Skip to main content
Log in

Isotope geochemistry tracks the maturation of submarine massive sulfide mounds (Iberian Pyrite Belt)

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The massive sulfide deposits of the southern Iberian Pyrite Belt (IPB) occur as shale-hosted exhalative mounds or shallow sub-seafloor replacive bodies that formed at the Devonian-Carboniferous boundary in anoxic bottoms. The geochemistry of the mineralization and the host shale from some of the major deposits, including a detailed 50-m-thick section through the Migollas orebody, shows a marked textural and vertical zonation that is also reflected in the chemical, textural, and isotopic variations of pyrite and carbonates. Pyrite evolves from primary framboids and colloform aggregates to late euhedral crystals, which accompanies a redistribution of the contained base metals and grain coarsening. SIMS analyses depict an extreme variability of δ34S values from − 42.3 to + 4.4‰ with a gradual increase that is related to the textural maturation. There is also a systematic rise in the 87Sr/86Sr ratios (0.70846 to 0.71354), δ13C (− 12.2 to − 5.2‰) and δ18O values (+ 14.1 to + 27.8‰) of the associated carbonates, which evolve from early dolomite to late siderite. This evolution evidences the maturation of the exhalative mineralization during mixing between two fluids: modified seawater enriched in biogenically derived reduced sulfur and upflowing hydrothermal fluids. Early sulfides precipitated in the seawater-mound interface. Towards the core of the mounds, there was an increasing influence of deep fluids that modified the early mineral textures and the isotopic signatures. This evolution is similar to that observed in modern submarine hydrothermal systems and confirms the importance of mound refining in the evolution of fossil exhalative mounds and the formation of economic ores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Al-Aasm IS, Taylor BE, South B (1990) Stable isotope analysis of multiple carbonate samples using selective acid extraction. Chem Geol Isot Geosci Sect 80:119–125

    Google Scholar 

  • Allen RL, Weihed P (2002) Global comparisons of volcanic-associated massive sulphide districts. Geol Soc London, Spec Publ 204:13–37

    Google Scholar 

  • Arnold M, Bernard AJ, Soler E (1977) Premier apport de la geochimie des isotopes du soufre à la comprehension de la genese des mineralisations pyriteuses de la province de Huelva (Espagne) par. Mineral Deposita 12:197–218

    Google Scholar 

  • Bailey JV, Orphan VJ, Joye SB, Corsetti FA (2009) Chemotrophic microbial mats and their potential for preservation in the rock record. Astrobiol 9:843–859

    Google Scholar 

  • Barrie CD, Boyce AJ, Boyle AP, Williams PJ, Blake K, Ogawara T, Akai J, Prior DJ (2009) Growth controls in colloform pyrite. Am Mineral 94:415–429

    Google Scholar 

  • Barriga FJAS (1990) Metallogenesis in the Iberian Pyrite Belt. In: Dallmeyer RD, Garcia EM (eds) Pre-Mesozoic geology of Iberia. Springer, Berlin, pp 369–379

    Google Scholar 

  • Barton PB Jr (1978) Some ore textures involving sphalerite from the Furutobe mine, Akita prefecture, Japan. Mining Geol 28:293–300

    Google Scholar 

  • Baublys KA, Golding SD, Young E, Kamber BS (2004) Simultaneous determination of δ33S V-CDT and δ34S V-CDT using masses 48, 49 and 50 on a continuous flow isotope ratio mass spectrometer. Rapid CommunMass Sp 18:2765–2769

    Google Scholar 

  • Bawden TM, Einaudi MT, Bostick BC, Meibom A, Wooden J, Norby JW, Orobona MJT, Chamberlain CP (2003) Extreme 34S depletions in ZnS at the Mike gold deposit, Carlin Trend, Nevada: evidence for bacteriogenic supergene sphalerite. Geology 31:913–916

    Google Scholar 

  • Boles JR (1978) Active ankerite cementation in the subsurface Eocene of southwest Texas. Contrib Mineral Petrol 68:13–22

