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Abstract

Aims/hypothesis. C-peptide, released by the beta-
cells of pancreatic islets, elicits salutary responses in
Type I (insulin-dependent) diabetes mellitus but the
molecular mechanisms behind these effects are not
known. We assessed whether synthetic rat C-peptide
stimulates insulin-like cellular effects in a classic insu-
lin target tissue.

Methods. To clarify the molecular mechanisms in-
volved in several insulinomimetic actions, we investi-
gated the effect of C-peptide on the insulin signalling
pathway in rat skeletal muscle cells. We used L6 myo-
blasts and myocytes to measure the effects of C-pep-
tide or insulin or both on glycogen synthesis and ami-
no acid uptake. We also studied the effects of C-pep-
tide on insulin receptor autophosphorylation, its ty-
rosine kinase activity, phosphorylation of IRS-1, PI
3-kinase, Akt, p90Rsk, MAPK, and GSK3 in these
cells.

Results. In L6 cells, physiological concentrations of
C-peptide (0.3-3 nmol/l) significantly activated insu-
lin receptor tyrosine kinase, IRS-1 tyrosine phospho-

rylation, PI 3-kinase activity, MAPK phosphoryla-
tion, p90Rsk, and GSK3 phosphorylation. A scram-
bled C-peptide sequence — the control — showed no
effects. Wortmannin blocked C-peptide-induced gly-
cogen synthesis while pertussis toxin had no effect.
Only submaximal insulin concentrations (up to 10
nmol/l) combined with submaximal C-peptide con-
centrations led to additive effects.
Conclusion/interpretation. C-peptide added to the
maximal insulin dose (100 nmol/l) did not increase
the effect of insulin alone. We thus conclude that the
same signalling elements are used by both ligands.
However, the lack of Akt activation by C-peptide
and the bell-shaped dose response induced by C-pep-
tide indicate that C-peptide has some effects by an-
other distinct mechanism. We speculate that C-pep-
tide could modulate the metabolic effects of insulin
by enhancing them at low hormone concentrations
and dampening them at high hormone concentra-
tions. [Diabetologia (2001) 44: 1247-1257]
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C-peptide is a 31-amino acid peptide that is derived
from proinsulin during biosynthesis of insulin [1].
Beneficial effects of C-peptide replacement, along
with insulin, in C-peptide deficient states have been
documented [2-5]. In patients with Type I (insulin-
dependent) diabetes mellitus, C-peptide improves re-
nal function, reduces urinary albumin excretion and
glomerular filtration and blood retinal barrier leak-
age [4]. It also ameliorates nerve dysfunction [5].
Heart rate variability during deep breathing increases
and sensory nerve function improves in Type I dia-
betic patients after a 3-h and a 3-month administra-
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tion of C-peptide. We show that chronic C-peptide re-
placement prevents both the acute and chronic meta-
bolic, functional and structural changes in the Type 1
diabetic BB/Wor rat model [6].

In spite of the above mentioned data the very exis-
tence of biological effects of C-peptide has been
questioned and the molecular mechanisms behind
these therapeutic effects are not known. No specific
C-peptide receptor has been identified [7]. The intro-
duction of a sensitive method, fluorescent correlation
spectroscopy (FCS), has allowed specific C-peptide
binding to human cells to be detected but the struc-
ture of the receptor is still not known. The C-terminal
pentapeptide seems to be responsible for the specific
binding to the receptor [8]. Pretreatment of cells
with pertussis toxin abolishes specific C-peptide bind-
ing [8]. This observation, along with inhibition of sev-
eral C-peptide effects by pertussis toxin, indicates
that C-peptide binds to a G-protein coupled receptor
[2, 8]. Human C-peptide stimulates glucose transport
in human non-diabetic and diabetic skeletal muscle
[9, 10]. Pending purification and cloning of the C-pep-
tide receptor, we explored the details of C-peptide
signal transduction in an insulin-responsive system.

The physiologic effects of insulin stem from insulin
binding to the extracellular domain of the insulin re-
ceptor (IR) [11]. Binding results in activation of the
IR tyrosine kinase (TKA), followed by the phospho-
rylation of intracellular substrates, propagating re-
ceptor signals throughout the cell. These include the
Ras/mitogen-activated protein kinase (MAPK) cas-
cade and the phosphatidylinositol 3-kinase (PI3 K)/
Akt (protein kinase B, PKB) system, thought to play
key roles in the mitogenic and metabolic arms of in-
sulin signalling, respectively [12, 13]. We have previ-
ously shown that C-peptide, enhanced insulin-stimu-
lated IR autophosphorylation and TKA in vitro, sug-
gesting that C-peptide affects other downstream ele-
ments of insulin signal transduction pathways.

