increase cortical EEG frequency (at low 
doses), decrease EEG amplitude and frequency (at high 
doses), and suppress REM and slow wave sleep [44]. Al­
though the clinical importance of these EEG alterations 
is not totally clear, an ideal hypnotic should not disturb 
the normal sleep pattern. Narcotics can also suppress 
REM sleep, cause a dose-dependent slowing of EEG, 
and suppress slow wave sleep-the most restorative 
stage of sleep [12, 44, 45]. In sum, a medicated state 
may resemble sleep on the surface, but may not provide 
the physiological benefits associated with true sleep. 

Factors contributing to sleep disruption 

Noise and hospital staff 

The level of noise in the ICU ranges from 50 to 75 dB, 
with peaks of up to 85 dB [8, 26, 46, 47, 48, 49, 50, 51, 
52]. This level of noise is comparable to that in a factory 
(80 dB) or a busy office (70 dB), and is louder than noise 
in a bedroom (40 dB) [51]. (The decibel scale is logarith­
mic, and an increase of 10 dB represents a doubling of 
noise.) When studying the relationship between ICU 
noise and sleep disruption, investigators commonly at­
tribute arousals to noise when they occur within 3 s of a 
measurable (greater than 15 dB) increase in noise [5, 6]. 
In these studies, 11-20% of arousals were attributed to 
noise [5, 6]. Because critically ill patients have frequent 
arousals and awakenings (20-68 per hour, Table 1) some 
arousals may mistakenly be attributed to noise. In a 
study of healthy volunteers subjected to audio recordings 



of ICU noise, a greater than normal number of awaken­
ings and less REM and total sleep time were observed 
[50, 53]. Findings in healthy subjects, however, may not 
apply to critically ill patients, who may have a higher 
arousal threshold secondary to sleep deprivation, seda­
tive agents, or coma. 

Gabor and co-workers [8] recorded audio and video 
signals in synchrony with polysomnography in seven pa­
tients receiving mechanical ventilation. Twenty percent 
of the arousals and awakenings were related to noise 
peaks, and only 10% were related to patient care activi­
ties. The cause of 68% of arousals and awakenings could 
not be identified [8]. 

Mechanical ventilation 

About 40% of patients in an ICU receive mechanical 
ventilation [54], but investigations into the precise mech­
anisms of the effect of mechanical ventilation on sleep 
are only commencing. Mechanically ventilated patients 
experience considerable sleep disruption, with as many 
as 20-63 arousals and awakenings per hour [4, 5, 8]. At 
first glance, a comparison of mechanically ventilated pa­
tients with spontaneously breathing critically ill patients 
should provide a reasonable method for investigating the 
effect of mechanical ventilation on sleep (Table 1). Such 
comparisons might prove misleading for a number of 
reasons. First, acuity of illness may be greater in venti­
lated patients than in spontaneously breathing patients. 
Second, spontaneously breathing patients are vulnerable 
to obstructive apneas, which will be prevented by an en­
dotracheal tube. Third, factors associated with ventila­
tion, such as masks, tracheal tubes, suctioning, mouth 
guards, nasogastric tubes, and physical restraints, may 
contribute to sleep fragmentation [55]. Fourth, sedatives 
and analgesics are more likely during mechanical venti­
lation. An attractive way to study the effect of mechani­
cal ventilation on sleep might be to study tracheostomi­
zed patients while connected and disconnected from a 
ventilator over a short time period. 