    Google Scholar 

  • Bonifazi G, Gorga R (1993) Characterization of the complex sulfide ore of Sotiel (Spain) by scanning electron-microscopy and electron-microprobe analysis. Scanning Microsc 7:1181–1193

    Google Scholar 

  • Bradshaw GD, Rowins SM, Peter JM, Taylor BE (2008) Genesis of the wolverine volcanic sediment-hosted massive sulfide deposit, Finlayson Lake district, Yukon, Canada: mineralogical, mineral chemical, fluid inclusion, and sulfur isotope evidence. Econ Geol 103:35–60

    Google Scholar 

  • Broadbent GC, Myers RE, Wright JV (1998) Geology and origin of shale-hosted Zn-Pb-Ag mineralization at the Century Deposit, Northwest Queensland, Australia. Econ Geol 93:1264–1294

    Google Scholar 

  • Brueckner SM, Piercey SJ, Layne GD, Piercey G, Sylvester PJ (2015) Variations of sulphur isotope signatures in sulphides from the metamorphosed Ming Cu(−Au) volcanogenic massive sulphide deposit, Newfoundland Appalachians, Canada. Mineral Deposita 50:619–640

    Google Scholar 

  • Burns SJ, McKenzie JA, Vasconcelos C (2000) Dolomite formation and biogeochemical cycles in the Phanerozoic. Sedimentology 47:49–61

    Google Scholar 

  • Busby C (2005) Possible distinguishing characteristics of very deepwater explosive and effusive silicic volcanism. Geology 33:845–848

    Google Scholar 

  • Canfield DE, Thamdrup B (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266:1973–1975

    Google Scholar 

  • Castroviejo R, Quesada C, Soler M (2011) Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance. Mineral Deposita 46:615–637

    Google Scholar 

  • Crowe DE, Vaughan RG (1996) Characterization and use of isotopically homogeneous standards for in situ laser microprobe analysis of 34S/32S ratios. Amer Mineral 81:187–193

    Google Scholar 

  • Davis RE, Moyer CL (2008) Extreme spatial and temporal variability of hydrothermal microbial mat communities along the Mariana Island Arc and southern Mariana back-arc system. J Geophys Res Solid Earth 113:1–17

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2013) An introduction to the rock forming minerals, 3rd edn. Mineral Soc London pp 498. https://doi.org/10.1080/00357529.2014.926186

  • Dickin AP (2005) Radiogenic isotope geology. Cambridge University Press, Cambridge

    Google Scholar 

  • Ding T, Valkiers S, Kipphardt H, De Bièvre P, Taylor PDP, Gonfiantini R, Krouse R (2001) Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V–CDT with a reassessment of the atomic weight of sulphur. Geochim Cosmochim Acta 65:2433–2437

    Google Scholar 

  • Eldridge CS, Barton PB, Ohmoto H (1983) Mineral textures and their bearing on formation of the Kuroko orebodies. Econ Geol Monogr 5:241–281

    Google Scholar 

  • Faure G (1986) Principles of isotope geology. Wiley, New York

    Google Scholar 

  • Faure G, Powell JL (2012) Strontium isotope geology, 5, 188 pp.

  • Galley AG, Hannington MD, Jonasson IR (2007) Volcanogenic massive sulfide deposits In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods, vol Spec Publ 5. Geol Assoc Can, Mineral Deposits Division, 141–161

  • Gaspar OC (2002) Mineralogy and sulfide mineral chemistry of Neves-Corvo ores, Portugal: insight into their genesis. Can Mineral 40:611–636

    Google Scholar 

  • Gong YM, Shi GR, Weldon EA, Du YS, Xu RAN (2008) Pyrite framboids interpreted as microbial colonies within the Permian Zoophycos spreiten from southeastern Australia. Geol Mag 145:95–103

    Google Scholar 

  • González F, Moreno C, Sáez R, Clayton G (2002) Ore genesis age of the Tharsis Mining District (Iberian Pyrite Belt): a palynological approach. J Geol Soc 159:229–232

    Google Scholar 

  • González F, Moreno C, Santos A (2006) The massive sulphide event in the Iberian Pyrite Belt: confirmatory evidence from the Sotiel-Coronada Mine. Geol Mag 143:821–827