Materials and methods

Materials. Synthetic rat-II C-peptide with greater than 98 %
purity (by HPLC, Genosys, Cambridge, UK) and scrambled
C-peptide were provided by J. Wahren (Karolinska Institutet,
Stockholm, Sweden). The L6 cells and 3T3-L1 fibroblasts
were purchased from American Type Culture Collection
(Rockville, Md., USA). Culture reagents, including Dulbec-
co’s modified Eagle’s medium (DMEM), fetal bovine and
horse serum, trypsin, and penicillin/streptomycin were ob-
tained from Life Technologies (Grand Island, NY, USA).
Chemicals were purchased from Fisher Scientific (Itasca, Ill.,
USA), Sigma Chemical (St. Louis, Mo., USA), and Bio-Rad
Laboratories (Hercules, Calif., USA). Phospho-Akt (Thr308)
antibody, phospho-p44/42 MAP kinase (Thr202/Tyr204) anti-
body, phospho-p90Rsk (Ser381) antibody, and phospho-GSK-
30/8 (Ser21/9) antibody were from New England Biolabs
(Beverly, Mass., USA), anti-Akt 1 antibody was from Santa
Cruz Biotechnology (Santa Cruz, Calif., USA), anti-IRS-1 an-
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tibody and anti-phosphotyrosine antibody were from Trans-
duction Laboratories (Lexington, Ky., USA) and anti-insulin
receptor B-subunit antibody was from Sigma. HRP-conjugated
secondary antibodies were from Kirkegaard and Perry (Gai-
thersburg, Md., USA), ECL reagents were purchased from
Pierce (Rockford, Ill., USA). The b-["*C]-glucose, [**C]-
methylaminoisobutyric acid and [(y->*P]-ATP, *P-orthophos-
phoric acid were purchased from NEN Life Science Products
(Boston, Mass., USA).

Cell culture. The L6 rat skeletal myoblasts were maintained in
DMEM containing 20% (v/v) fetal bovine serum, 100 units/
ml penicillin/streptomycin and 2 mmol/l glutamine at 37°C in
a humidified atmosphere with 5% (v/v) CO,. Cells at 90 %
confluence were used in all experiments. Myoblasts were in-
duced to form myotubes by incubation for up to 5-6 days in
DMEM containing 2 % (v/v) horse serum, 100 units/ml penicil-
lin/streptomycin and 2 mmol/l glutamine. Parental 3T3-L1 pre-
adipocytes were differentiated into adipocytes as described
earlier [15].

Insulin receptor purification and tyrosine kinase assay. “Recep-
tors” were partially purified from L6 membranes from 12 dish-
es (10 cm) by wheat germ agglutinin chromatography. This
process results in about a 25-fold enrichment in the prepara-
tion’s content of insulin receptors. However, other membrane
glycoproteins were also present. The TKA of this preparation
was assayed by detection of phosphorylation of a synthetic
substrate poly (Glu*Tyr!) in the presence of [y-*P]-ATP [16].
Aliquots of these receptors were incubated for 20 min at
room temperature in the absence or presence of insulin (10,
100 nmol/1) or C-peptide or both (0.1, 0.3, 1, 3, 10, 30, 100 and
1000 nmol/l). L6 myotube lysates were immunoprecipitated
with anti-IR antibody and immunocomplexes were captured
with protein G/protein A-agarose. The TKA of this prepara-
tion was assayed as described above.

Glycogen synthesis. Monolayers of confluent L6 myoblast cells
were serum-starved for 16 h and incubated for 3 h in DMEM
containing 2.5 mmol/l glucose, 0.1 % BSA and 25 mmol/l HE-
PES, pH 7.4. They were stimulated with the hormones for 1 h
at 37°C and then incubated with [U-*C]-p-glucose for 90 min.
In some experiments, cells were treated with wortmannin
(100 nmol/l) for 30 min [17] or with pertussis toxin, 1 ug/ml
for 4 h [8].

[HC]-Aminoisobutyric acid uptake. Monolayers of confluent
L6 myoblast cells were serum-starved for 16 h and stimulated
with insulin or C-peptide or both for 1 h at 37°C and incubated
with [“C]-aminoisobutyric acid for 30 min. Amino acid uptake
was measured as previously described [18].

PI 3-kinase activity. The PI3 K activity associated with phos-
photyrosine immune complexes derived from L6 myoblasts
and 3T3-L1 adipocytes was measured as reported earlier [19].

Western blotting and immunoprecipitation. Confluent mono-
layers of L6 cells or 3T3-L1 adipocytes were serum-starved
for 16 h and stimulated with the hormones for 10 min. Cells
were lysed at 4°C with ice-cold lysis buffer containing
20 mmol/l HEPES, pH 7.4, 1 mmol/l Na;VO,, 5 mmol/l
EDTA, 100 mmol/l NaF, 20 mmol/l Na,P,0,, 1 mmol/l PMSF,
10 pg/ml of aprotinin, leupeptin and benzamidine, 50 pg/ml
soybean trypsin inhibitor, and 1% Triton X-100. Lysates were
clarified by centrifugation at 12000 g for 15 min at 4°C and
the supernatants were collected, separated by 7.5 % SDS-poly-
acrylamide gel electrophoresis, transferred to nitrocellulose-
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membranes, and immunoblotted with the appropriate primary
antibody (phospho-Akt, phospho-MAP kinase, phospho-Rsk,
phospho-GSK3). Specific proteins were visualized with chemi-
luminescence (ECL). To study phosphorylation of Akt direct-
ly, L6 myoblasts were serum-starved in phosphate-free
DMEM for 16 h, pre-incubated with **P-orthophosphoric acid
for 6 h and stimulated with C-peptide or insulin or both. Ly-
sates were immunoprecipitated with anti-Akt 1 antibody, cap-
tured with protein G/protein A-agarose and subjected to
7.5% SDS-PAGE. This was followed by autoradiography
[20]. To study phosphorylation of IR and IRS-1, lysates were
immunoprecipitated with anti-IR antibody or anti-IRS-1 anti-
body. The immunocomplexes were captured with protein G/
protein A-agarose and subjected to SDS-PAGE and immu-
noblotting with anti-phosphotyrosine antibody as described
earlier [21]. Quantitation of data was done by UN-SCAN-IT
GEL Automated Digitizing System (Silk Scientific, Orem,
Utah., USA).