Notwithstanding methodological concerns with the 
studies, data suggest that the mode of ventilation can in­
fluence sleep quality [56, 57]. Meza and co-workers [56] 
showed that pressure support induces central apneas in 
healthy subjects during sleep. In a study of 11 critically ill 
patients during one night of sleep, Parthasarathy and To­
bin observed greater sleep fragmentation during pressure 
support than during assist-control ventilation: 79 versus 
54 arousals and awakenings per hour (Fig. 2). Six of the 
11 patients developed central apneas during pressure sup­
port, but not during assist-control ventilation [15]. Heart 
failure was more common in the patients who developed 
apneas than in the patients without apneas: 83% versus 
20%. The findings emphasize that research on sleep in 
critically ill patients needs to be controlled for the venti-
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Fig. 2 Sleep fragmentation (left panel) and sleep efficiency (right 
panel) during assist-control ventilation and pressure support with 
and without dead space. Sleep fragmentation, measured as the 
number of arousals and awakenings, was greater during pressure 
support (solid bars) than during assist-control ventilation (hatched 
bars) or pressure support with dead space (open bars). Sleep effi­
ciency (right panel) was also lower during pressure support (solid 
bars) than during assist-control ventilation (hatched bars) or pres­
sure support with dead space (open bars). (Modified from [15] 
with permission) 

lator mode. In these 11 patients, the most important deter­
minant of apneas was the difference between PC02 dur­
ing resting breathing and the patient's apnea threshold. 
When a patient's resting PC02 was close to the apnea 
threshold, central apneas were more likely to develop. 
The addition of dead space caused a further increase in 
resting PC02 above the apnea threshold and decreased 
the sum of arousals and awakenings from 83 to 44 events 
per hour (in the patients who developed central apneas 
during pressure support). Sleep efficiency (time asleep as 
a percentage of study duration) increased from 63 to 81% 
with the addition of dead space (Fig. 2). 

Other factors 

Factors that contribute to sleep abnormalities in critically 
ill patients include acute illness [2, 3, 11, 12], pain, light, 
and patient discomfort [ 17]. Noxious stimuli that contrib­
ute to patient discomfort and arousal include increased 
respiratory effort [58, 59], hypoxemia [58], and hyper­
capnia [58]. Swings in intrathoracic pressures are potent 
stimuli for inducing arousals in healthy subjects [60] and 
in patients with upper airway resistance syndrome [34]. 

Clinical implications 

Clinical outcomes 

Sleep fragmentation may influence morbidity and mor­
tality in critically ill patients. Patients in coma and pa-
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Fig. 3 Respiratory rate during assist-control ventilation (AC) and 
pressure support (PS) in 11 critically ill patients. For each mode, 
the lines connect the mean value for each patient during wakeful­
ness (W, left) and sleep (S, right). Compared with wakefulness, 
group mean respiratory rate was lower during sleep (closed sym­
bols) than during wakefulness (open symbols). The difference be­
tween sleep and wakefulness was greater for pressure support than 
for assist-control ventilation. (Modified from [15] with permis­
sion) 

tients who lack well-defined EEG characteristics of stage 
2 sleep have higher acute physiological scores than do 
patients with identifiable but fragmented sleep [5]. Some 
investigators have reported no association between the 
acuity of illness and sleep disruption [6]. As such, the 
contribution of acuity of illness to sleep disturbances is 
unclear. Animal data suggest that sleep deprivation may 
lead to death [61]. It is thought that death is unlikely to 
result with sleep deprivation in human subjects [62, 63], 
but the consequence of sleep deprivation has been stud­
ied only in healthy subjects and not in critically ill pa­
tients. 

Among 24 patients with post-traumatic coma, 5 of 6 
patients who had organized sleep patterns survived as 
opposed to 3 of 7 patients who had low voltage theta­
delta or mixed frequency activity without definable fea­
tures of sleep; functional outcome was also better in the 
patients with organized sleep patterns [7]. Freedman and 
co-workers found that 5 of 22 patients exhibited EEG 
features of mild to moderate encephalopathy before oth­
er features of sepsis manifested [6]; none of the non-sep­
tic patients demonstrated such EEG features. 