    Google Scholar 

  • Goodfellow WD, Peter JM (1996) Sulphur isotope composition of the Brunswick no. 12 massive sulphide deposit, Bathurst Mining Camp, New Brunswick: implications for ambient environment, sulphur source, and ore genesis. CanJEarth Sci 33:231–251

    Google Scholar 

  • Greenwood PF, Brocks JJ, Grice K, Schwark L, Jaraula CMB, Dick JM, Evans KA (2013) Organic geochemistry and mineralogy. I. Characterisation of organic matter associated with metal deposits. Ore Geol Rev 50:1–27

    Google Scholar 

  • Habicht KS, Canfield DE (1997) Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim Cosmochim Acta 61:5351–5361

    Google Scholar 

  • Habicht KS, Canfield DE (2001) Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology 29:555–558

    Google Scholar 

  • Hannington MD, Barrie CT, Bleeker W (1999) The Giant Kidd Creek Volcanogenic Massive Sulfide Deposit, Western Abitibi Subprovince, Canada; summary and synthesis. Econ GeolMonogr 10:661–672

    Google Scholar 

  • Herzig PM, Hannington MD (1995) Polymetallic massive sulfides at the modern seafloor a review. Ore Geol Rev 10:95–115

    Google Scholar 

  • Hoefs J (2009) Stable isotope geochemistry. Springer, Berlin

    Google Scholar 

  • Humphris SE, Herzig PM, Miller DJ, Alt JC, Becker K, Brown D, Brugmann G, Chiba H, Fouquet Y, Gemmell JB, Guerin G, Hannington MD, Holm NG, Honnorez JJ, Iturrino GJ, Knott R, Ludwig R, Nakamura K, Petersen S, Reysenbach AL, Rona PA, Smith S, Sturz AA, Tivey MK, Zhao X (1995) The internal structure of an active sea-floor massive sulphide deposit. Nature 377:713–716

    Google Scholar 

  • Huston DL (1999) Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: a review. RevEcon Geol 8:157–180

    Google Scholar 

  • Huston DL, Pehrsson S, Eglington BM, Zaw K (2010) The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting. Econ Geol 105:571–591

    Google Scholar 

  • Jørgensen BB (2006) Bacteria and marine biogeochemistry. In: Schulz H, Zabel M (eds) Marine Geochemistry. Springer, Berlin, pp 169–206

    Google Scholar 

  • Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286

  • Kaplan IR, Rittenberg SC (1964) Microbiological Fractionation of Sulphur Isotopes. J Gen Microbiol 34:195–212

  • Kase K, Yamamoto M, Nakamura T, Mitsuno C (1990) Ore mineralogy and sulfur isotope study of the massive sulfide deposit of Filon Norte, Tharsis Mine, Spain. Mineral Deposita 25:289–296

    Google Scholar 

  • Keith M, Haase KM, Klemd R, Krumm S, Strauss H (2016) Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus. Chem Geol 423:7–18

    Google Scholar 

  • Kendall C, Caldwell EA (1998) Fundamentals of isotope geochemistry. In: Kendall C, McDonnell JJ (eds) Isotope Tracers in Catchment Hydrology. Elsevier science, Amsterdam, pp 51–86

    Google Scholar 

  • Kohn MJ, Riciputi LR, Stakes D, Orange DL (1998) Sulfur isotope variability in biogenic pyrite: reflections of heterogeneous bacterial colonization? Am Mineral 83:1454–1468

    Google Scholar 

  • Kozdon R, Kita NT, Huberty JM, Fournelle JH, Johnson CA, Valley JW (2010) In situ sulfur isotope analysis of sulfide minerals by SIMS: precision and accuracy, with application to thermometry of ~ 3.5 Ga Pilbara cherts. Chem Geol 275:243–253

    Google Scholar 

  • Large RR (1992) Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models. Econ Geol 87:471–510