RSK kinase assay in L6 myoblasts. L6 lysates were used for im-
munoprecipitation with anti-Rsk-1 antibody. The immuno-
complexes were captured with protein A/G-agarose as de-
scribed above. Kinase reaction was initiated by the addition
of a S6 substrate (RRRLSRA) mixture containing 25 umol/l
cold ATP, 0.1 uCi [y-2P]ATP, and stopped by spotting 50 ul of
the kinase reaction onto phosphocellulose paper (Whatman
P-81). Incorporated radioactivity was measured by liquid scin-
tillation counting in a beta counter [22].

Statistical analysis. Student’s ¢ test or analysis of variance
(ANOVA) was used for statistical analysis of data. Results
are expressed as Means + SEM. A p value of less than 0.05
was considered statistically significant.

Results

Effect of C-peptide on glycogen synthesis. Pre-incuba-
tion with rat-1I C-peptide led to a 2.5-fold increase in
glycogen synthesis in L6 rat myoblasts. The dose-de-
pendent effect of C-peptide showed a bell-shaped
curve (Fig.1A). Statistically significant stimulation
started at 0.3 nmol/l and maximum effect was ob-
served between 1 and 3 nmol/l of C-peptide. It re-
quired 10 nmol/l of insulin to achieve the twofold
stimulation seen with 0.3 nmol/l of C-peptide. Maxi-
mum effect of insulin (fourfold stimulation of glyco-
gen synthesis) was observed with 100 nmol/l. Higher
insulin concentrations (up to 10 umol/l) increased
glycogen synthesis to the same degree as 100 nmol/l.
Scrambled C-peptide sequence (random arrange-
ment of the 31 amino acids of C-peptide), serving as
a control (1 and 3 nmol/l concentrations depicted in
Fig.1A), did not increase glycogen synthesis above
basal values. Human C-peptide increased glycogen
synthesis to the same degree as the homologous (rat)
C-peptide (not shown). The interactive effects of in-
sulin and C-peptide were also examined. Combina-
tions of submaximally effective insulin (10 nmol/l)
and submaximal concentrations of C-peptide (0.1
and 0.3 nmol/l) led to increased glycogen synthesis
more than either ligand alone (Fig.1B). Combina-
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Fig.1 (A, B). C-peptide stimulates glycogen synthesis in
L6 myoblasts. Monolayers of confluent L6 myoblast cells
were serum-starved for 16 h and stimulated with insulin, C-
peptide, and scrambled C-peptide for 1 h (A) or with a combi-
nation of insulin and C-peptide [(B) where the results with 10
nmol/l insulin are shown for comparison]. Glycogen synthesis
was assessed by measuring p-['*C]-glucose incorporation into
glycogen. Results are plotted as Means + SEM of ten separate
experiments (each in quadruplicate) and normalized with re-
spect to control (=100%). ***p < 0.001, **p < 0.01, *p < 0.05
vs control (A), and Tp < 0.05 vs every sample, #p < 0.05 vs insu-
lin, 10 nmol/l (B)
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Fig.2 (A, B). C-peptide stimulates ['*C]-aminoisobutyric acid
uptake in L6 myoblasts. Monolayers of confluent L6 myoblast
cells were serum-starved for 16 h and then incubated with insu-
lin, C-peptide, or a scrambled C-peptide sequence (SC-pep-
tide) (A) or with a combination of insulin and C-peptide
(B, where results with 10 nmol/l insulin are shown for compar-
ison) for 1h. Amino acid uptake was measured by ['*C]-
methylaminoisobutyric acid incorporation. Results are shown
as Means + SEM of three separate experiments. ***p < 0.001,
##p < (.01, *p <0.05 vs control (A), and 'p <0.05 vs every
sample, #p < 0.05 vs insulin, 10 nmol/l (B)

tions of maximally effective concentrations of insulin
and C-peptide, however, did not increase glycogen
synthesis more than either ligand alone.

Effect of C-peptide on amino acid uptake. We next
measured aminoisobutyric uptake, as another exam-
ple of biologic effect of insulin in L6 cells. C-peptide
(1-10 nmol/l) stimulated amino acid uptake more
than twofold in L6 myoblasts, an effect similar to that
of 10 nmol/l of insulin (Fig.2A). Statistically signifi-
cant stimulation was documented between 0.3 nmol/l
and 10 nmol/l of C-peptide. Scrambled C-peptide (up
to 3 nmol/l) did not increase the aminoisobutyric acid
uptake over baseline. Addition of C-peptide (0.1-1
nmol/l) to the submaximally effective insulin concen-
tration (10 nmol/l) significantly increased the amino
acid uptake achieved with insulin alone (Fig.2B).