Ventilator settings 

Physicians typically adjust ventilator settings during the 
daytime and without knowing whether a patient is asleep 
or awake. Compared with wakefulness, sleep caused a 
33% decrease in respiratory rate during pressure support 
and a 15% decrease in rate during assist-control (Fig. 3) 
[15]. The level of pressure support is commonly titrated 
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Fig. 4 Inspiratory time (left panel) and expiratory time (right pan­
el) during assist-control ventilation (AC) and pressure support 
(PS) in 11 critically ill patients. The lines connect the mean value 
for each patient during wakefulness (W, left) and sleep (S, right). 
During pressure support, group mean inspiratory time and expira­
tory time were greater during sleep (closed symbols) than during 
wakefulness (open symbols). The difference between sleep and 
wakefulness was greater for pressure support than for assist-con­
trol ventilation. (Modified from [15] with permission) 

to respiratory rate, which provides reasonable guidance 
as to a patient's inspiratory effort [64, 65]. If, however, 
physicians titrate pressure support to respiratory rate 
while the patient is asleep, patient effort will increase 
considerably on awakening. 

Changes in ventilator settings are commonly based on 
arterial blood gas measurements. End-tidal C02 was 
greater in 11 critically ill patients during sleep than dur­
ing wakefulness: by 11% during pressure support and by 
5% during assist-control ventilation. Patients who re­
peatedly slip in and out of sleep display marked fluctua­
tions in end-tidal C02. The coefficient of variation of 
end-tidal C02 was 8.7% during pressure support and 
4.7% during assist-control venltilation [15]. In some pa­
tients receiving pressure support, end-tidal C02 can be as 
much as 7 mmHg higher during sleep than during wake­
fulness. Differences in PC02 between sleep and wakeful­
ness of this magnitude may cause physicians to change 
ventilator settings when a change is not necessary. Con­
sequently, under-ventilation or over-ventilation may re­
sult [66]. Compared with wakefulness, sleep caused a 
23% increase in inspiratory time and a 126% increase in 
expiratory time in patients receiving pressure support 
(Fig. 4). The increase in inspiratory time that accompa­
nied change from wakefulness to sleep was also associat­
ed with an increase in tidal volume, and the likely ac­
companiment of hypocapnia may explain the develop­
ment of apneas during pressure support [67, 68]. These 
findings indicate that the effect of sleep on breathing pat­
tern and gas exchange has important implications for re­
search on patient-ventilator interaction. 



Cardiorespiratory consequences 

In ambulatory patients, sleep fragmentation can result in 
elevations of arterial blood pressure, elevations of uri­
nary and serum catecholamines, arrhythmias, progres­
sion of cardiac failure, and even death [69, 70]. Sleep­
disordered breathing might cause similar abnormalities 
in critically ill patients, although direct evidence is lack­
ing. Apneas and hypopneas cause hypoxemia [16], 
which, in turn, may produce sympathetic activation and 
arrhythmias in critically ill patients; evidence on this is­
sue, however, is anecdotal [71] and inconclusive [72]. 

Sleep fragmentation induced by auditory stimuli can 
increase nocturnal blood pressure in dogs [73]. In pa­
tients who have central sleep apnea, the major cause of 
oscillations in blood pressure is ventilatory oscillations, 
with a significant contribution from arousals [73]. These 
investigations [73, 74] suggest that arousals may elevate 
nocturnal blood pressure, secondary to increases in sym­
pathetic activity, and contribute to cardiovascular com­
plications [75]. Preliminary data suggests that sleep frag­
mentation in critically ill patients may be associated with 
elevations in blood pressure [76], but the effect on mor­
bidity and mortality is unknown. 

The effect of sleep deprivation [77] on the ventilatory 
responses to hypoxia and hypercapnia is controversial 
[78]. Sleep deprivation has long been believed to depress 
chemoreceptor function [78]. Spengler and colleagues 
[78], however, recently found that sleep deprivation did 
not alter the hypercapnic ventilatory response in healthy 
subjects. The situation in critically ill patients has not 
been studied. Blunting of the chemoreceptor response 
can decrease the ability of the respiratory system to com­
pensate for respiratory loads during or after the with­
drawal of mechanical ventilation [68]. 