    Google Scholar 

  • Large RR, Huston DL, McGoldrick PJ, Ruxton PA, McArthur G (1989) Gold distribution and genesis in Australian volcanogenic massive sulfide deposits, and their significance for gold transport models. Econ Geol Monogr 6:520–536

    Google Scholar 

  • Large RR, Bull SW, Cooke DR, McGoldrick PJ (1998) A genetic model for the HYC deposit, Australia; based on regional sedimentology, geochemistry, and sulfide-sediment relationships. Econ Geol 93:1345–1368

    Google Scholar 

  • Leistel JM, Marcoux E, Thiéblemont D, Quesada C, Sánchez A, Almodóvar GR, Pascual E, Sáez R (1998) The volcanic-hosted massive sulfide deposits of the Iberian Pyrite Belt review and preface to the thematic issue. Mineral Deposita 33:2–30

    Google Scholar 

  • Lode S, Piercey SJ, Layne GD, Piercey G, Cloutier J (2017) Multiple sulphur and lead sources recorded in hydrothermal exhalites associated with the Lemarchant volcanogenic massive sulphide deposit, central Newfoundland, Canada. Mineral Deposita 52:105–128

    Google Scholar 

  • Lydon JW (1984) Ore deposit models - 8. Volcanogenic massive sulphide deposits part 1: a descriptive model. Geosci Can 11(4):195–202

  • Lydon JW (1988) Ore deposit models - 14. Volcanogenic massive sulphide deposits part 2: genetic models. GeosciCan 15(1):43–65

  • Lyons TW (1997) Sulfur isotopic trends and pathways of iron sulfide formation in upper Holocene sediments of the anoxic Black Sea. Geochim Cosmochim Acta 61:3367–3382

    Google Scholar 

  • Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings - old and new insights. Sediment Geol 140:143–175

  • MacLellan KL, Lentz DR, McClenaghan SH (2006) Petrology, geochemistry, and genesis of the copper zone at the Brunswick no. 6 volcanogenic massive sulfide deposit, Bathurst Mining Camp, New Brunswick, Canada. Explor Min Geol 15:53–75

    Google Scholar 

  • Marcoux E, Moëlo Y, Leistel JM (1996) Bismuth and cobalt minerals as indicators of stringer zones to massive sulfide deposits, Iberian Pyrite Belt. Mineral Deposita 31:1–26

    Google Scholar 

  • Matos JX, Oliveira V (2003) Mina do Lousal (Faixa Piritosa Ibérica) - Percurso geológico e mineiro pelas cortas e galerias da antiga mina. IGME 2:117–128

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857

    Google Scholar 

  • Menor-Salván C, Tornos F, Fernandez-Remolar DC, Amils R (2010) Association between catastrophic paleovegetation changes during Devonian-carboniferous boundary and the formation of giant massive sulfide deposits. Earth PlanetSci Lett 299:398–408

    Google Scholar 

  • Mitjavila J, Martí J, Soriano C (1997) Magmatic evolution and tectonic setting of the Iberian Pyrite Belt volcanism. J Petrol 38:727–755

    Google Scholar 

  • Mitsuno C, Nakamura T, Yamamoto M, Kase K, Oho M, Suzuki S, Thadeu D, Carvalho D, Arribas A (1988) Geological studies of the "Iberian Pyrite Belt" with special reference to its genetical correlation of the Yanahara ore deposits and others in the inner zone of southwest Japan. University of Yokohama, Yokohama

    Google Scholar 

  • Moyer CL, Dobbs FC, Karl DM (1995) Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount, Hawaii. Appl Environ Microb 61:1555–1562

    Google Scholar 

  • Munhá J (1983) Low-grade regional metamorphism in the Iberian Pyrite Belt. Comun Serv Geol Port 69:3–35

  • Nehlig P, Cassard D, Marcoux E (1997) Geometry and genesis of feeder zones of massive sulphide deposits: constraints from the Rio Tinto ore deposit (Spain). Mineral Deposita 33:137–149

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Min Geochem 16:491–559

    Google Scholar 

  • Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10:135–177

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposites. Wiley, New York, pp 509–567