Effect of C-peptide on GSK3 phosphorylation. We
studied the molecular basis for the insulinomimetic
effect of C-peptide on glycogen synthesis. Evidence
indicates that insulin stimulates glycogen synthase
by both activating protein phosphatase 1 and by in-
hibiting GSK3, which is inactivated by phosphoryla-
tion [17]. Insulin (10, 100 nmol/l) increased GSK3
phosphorylation in L6 myoblasts (over fivefold and
12-fold, respectively). C-peptide pre-incubation of
the cells, with physiological concentrations (0.3-3
nmol/l) increased GSK3 phosphorylation (7.5-fold
and five-fold, respectively) (Fig.3A). As in the other
assays, the highest C-peptide concentration (30
nmol/l) had no effect on GSK3 phosphorylation.
Scrambled C-peptide (0.3 and 3 nmol/l), used as a
control, also had no effect on GSK3 phosphorylation.
The combinations of 10 nmol/l insulin with either 0.1
or 0.3 nmol/l C-peptide showed a slight but statistical-
ly significant increase in GSK3 phosphorylation that
was greater than the effect of either hormone alone
(Fig.3B and C). C-peptide could therefore stimulate
glycogen synthesis by inhibiting GSK3. Because
modulation of GSK3 is clearly not the only mecha-
nism by which glycogen synthesis is stimulated, a pre-
cise quantitative correspondence between the results
from the glycogen synthesis and GSK3 assays cannot
be expected.
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Fig.3 (A-C). C-peptide stimulates GSK3 phosphorylation.
Serum-starved confluent L6 myoblasts were incubated with in-
sulin, C-peptide and scrambled C-peptide (A), and a combina-
tion of insulin with C-peptide (B) for 10 min. Cell lysates were
separated on 7.5% SDS-PAGE, transferred to nitrocellulose
membrane and immunoblotted with anti-phospho-GSK3 anti-
body (four separate experiments). The phosphorylated GSK3
is shown in this representative blot as a band of about 47 kD
(arrow). C: Quantitation of data (four separate experiments)
is depicted as Means + SEM for each condition normalized
for control (=100%). ***p <0.001, **p < 0.01, *p <0.05 vs
control, and #p < 0.05 vs insulin, 10 nmol/1

Effect of C-peptide on Akt phosphorylation in L6
cells. Insulin (more than fivefold) activates phospho-
rylation of Akt in L6 cells greatly (Fig.4). In spite of
the expectations raised by the insulinomimetic effects
of C-peptide on glycogen synthesis, amino acid up-
take and GSK3 phosphorylation, C-peptide (at con-
centrations of up to 30 nmol/l) did not stimulate phos-
phorylation of Akt, as assessed by immunoprecipitat-
ing or by immunoblotting with an anti-phospho Akt
antibody (Thr-308). Furthermore, in a separate study,
intact L6 myotubes were labelled with 3?P-orthophos-
phoric acid for 6 h and stimulated with insulin, with
C-peptide (0.3, 3 nmol/l), with scrambled C-peptide
(0.3 nmol/l), or a combination of insulin and C-pep-
tide. Cell lysates were immunoprecipitated with anti-
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Fig.4. C-peptide does not activate Akt. Serum-starved conflu-
ent L6 myotubes were incubated with insulin (17.2 nmol/l),
and with C-peptide (0.3, 30 nmol/l). Cell lysates were separat-
ed on 10% SDS-PAGE, transferred to nitrocellulose mem-
brane and immunoblotted with anti-phospho Akt antibody. A
representative blot (out of three separate experiments) shows
that insulin did (12.6-fold) but C-peptide did not stimulate
phosphorylation of Akt (arrow)

Akt 1 antibody, captured with protein G/protein
A-agarose, and separated on 7.5% SDS-PAGE.
While insulin (10 nmol/l) stimulated phosphorylation
of Akt 3.1-fold, no increase of Akt phosphorylation
was seen in cells pre-incubated with either C-peptide
or with the scrambled C-peptide sequence (not
shown). The combination of insulin and C-peptide
yielded the same effect as that seen with insulin alone
(2.9-fold increase in Akt phosphorylation).

In summary, the Akt phosphorylation experiments
were done with three different cell types (L6 myo-
blasts, L6 myotubes, and HIRcB cells which are rat
fibroblasts overexpressing the human insulin recep-
tors), using two different antibodies (anti-phospho
Akt which was directed at both Akt 1 and Akt 2 iso-
forms and anti-Akt 1 antibody), and different meth-
odologies (immunoprecipitation, immunoblotting,
32P labelling). C-peptide did not increase Akt activa-
tion in any of these experiments indicating that the
observed insulinomimetic biological effects of C-pep-
tide (Fig.1 and 2) probably involve divergent signal-
ling pathways proximal to Akt.