At least some postoperative patients experience an in­
crease in REM sleep on the third to fourth postoperative 
day secondary to the earlier suppression of REM sleep 
by anesthetics and analgesics [12]. Because REM sleep 
is characterized by unstable breathing patterns and sym­
pathetic-parasympathetic imbalances, the increase in 
REM sleep in the early postoperative period may aggra­
vate the risk of postoperative atelectasis, pneumonia, 
hypoxemia, and cardiovascular morbidity. 

Neurological consequences 

Sleep deprivation may contribute to delirium and agita­
tion [19, 79]. In a study of 62 critically ill patients, Hel­
ton and colleagues [19] noted that 24% experienced se­
vere sleep deprivation and 16% experienced moderate 
deprivation. One third of the patients with severe sleep 
disruption suffered from delirium, 10% of patients with 
moderate sleep disruption suffered from delirium, but 
only 3% of patients with adequate sleep had delirium. 
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The study has limitations. Sleep was assessed at the bed­
side by nursing staff rather than polysomnography. No 
intervention was performed, and a cause and effect rela­
tionship between sleep deprivation and delirium cannot 
be inferred. Agitation can cause elevations in plasma cat­
echolamines [21]. Large doses of sedative agents are 
often used in agitated and delirious patients; when the 
agitation resolves, however, the sedative agent may re­
main in adipose tissue and interfere with weaning from 
mechanical ventilation. 

Immunological and metabolic consequences 

Sleep deprivation can unfavorably alter immune function 
[80, 81, 82, 83, 84, 85, 86]. In 42 healthy volunteers, 
Irwin and co-workers found that sleep deprivation result­
ed in almost a 50% decrease in natural killer cell activity 
and a 50% decrease in lymphokine killer cell activity. 
One night of sleep returned natural killer cell activity to 
baseline. 

Sleep deprivation can promote negative nitrogen bal­
ance and increase energy expenditure [62, 63, 87]. In six 
healthy volunteers, 24 h of sleep deprivation produced a 
7% increase in nitrogen excretion. Some subjects experi­
enced as much as a 20% increase in nitrogen excretion. 
It is not known whether similar changes occur in critical­
ly ill patients. 

Long-term consequences 

Critical illness may have long-term consequences on 
sleep [22]. When 329 patients were interviewed 
6 months after discharge from an ICU, 223 (67%) report­
ed severe alterations in sleep. The lack of a control group 
makes it impossible to distinguish the role of critical ill­
ness from previous health status, underlying medical 
diagnosis, persistent disability, or other factors. 

Strategies to decrease sleep disruption 

Gabor and co-workers studied the effect of reducing 
noise in six healthy volunteers while they slept in an 
ICU [8]. The average level of noise was 51 dB in an 
open ICU and 43 dB in an isolated single room (the re­
spective peak levels were 65 and 54 dB). Total sleep 
time was greater in the isolated room than in the open 
ICU, 9.5 versus 8.2 h, although the number of arousals 
and awakenings were virtually identical in the two set­
tings (14 to 15 events per hour) [8]. In six healthy volun­
teers attempting to sleep in a noisy environment, Wallace 
and co-workers found that use of earplugs increased 
REM sleep (20 versus 15%) and decreased REM latency 
(107 versus 148 min), although the number of awaken-
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Conclusion ings was not affected (25 versus 27 per hour). Because 
only 20% of sleep fragmentation in critically ill patients 
appears to be attributable to noise [8], reducing noise in 
the ICU may be of limited value. 

Shilo and co-workers undertook a double blind, pla­
cebo-controlled study of melatonin in eight critically ill 
patients with chronic obstructive pulmonary disease 
[27]. The authors conclude that melatonin achieved 
greater sleep time and less fragmentation, although the 
conclusions are not well supported by the data. 

Research into sleep disorders in ambulatory patients over 
the last 30 years has provided us with a strong set of 
physiological principles. The time is ripe for applying 
these principles to critically ill patients. A major chal­
lenge, as with most research in critically ill patients, is 
the difficulty in controlling for confounding influences 
in order to achieve high fidelity recordings. 
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