    Google Scholar 

  • Oho Y, Suzuki S, Mitsuno C, Beck JS (1993) Sedimentary structures of the sulfides deposits at Tharsis mine in the Iberian Pyrite Belt. Resour Geol 43:49–58

    Google Scholar 

  • Oliveira JT (1983) The marine carboniferous of South Portugal: a stratigraphic and sedimentological approach. In: Lemos de Sousa L, Oliveira JT (eds) The Carboniferous of Portugal. Mem Serv Geol Port, vol 29, pp 3–37

    Google Scholar 

  • Oliveira JT (1990) South Portuguese zone: introduction. Stratigraphy and synsedimentary tectonism. In: Dallmeyer RD, Martínez García E (eds) PreMesozoic geology of Iberia. Verlag, pp 333–347

    Google Scholar 

  • Oliveira JT, Pereira Z, Carvalho P, Pacheco N, Korn D (2004) Stratigraphy of the tectonically imbricated lithological succession of the Neves Corvo mine area, Iberian Pyrite Belt, Portugal. Mineral Deposita 39:422–436

    Google Scholar 

  • Ozsoy E, Unluata U (1997) Oceanography of the Black Sea: a review of some recent results. Earth Sci Rev 42:231–272

    Google Scholar 

  • Page DC, Watson MD (1976) The Pb-Zn deposit of Rosh Pinah mine, South West Africa. Econ Geol 71:306–327

    Google Scholar 

  • Palache C, Berman H, Frondel C (1951) Dana’s system of mineralogy, vol. 2. Wiley, New York

    Google Scholar 

  • Piercey SJ (2015) A semipermeable interface model for the genesis of subseafloor replacement-type volcanogenic massive sulfide (VMS) deposits. Econ Geol 110:1655–1660

    Google Scholar 

  • Piercey SJ, Squires GC, Brace TD (2014) Lithostratigraphic, hydrothermal, and tectonic setting of the boundary volcanogenic massive sulfide deposit, Newfoundland Appalachians, Canada: formation by subseafloor replacement in a Cambrian rifted arc. Econ Geol 109:661–687

    Google Scholar 

  • Quesada C (1998) A reappraisal of the structure of the Spanish segment of the Iberian Pyrite Belt. Mineral Deposita 33:31–44

    Google Scholar 

  • Quesada C (2001) A geodynamic scenario for the formation and evolution of the Iberian Pyrite Belt: some hypothesis and many speculations. In: Tornos F, Pascual E, Sáez R, Hidalgo R (eds) GEODE Workshop Massive sulphide deposits in the Iberian Pyrite Belt: New advances and comparison with equivalent systems, pp 48–50

    Google Scholar 

  • Reeves EP, Seewald JS, Saccocia P, Bach W, Craddock PR, Shanks WC, Sylva SP, Walsh E, Pichler T, Rosner M (2011) Geochemistry of hydrothermal fluids from the PACMANUS, Northeast Pual and Vienna Woods hydrothermal fields, Manus Basin, Papua New Guinea. Geochim Cosmochim Acta 75:1088–1123

    Google Scholar 

  • Relvas JMRS, Tassinari CCG, Munhá J, Barriga FJAS (2001) Multiple sources for ore-forming fluids in the Neves Corvo VHMS Deposit of the Iberian Pyrite Belt (Portugal): strontium, neodymium and lead isotope evidence. Mineral Deposita 36:416–427

    Google Scholar 

  • Relvas JMRS, Barriga FJAS, Pinto A, Ferreira A, Pacheco N, Noiva P, Barriga G, Baptista R, de Carvalho D, Oliveira V, Munhá J, Hutchinson RW (2002) The Neves-Corvo deposit, Iberian Pyrite Belt, Portugal; impacts and future, 25 years after the discovery. In: Goldfarb R, Nielsen J (eds) Integrated methods for discovery: global exploration in the 21st century. Soc Econ Geol, Spec Publ, vol 9, pp 155–176

    Google Scholar 

  • Relvas JMRS, Barriga FJAS, Longstaffe FJ (2006) Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. II. Oxygen, hydrogen, and carbon isotopes. Econ Geol 101:791–804