Effect of C-peptide on Rsk phosphorylation. We next
examined the effect of C-peptide on another signal-
ling step proximal to metabolic effects, i.e. phospho-
rylation of Rsk. As expected, insulin increased Rsk
phosphorylation in L6 myoblasts (3.8-fold increase
with 10 nmol/l insulin) (Fig.5A) and in L6 myotubes
(not shown). Incubation with C-peptide, with concen-
trations as low as 0.3 nmol/l also stimulated Rsk phos-
phorylation (2.6-fold). In contrast, scrambled C-pep-
tide (up to 30 nmol/l) had no effect on Rsk phospho-
rylation. We also assessed activation of Rsk by assess-
ing its enzyme activity, using the p70S6 Rsk substrate
(RRRLSSLRA). C-peptide, at 0.3 and 3 nmol/l, led
to similar Rsk activation as did insulin (10 and 100
nmol/l) in L6 myoblasts (Fig. 5B). Results from these
two different assays can only be compared qualita-
tively because different methodologies were used.
The effect on the overall phosphorylation status of
p90Rsk was assessed (Fig.5A). Phosphorylation of a
generic Rsk fragment as a substrate was measured
(Fig.5B). Combination of submaximally effective in-
sulin concentration (10 nmol/l) and C-peptide (0.1
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Fig.5 (A, B). C-peptide activates p90Rsk in L6 myoblasts. Se-
rum-starved confluent monolayers of L6 myoblasts were incu-
bated with 10 nmol/l insulin, with C-peptide (0.3, 3 and 10
nmol/l), or with scrambled C-peptide (0.3 nmol/l). Cell lysates
were separated on Ready gel, transferred to nitrocellulose
membrane and immunoblotted with anti-phospho-p90Rsk an-
tibody (A) Arrow indicates the position of phosphorylated
P90Rsk. Arbitrary density units (control = 1.0) are shown for
each condition. Rsk activity was also assessed using p70S6
Rsk substrate (RRRLSSLRA) as described in Methods (B).
Results are expressed as Means = SEM of three experiments.
**p < 0.01, *p < 0.05 vs. control

and 3 nmol/l) increased the Rsk activity slightly more
than that achieved with 10 nmol/l insulin alone.

Effect of C-peptide on MAPK phosphorylation. Bio-
logical actions of insulin in skeletal muscle are medi-
ated by a complex interplay of multiple signalling cas-
cades [13]. One of these insulin-activated signalling
pathways involves the stimulation of phosphorylation
and activation of MAPK or extracellular regulated
kinase (ERK). Our results show that both insulin (10
and 100 nmol/l) and C-peptide (between 0.3 and 10
nmol/l) increased phosphorylation of MAPK in
L6 myoblasts (Fig.6A and B). To confirm that these
observations were not limited to L6 cells, we also as-
sessed MAPK activation in differentiated 3T3-L1 ad-
ipocytes (Fig.6C). Incubations with either insulin or
C-peptide did not significantly alter ERK protein ex-
pression in those cells (not shown). When the results
are expressed as phosphorylated MAPK/ERK? ratio,
in 3T3-L1 adipocytes, pre-incubation with insulin led
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Fig.6 (A-C). C-peptide stimulates MAPK activation in
L6 myoblasts and 3T3-L1 fibroblasts. L6 myoblasts (A) or
3T3-L1 cells (C) were incubated with various concentrations
of insulin, C-peptide and a combination of insulin with C-pep-
tide for 10 min. Cell lysates were separated on Ready gel,
transferred to nitrocellulose membrane and immunoblotted
anti-phospho-MAPK antibody (phospho-MAPK indicated by
arrow). Quantitation of data (four separate experiments in
L6 myoblasts) is shown as Means + SEM for each condition
normalized for control (=100%); ***p <0.001, **p < 0.01,
*p < 0.05 vs control (B)
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to a 4-fold to 8-fold increase, while incubation with
C-peptide led to a 1.5-fold to 4-fold increase in
L6 myoblasts and 3T3-L1 adipocytes.

Effect of C-peptide on PI 3-kinase activity. To assess
the potential role of PI3Ks in C-peptide stimulation
of glycogen synthesis in L6 myoblasts, we examined
glycogen synthesis in the presence of a PI3 K inhibi-
tor. Wortmannin (100 nmol/l) completely abolished
the C-peptide-, insulin- as well as the combination of
C-peptide/insulin-stimulated  glycogen  synthesis
(Fig.7) indicating the involvement of wortmannin-
sensitive class 1A or 3 PI3Ks in the C-peptide-stimu-
lated glycogen synthesis [23]. Direct demonstration
of the effect of C-peptide on class 1A PI3 K activity
is seen in Figure 8. In an insulin-responsive, differen-
tiated 3T3-L1 adipocyte system used as a control sys-
tem, insulin stimulated the PI3 K activity associated
with tyrosine-phosphorylated proteins (approximate-
ly a 5-fold stimulation at 100 nmol/l). C-peptide (100
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Fig.7. C-peptide-stimulated glycogen synthesis in L6 myo-
blasts is wortmannin sensitive but pertussis toxin independent.
Monolayers of confluent L6 myoblast cells were serum-starved
for 16 h and pretreated with either wortmannin (100 nmol/l)
for 30 min or with pertussis toxin (1 ug/ml) for 4 h and then in-
cubated with insulin (100 nmol/l), with C-peptide (0.3 nmol/l),
or with insulin and C-peptide combinations for 1 h. Glycogen
synthesis was assessed by measuring p-['*C]-glucose incorpora-
tion into glycogen. Results are plotted as Means + SEM of four
separate experiments (each in quadruplicate) and normalized
with respect to control (=100%). ***p <0.001, **p < 0.01,
*p < 0.05 vs control

nmol/l) also increased (approximately 2-fold) PI3 K
activity in these anti-phosphotyrosine immunopre-
cipitates. Pre-incubation of adipocytes with EGF
had no effect on PI3 K activity (Fig.8A). In a sepa-
rate experiment shown in Figure 8B, C-peptide at
concentrations of 1, 10, and 100 nmol/l increased PI3
K activity in a dose-dependent manner. When the as-
says were done in the presence of wortmannin, PI3 K
activity was completely abolished (Fig.8B). The com-
bination of submaximal concentrations of C-peptide
(0.5 nmol/1) with submaximal insulin (1 and 10 nmol/l)
increased PI3 K activity by 54 % and 19 %, respec-
tively, above that seen with insulin (10 nmol/l) alone
(not shown). To measure the C-peptide effect, exper-
iments were done in L6 myoblasts using the maximal-
ly effective concentrations (100 nmol/1) of insulin and
C-peptide. We found that C-peptide increased the ac-
tivation of PI3 K by about 60% (Fig.8C and D) but
our assay only assessed the activity of that small por-
tion of PI3 K that associates with anti-phosphotyro-
sine immunoprecipitates (about 1 — 4% of the total
PI3 K activity).