    Google Scholar 

  • Rosenberg PE (1991) Structural variation in the dolomite-ankerite solid-solution series: an X-ray, Mössbauer and TEM study—discussion. Am Mineral 76:659–660

    Google Scholar 

  • Rudnicki MD, Elderfield H, Spiro B (2001) Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures. Geochim Cosmochim Acta 65:777–789

    Google Scholar 

  • Sáez R, Almodóvar GR, Pascual E (1996) Geological constraints on massive sulphide genesis in the Iberian Pyrite Belt. Ore Geol Rev 11:429–451

    Google Scholar 

  • Sáez R, Pascual E, Toscano M, Almodóvar GR (1999) The Iberian type of volcano-sedimentary massive sulphide deposits. Mineral Deposita 34:549–570

    Google Scholar 

  • Sáez R, Moreno C, Gonzalez F, Almodovar GR (2011) Black shales and massive sulfide deposits: causal or casual relationships? Insights from Rammelsberg, Tharsis, and Draa Sfar. Mineral Deposita 46:585–614

    Google Scholar 

  • Sánchez España J (2000) Mineralogía y geoquímica de yacimientos de sulfuros masivos en el área nor-oriental de la Faja Pirítica Ibérica (San Telmo-San Miguel-Peña del Hierro), norte de Huelva, España. Departamento de Mineralogía y Petrología. Facultad de Ciencias, Universidad del País Vasco. PhD thesis. 321 pp.

  • Sánchez España J, Velasco F, Boyce AJ, Fallick AE (2003) Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes. Mineral Deposita 38:519–537

    Google Scholar 

  • Santos A, Prada JM, Rosales F (1993) Aspectos geológicos y geofísicos del yacimiento Migollas. Symposium of polymetallic sulfides of the Iberian Pyrite Belt, (Evora, Portugal)

  • Santos A, Caballero B, Prada JM (1996) Descripción geológica de los yacimientos de Sotiel-Coronada. Bol Geol Min 107:511–518

    Google Scholar 

  • Schardt C (2016) Hydrothermal fluid migration and brine pool formation in the Red Sea: the Atlantis II deep. Mineral Deposita 51:89–111

    Google Scholar 

  • Schemerhorn LJG (1971) An outline stratigraphy of the Iberian Pyrite Belt. Bol Geol Min 82-84:239–268

    Google Scholar 

  • Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61:633–677

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Mineral Geochem 16:165–183

    Google Scholar 

  • Silva JB, Oliveira JT, Ribeiro A (1990) Structural outline of the South Portuguese Zone. In: Dallmeyer RD, Martínez E (eds) Pre-Mesozoic geology of Iberia, pp 349–362

    Google Scholar 

  • Skei J (1983) Geochemical and sedimentological considerations of a permanently anoxic fjord—Framvaren, South Norway. Sediment Geol 36:131–145

    Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjorleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microb 66:2835–2841

    Google Scholar 

  • Solomon M (2008) Brine pool deposition for the Zn–Pb–Cu massive sulphide deposits of the Bathurst mining camp, New Brunswick, Canada. I. Comparisons with the Iberian pyrite belt. Ore Geol Rev 33:329–351

    Google Scholar 

  • Solomon M, Quesada C (2003) Zn–Pb–Cu massive sulphide deposits: brine pool types occur in collisional orogens, black smoker types in backarc and/or arc basins. Geology 31:1029–1032

    Google Scholar 

  • Solomon M, Tornos F, Gaspar OC (2002) Explanation for many of the unusual features of the massive sulfide deposits of the Iberian pyrite belt. Geology 30:87–90

    Google Scholar 

  • Solomon M, Tornos F, Large RR, Badham JNP, Both RA, Zaw K (2004) Zn–Pb–Cu volcanic-hosted massive sulphide deposits: criteria for distinguishing brine pool-type from black smoker-type sulphide deposition. Ore Geol Rev 25:259–283

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention in the use of decay-constants in geo- and cosmochemistry. Earth Planet Sci Lett 36:359–362

    Google Scholar 

  • Strauss GK (1970) Sobre la Geología de la provincia piritífera del Suroeste de la Península Ibérica y de sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal). Memoria del Instituto Geológico y Minero de España 77. pp 266

  • Strauss GK, Beck JS (1990) Gold mineralisations in the SW Iberian Pyrite Belt. Mineral Deposita 25:237–245

    Google Scholar 

  • Strauss GK, Gray KG (1986) Base metal deposits in the Iberian Pyrite Belt. In: Friederichs GH, Genkin AD, Naldrett AJ, Ridge JD, Sillitoe RH, Vokes FM (eds) Geology and metallogeny of copper deposits, pp 304–324

    Google Scholar 

  • Strauss GK, Madel J, Fernández Alonso F (1977) Exploration practice for strata-bound volcanogenic sulphide deposits in the Spanish-Portuguese Pyrite Belt: geology, geophysics, and geochemistry. In: Klemm DD, Schneider HY (eds) Time-and strata-bound ore deposits, pp 55–93

    Google Scholar 

  • Taylor TR, Sibley DF (1986) Petrographic and geochemical characteristics of dolomite types and the origin of ferroan dolomite in the Trenton Formation, Ordovician, Michigan Basin, USA. Sedimentology 33:61–86

    Google Scholar 

  • Thamdrup B, Finster K, Hansen JW, Bak F (1993) Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese. Appl Environ Microb 59:101–108

    Google Scholar 

  • Tornos F (2006) Environment of formation and styles of volcanogenic massive sulfides: the Iberian Pyrite Belt. Ore Geol Rev 28:259–307

    Google Scholar 

  • Tornos F, Conde C (2002) La influencia biogénica en la formación de los yacimientos de sulfuros masivos de la Faja Pirítica Ibérica. Geogaceta 32:235–238

    Google Scholar 

  • Tornos F, Heinrich CA (2008) Shale basins, sulfur-deficient ore brines and the formation of exhalative base metal deposits. Chem Geol 247:195–207

    Google Scholar 

  • Tornos F, González Clavijo E, Spiro B (1998) The Filon Norte orebody (Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted massive sulfide in a thin-skinned tectonic belt. Mineral Deposita 33:150–169

    Google Scholar 

  • Tornos F, Solomon M, Conde C, Spiro B (2008) Formation of the Tharsis massive sulfide deposit, Iberian Pyrite Belt: geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool. Econ Geol 103:185–214

    Google Scholar 

  • Tornos F, Peter JM, Allen RL, Conde C (2015) Controls on the siting and style of volcanogenic massive sulphide deposits. Ore Geol Rev 68:142–163

    Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. Rev Mineral Geochem 16:445–489

    Google Scholar 

  • van Lith Y (2001) The role of sulphate-reducing bacteria in dolomite formation a study of a recent environment, bacterial cultures, and dolomite concretions. Geological Institute, ETH, Zürich, Switzerland. PhD thesis. 178 pp.

  • Veizer J (1989) Strontium isotopes in seawater through time. Annu Rev Earth Planet Sci 17:141–167

    Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Google Scholar 

  • Velasco F, Sanchez España J, Boyce AJ, Fallick AE, Sáez R, Almodóvar GR (1998) A new sulfur isotopic study of some Iberian Pyrite Belt deposits: evidence of a textural control on sulfur isotopic composition. Mineral Deposita 34:4–18

    Google Scholar 

  • Velasco F, Yanguas A, Sanchez Espana J, Yusta I, Herrero JM (1999) A Hg-rich gold mineral association in the Migollas massive sulfide deposit from the Iberian Pyrite Belt, Spain. In: Stanley CJ et al (eds) Mineral deposits: processes to processing. Balkema, Rotterdam, pp 609–612

    Google Scholar 

  • Velasco F, Sanchez España J, Yanguas A, Tornos F (2000) The occurrence of gold in the sulfide deposits of the Iberian Pyrite Belt: evidence of precious metal remobilisation. In: Gemmell JB, Pongratz J (eds) Volcanic Environments and Massive Sulfide Deposits, Program and Abstracts, CODES Spec Publ, pp 221–223