Effect of C-peptide on IRS-1 phosphorylation. To
study the upstream mediator of C-peptide-induced
PI3 K activation, we examined the effect of C-peptide
on IRS-1 tyrosine phosphorylation. We treated
L6 myoblasts with C-peptide (0.3 and 3 nmol/l) or in-
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Fig.8 (A-D). Effect of C-peptide on phosphotyrosine-pro-
tein-associated PI 3-kinase activity in 3T3-L1 adipocytes. 3T3-
L1 fibroblasts were differentiated into adipocytes. Following
serum deprivation, the cells were incubated with 100 nmol/l of
insulin, C-peptide, or EGF for 10 min at 37°C (A), with various
concentrations of C-peptide (1, 10, 100 nmol/l) in the presence
or absence of 20 nmol/l wortmannin, WT (B), or with 100
nmol/l of insulin or C-peptide (panel C). PI3 K activity was de-
termined in the anti-phosphotyrosine immunoprecipitates as
described in Methods. Autoradiographs of TLC plates of rep-
resentative experiments (out of three with similar results) are
shown. Quantitation of data from C is shown in D (two experi-
ments in duplicates). ***p < 0.001, **p < 0.01 vs control

sulin (10 and 100 nmol/l), corresponding to the sub-
maximal and maximal effective doses, respectively, as
determined in the glycogen synthesis and amino acid
uptake experiments (Fig.1 and 2). Cell lysates were
immunoprecipitated with anti-IRS-1 antibody and
the resulting immunocomplexes were subjected to im-
munoblotting with anti-phosphotyrosine antibody. No
tyrosine phosphorylation of IRS-1 was detected in
control cells whereas insulin stimulated tyrosine phos-
phorylation of IRS-1 fivefold to sixfold (Fig.9). C-
peptide at both 0.3 and 3 nmol/l also significantly in-
creased tyrosine phosphorylation of IRS-1 (by 50 and
180%, respectively) suggesting that activation of
IRS-1 is involved in C-peptide signalling pathway.
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Fig.9 (A, B). Effect of C-peptide on IRS-1 phosphorylation.
Serum-starved confluent L6 myoblasts were treated with C-
peptide (0.3, 3 nmol/l) or insulin (10, 100 nmol/l). The cell ly-
sates were immunoprecipitated with anti-IRS-1 antibody and
subjected to immunoblot analysis using anti-phosphotyrosine
antibody. The phosphorylated IRS-1 appears as a band of
about 165 kD. Arbitrary density units (control = 1.0) are indi-
cated for each condition (A). Quantitation of data (three sepa-
rate experiments) is shown as Means + SEM for each condi-
tion normalized for control (=100%) ***p<0.001,
**p < 0.01, *p < 0.05 vs control (B)

Effect of C-peptide on receptor tyrosine kinase. Bind-
ing to the receptor and activation of the insulin recep-
tor tyrosine kinase activity (IR-TKA) initiate the bio-
effects of insulin. Because C-peptide increased glyco-
gen synthesis and amino acid uptake in insulin-re-
sponsive cells, we tested the ability of C-peptide to
stimulate TKA in solubilised, wheat germ aggluti-
nin-purified extracts from L6 myocyte membranes.
Insulin, as expected, stimulated TKA 2.2- (10 nmol/l)
to 4.5-fold (100 nmol/l) (Fig.10A). C-peptide by itself
also increased TKA of the extracts in a dose-depen-
dent manner. The bell-shaped concentration re-
sponse, with maximum effects occurring between 1
and 10 nmol/l, is depicted in Figure 10A. The 1.8-
fold-2.6-fold, statistically significant increase in
TKA caused by C-peptide, was similar to the one
stimulated by 10 nmol/l insulin. Concentrations of C-
peptide leading to the maximum TKA were thus in
the range seen physiologically and in our glycogen
synthesis and amino acid uptake experiments (Figs.
1 and 2). Scrambled C-peptide sequence by itself
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had no effect on TKA (experiments with 3 nmol/l
shown in Fig.10A). Scrambled C-peptide on its own
or with insulin, with C-peptide, or with a combination
of insulin and C-peptide had no effect on TKA (not
shown). When compared with submaximally effec-
tive insulin (10 nmol/l) concentration, the combina-
tion of insulin and C-peptide increased TKA of the
L6 myoblast membrane extracts over that of either li-
gand alone (Fig.10B). These results suggest that the
insulinomimetic effects of C-peptide in L6 cells could
be initiated by activation of TKA. To determine
whether IR contributes to the TKA stimulation in
these experiments by C-peptide, we used immuno-
precipitated IRs (from the WGA-purified membrane
preparation using an antibody against IR-a-subunit)
in an in vitro kinase assay. As expected, insulin stimu-
lated IR-TKA (Fig. 10C). C-peptide (0.3 and 3 nmol/l)
exerted a twofold stimulation of IR-TKA. Combina-
tion of submaximal insulin (10 nmol/l) and C-peptide
(0.3 nmol/l) concentrations increased IR-TKA to the
same degree as either ligand alone scrambled C-pep-
tide had again no effect (Fig. 10C).