    Google Scholar 

  • Velasco-Acebes J, Tornos F (2017) Geochemical evolution of exhalative massive sulfide mounds in the southern Iberian Pyrite Belt. 14th SGA Biennial Meeting. Quebec City, pp 645–648

  • Velasco-Acebes J, Tornos F, Kidane A, Wiedenbeck M, Velasco F (2015) Strontium and sulfur isotopes reveal the complex evolution of the Sotiel-Migollas VMS deposit (Iberian Pyrite Belt). Goldschmidt Conference 2015. Prague, p 3252

  • Warthmann R, van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28:1091–1094

    Google Scholar 

  • White JDL, McPhie J, Skilling I (2000) Peperite: a useful genetic term. B Volcanol 62:65–66

    Google Scholar 

  • Whitehouse MJ (2013) Multiple sulfur isotope determination by SIMS: evaluation of reference sulfides for Δ33S with observations and a case study on the determination of Δ36S. Geostand Geoanal Res 37:19–33

    Google Scholar 

  • Wignall PB, Newton R (1998) Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. AmerJ Sci 298:537–552

    Google Scholar 

  • Wilkin RT, Arthur MA (2001) Variations in pyrite texture, sulfur isotope composition, and iron systematics in the Black Sea: evidence for Late Pleistocene to Holocene excursions of the O2-H2S redox transition. Geochim Cosmochim Acta 65:1399–1416

    Google Scholar 

  • Wilkin RT, Barnes HL (1997) Formation processes of framboidal pyrite. Geochim Cosmochim Acta 61:323–339

    Google Scholar 

  • Wilkin RT, Barnes HL, Brantley SL (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912

    Google Scholar 

  • Winchell AN, Winchell H (1951) Elements of optical mineralogy, part II. Wiley, New York

    Google Scholar 

  • Yamamoto M, Kase K, Carvalho D, Nakamura T, Mitsuno C (1993) Ore mineralogy and sulfur isotopes of the volcanogenic massive sulfide deposits in the Iberian Pyrite Belt, Resour Geol Spec Issue pp 67–80

  • Yanguas A, Velasco F (1999) Intercrecimientos simplectíticos de jaskolkiita-bournonita-galena en los sulfuros masivos del yacimiento de Migollas (Faja Pirítica Ibérica). Bol Soc Esp Mineral 22–A:119–120

  • Yanguas A, Velasco F (2000) Variación de los isótopos de azufre en el yacimiento de Sotiel-Migollas (Faja Pirítica Ibérica); evidencias de una fuente bacteriogénica. Cadernos do Laboratorio Xeolóxico de Laxe 25:301–303

    Google Scholar 

  • Zheng YF (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126

    Google Scholar 

Download references

Acknowledgments

This study has been funded by Ministerio de Economía y Competitividad (Spain) through the projects CGL-2011-23207, BES-I-14-07980, and BES-I-15-09166. We acknowledge MATSA, Somincor-Lundin Mining Corporation and Avrupa Minerals for the access to drillholes and underground mine operations. We would like to thank F. Couffignal, U. Dittman, D. Rhede, J. M. Fuenlabrada, C. Galindo, A. Fernández, and A. Granados for their technical help during the analyses and acknowledge the geological discussions on the field with J. M. Pons, B. Caballero, L. Sánchez, J. Relvas, B. MacFarlane, V. Araujo and C. Conde. Comments by B. Lehmann, D. Huston, B. E. Taylor, S. Gleeson, and C. Mota Utanda have significantly improved earlier versions of the manuscript. This is Inkaba/Iphakade contribution number 213 and AEON (Africa Earth Observatory Network) contribution number 182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Velasco-Acebes.

Additional information

Editorial handling: D. Huston

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1.49 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velasco-Acebes, J., Tornos, F., Kidane, A.T. et al. Isotope geochemistry tracks the maturation of submarine massive sulfide mounds (Iberian Pyrite Belt). Miner Deposita 54, 913–934 (2019). https://doi.org/10.1007/s00126-018-0853-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0853-x

Keywords

Navigation