Effect of C-peptide on insulin receptor autophos-
phorylation. In our experiments C-peptide increased
autophosphorylation of IR in HIRcB cells [14]. We
extended this earlier observation to the more physio-
logically relevant L6 myoblasts. C-peptide (0.3 and 3
nmol/l) increased IR phosphorylation on tyrosine
residues threefold to fourfold (Fig.11), an effect of
C-peptide which was considerably weaker than that
of insulin concentrations used in the assays testing
the more distal elements of insulin signalling (10, 100
nmol/l). These data suggest that the C-peptide-in-
duced TKA (Fig.10) could at least partly be due to
IR present in the L6 membrane preparations. There
was no increase in the tyrosine phosphorylation of
the receptor’s -subunit when scrambled C-peptide
was used (not shown). We did not find any significant
additivity of insulin and C-peptide on tyrosine phos-
phorylation of IR.

Effect of pertussis toxin on C-peptide stimulated gly-
cogen synthesis. Because the putative specific C-pep-
tide receptor might be pertussis toxin-sensitive, G-
protein-coupled [8], we used pertussis toxin to deter-
mine its effect on C-peptide stimulated glycogen syn-
thesis. Wortmannin inhibited both insulin- and C-
peptide glycogen synthesis but no effect was seen
with pertussis toxin in L6 myoblasts (Fig.7).

Discussion

This study shows that C-peptide, at physiological con-
centrations, mimics insulin effects such as glycogen
synthesis and amino acid uptake in rat muscle cells.
Addressing the specificity of the C-peptide effects,
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we show that a scrambled C-peptide sequence does
not have any of the insulin-like effects of the native
molecule. C-peptide also stimulates 3-O-methylglu-
cose transport in human skeletal muscle strips [9,
10]. To identify the mechanism for C-peptide signal
transduction, we investigated the effects of C-peptide
in an insulin-sensitive system, focusing on intermedi-
aries of the known insulin signalling pathways. Insu-
lin signalling is initiated by insulin binding to IR, fol-
lowed by receptor autophosphorylation and activa-
tion of IR-TKA, resulting in tyrosine phosphoryla-
tion of several cytosolic substrates, such as the IRS
proteins [12, 13]. Subsequently, activation of PI3 K
plays a central role in regulating glucose transport
and glycogen synthesis. We first confirmed that insu-
lin (10-100 nmol/l) activated IR autophosphorylation
and TKA as well as several elements of its signal
transduction pathway, culminating in increased gly-
cogen synthesis and amino acid uptake in L6 myo-
blasts and myotubes. C-peptide, at physiological con-
centrations (generally between 0.3 and 3 nmol/l in
our assays), mimics qualitatively the effects of insulin.
An exception was Akt (protein kinase B), where C-
peptide had no effect according to three different
methods in L6 cells. Akt is believed to be necessary
for the insulin-induced activation of glycogen synthe-
sis in L6 myotubes [24]. Stimulation of glycogen syn-
thase by insulin is mediated by dephosphorylation
through the activation of PP1G and inhibition of
GSKa3, which, in turn, is inhibited by phosphoryla-
tion. There are at least three plausible kinases which
could phosphorylate GSK3 or PP1G: p70S6 kinase,
p90Rsk and Akt. Our data suggest that C-peptide
stimulates glycogen synthesis without activating Akt.
Whether this response is mediated by a p70S6k-de-
pendent or p90Rsk-dependent or both [25] and Akt-
independent pathway(s) is being investigated. Be-
cause of the presence of additional mechanisms (e.g.
stimulation of PPG1) for regulation of glycogen syn-
thesis only qualitative comparisons can be drawn be-
tween our data on C-peptide effect on glycogen syn-
thesis and GSK3 phosphorylation.

o
‘

Fig.10 (A-C). C-peptide activates tyrosine kinase in L6 myo-
tubes. Receptors partially purified from L6 plasma membranes
were incubated with insulin, C-peptide, scrambled C-peptide
(A) or combination of insulin and C-peptide (B). TKA of re-
ceptors was assayed by phosphorylation of the synthetic sub-
strate poly (Glu*Tyr!) in the presence of [y-*?P]-ATP. In sepa-
rate experiments, cell lysates were immunoprecipitated with
anti-IR antibody and immunocomplexes were captured with
protein G/protein A-agarose. TKA of this preparation was as-
sayed as described above (C). Results are shown as Means
+ SEM of three separate experiments (each in quadruplicate)
and normalized with respect to control (=100%).
#i%p < 0.001, **p < 0.01, *p < 0.05 vs control (A, C); p < 0.05
vs every sample, #p < 0.05, ##p < 0.01 vs insulin, 10 nmol/l (B)
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Fig.11. Effect of C-peptide on autophosphorylation of the L6
insulin receptor. Serum-deprived confluent L6 myoblasts
were incubated with C-peptide (0.3, 3 nmol/l) or with insulin
(10, 100 nmol/1). Cell lysates were immunoprecipitated with
anti-IR S-subunit antibody and then immunoblotted using
anti-phosphotyrosine antibody. The phosphorylated IR S-sub-
unit is shown as a band of about 95 kD in the representative au-
toradiograph. Arbitrary density units (control = 1.0) are indi-
cated for each condition

Even though the cellular and tissue effects of C-
peptide and its beneficial effects in Type I diabetic
patients and in animal models have been reported,
the molecular underpinnings for these observations
are not known [3-6]. There are at least four distinct
possibilities for explaining our data. Firstly, C-pep-
tide effects could result from direct binding to, and
activation of, a specific C-peptide receptor. Although
the presence of such a receptor has not been unequiv-
ocally proven, a putative receptor has been found [2,
8]. Investigations suggest that the C-peptide receptor
is a surface entity probably coupled to its signal trans-
duction pathway by a G protein. The latter hypothe-
sis is based on the blunted C-peptide effects by per-
tussis toxin. We cannot rule out this possibility even
though our preliminary data do not indicate any ef-
fect of pertussis toxin on C-peptide-stimulated glyco-
gen synthesis in L6 myoblasts.

The second possibility for explaining our data is
that C-peptide activates the IR. The lack of C-peptide
stimulation of glycogen synthesis in the parental rat 1
fibroblasts (which contain few IR) but robust effects
in HIRcB (overexpressing human IR, not shown) cells
suggest a role of IR in mediating the C-peptide effect.
Given the structural differences between insulin and
C-peptide, interaction with IR would need to occur
with an a-subunit domain distinct from that responsi-
ble for insulin binding to IR. Alternatively, a plasma
membrane perturbation caused by C-peptide could
lead indirectly to a conformational change of the IR
leading to activation of its S-subunit i.e. its auto-
phosphorylation and activation of TK. The fact that
only submaximal concentrations of both C-peptide
and insulin are additive suggests that at least some ele-
ments of the signalling pathways used by these ligands
are shared. Interestingly, in smooth muscle arterioles
the effect of C-peptide on arteriolar dilation was pot-
entiated in the presence of low insulin concentrations
alone [26]. They concluded that the C-peptide interac-
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tion with insulin is biologically important and concen-
tration dependent. This interaction might be missing
in patients treated solely with insulin replacement.

The third possibility for explaining our data is a
combination of the two above explanations: interac-
tion of C-peptide with its cognate membrane recep-
tor and with a specific domain of the IR. A fourth ex-
planation is an interaction of C-peptide with another
cell surface receptor such as the IGF-1 receptor.
Both IGF-1 and C-peptide share structural domains,
which could form the basis for cross talk between
their signalling pathways. We have already shown
that C-peptide replacement normalizes both IGF
and IGF-1 receptor expression [6, 27].

To recapitulate the arguments of the long-standing
controversy about the very presence of a specific C-
peptide receptor is beyond the scope of this paper [2,
8]. Specific C-peptide binding by the conventional ra-
dioimmunoassay has not been shown. The introduc-
tion of the sensitive FCS technique allowed specific
C-peptide binding to human cells to be shown [8].
The low receptor density made the use of the relative-
ly crude radioligand assays difficult, a situation which
can be compared with that of the galanin receptor.
Overexpression of the galanin receptor made it possi-
ble to show high-affinity binding sites by a convention-
al method in addition to the use of FCS [28].

A lack of TK stimulation by C-peptide in muscle
strips from healthy and diabetic subjects has been re-
ported [10]. C-peptide did, however, increase glucose
transport into those muscle strips [9]. It is not clear
whether tissue or species or technical differences ac-
count for the difference of our observations.

When we look at the respective insulin and C-pep-
tide concentration response curves, we should re-
member that 10 nmol/l insulin is typically necessary
to document statistically significant responses in in
vitro systems. Higher insulin concentrations increase
the effect, with 100-1000 nmol/l resulting in the max-
imal stimulation of a response tested in the various
assays. In contrast, considerably less C-peptide, on a
molar basis, is sufficient to elicit insulin-like respons-
es, even though these are less robust quantitatively
than those seen with insulin alone. Peaks of C-pep-
tide responses are reached at about 0.3-3 nmol/l. In-
terestingly, half saturation of the putative C-peptide
receptor occurs at 0.3 nmol/l and full saturation at 0.9
nmol/l of the peptide [8], i. e. concentrations found ful-
ly effective in the L6 cell system used in the present re-
port. In contrast to insulin, higher doses of C-peptide
(> 10 nmol/l) blunt the stimulatory responses. Any
extrapolation of these observations into mammalian
physiology is, of course, premature but the addition
of low C-peptide and low insulin concentrations could
be advantageous for fuel storage. Conversely, in the
postprandial situation, in the presence of exuberant
insulin release, the concomitant higher C-peptide lev-
els could blunt insulin’s peripheral effects.
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In summary, in insulin-sensitive rat L6 myoblasts
(as well as in differentiated myocytes), C-peptide in
physiological amounts mimics several of insulin’s bio-
effects. Signal transduction pathways tested here are
activated by C-peptide alone and are similar to those
used by insulin with exception of Akt phosphoryla-
tion. Once the C-peptide receptor is cloned and se-
quenced, details of the molecular interaction be-
tween the insulin and C-peptide signalling pathways
will be clearer.
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