
Mutations in the hepatocyte nuclear factor-1a (HNF-
1a) gene and HNF-4a gene cause maturity onset dia-
betes of the young (MODY)-3 [1] and MODY1 [2],
respectively. Hepatocyte nuclear factor-1a belongs
to a family of homeodomain-containing transcription
factors and its expression is regulated by HNF-4a [3].
Clinical studies have shown MODY1 and MODY3
are caused predominantly by insulin secretory failure
[4, 5]. When insulin secretion was examined in step-
ped glucose infusion studies [4, 5], non-diabetic
MODY1 and MODY3 mutation carriers showed re-
duced insulin secretory responses to glucose. Con-
versely, another report showed that in a non-diabetic
carrier of the MODY3 mutation, the insulin secreto-
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Abstract

Aims/hypothesis. To explain the mechanisms where-
by mutations in the HNF-1a gene cause insulin secre-
tory defects.
Methods. A truncated mutant HNF-1a (HNF-
1a288t) was overexpressed in hepatoma cells
(HepG2) and murine insulinoma cells (MIN6) using
a recombinant adenovirus system and expression of
the HNF-1a target genes and insulin secretion were
examined.
Results. Expression of phenylalanine hydroxylase
and a1-antitrypsin genes, the target genes of HNF-
1a, was suppressed in HepG2 cells by overexpression
of HNF-1a288t. In MIN6 cells, overexpression of
HNF-1a288t did not change insulin secretion stim-
ulated by glucose (5 mmol/l and 25 mmol/l) or
leucine (20 mmol/l). Potentiation of insulin secretion
by arginine (20 mmol/l, in the presence of 5 mmol/l
or 25 mmol/l glucose) was, however, reduced
(p < 0.0001 and p = 0.027, respectively). Similarly re-

duced responses were observed when stimulated
with homoarginine. Expression of the cationic amino
acid transporter-2 was not reduced and insulin secre-
tory response to membrane depolarization by
50 mmol/l KCl was intact.
Conclusion/interpretation. The HNF-1a288t, which is
structurally similar to the mutant HNF-1a expressed
from the common MODY3 allele, P291fsinsC, exerts
a dominant negative effect. Suppression of HNF-1a
in MIN6 cells severely impaired potentiation of insu-
lin secretion by arginine, whereas glucose-stimulated
and leucine-stimulated insulin secretion was intact.
Our findings delineate the complex nature of beta-
cell failure in patients with MODY3. This cell model
will be useful for further investigation of the mecha-
nism of insulin secretory defects in these patients.
[Diabetologia (1999) 42: 887±891]
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ry response to an intravenous glucose load was not
impaired, but exaggerated [6]. It is also reported that
in a non-diabetic MODY1 mutation carrier, insulin
secretion in response to sustained hyperglycaemia
(11.1 mmol/l) or bolus glucose infusion was intact
[7]. These observations suggest that glucose-stimulat-
ed insulin secretion is not impaired in certain condi-
tions in the carriers of MODY1 and MODY3 muta-
tions. The mechanism underlying this apparent dis-
crepancy has not been explained.

One common MODY3 mutation of the HNF-1a
gene, P291fsinsC, apparently results in the expression
of a truncated protein, which retains the dimerization
and the DNA binding domains, but lacks the tran-
scriptional activation domain. This mutant protein is
likely to exert dominant negative effects on target
gene transcriptional activation, since the mutant pro-
tein dimerizes with intact HNF-1a, or another related
partner HNF-1b, producing a transactivationally in-
active heterodimer [8]. Here, to produce a culture
cell model and study the molecular mechanism of in-
sulin secretory defects in HNF-1a deficient MODY3
beta cells, we constructed a recombinant adenovirus
and efficiently expressed a mutant HNF-1a, HNF-
1a288t, which was structurally similar to that ex-
pressed from the P291fsinsC MODY3 mutant allele,
in culture cells. The effect of HNF-1a288t overex-
pression on target gene transcription and insulin se-
cretion were studied using this model.

Materials and methods

Plasmid construction. Mouse HNF-1a cDNA (Genbank acces-
sion no. M57 966) and mouse cationic amino acid transporter-2
(mCAT2) cDNA [9] were obtained from MIN6 cells by reverse
transcription (RT)-PCR. The mouse HNF-1a expression plas-
mid (pcDNA-mHNF-1a) was constructed by cloning a coding
region of mouse HNF-1a cDNA into pcDNA3 (Invitrogen,
Carlsbad Calif., USA). The expression plasmid for the truncat-
ed HNF-1a (pcDNA-mHNF-1a288 t) was constructed by clon-
ing a partial cDNA fragment with a termination codon after
the 288th codon.

The reporter plasmid (pGL3-TK-bfib3) was designed to
have three copies of HNF-1a binding sites (TGTCAAATAT-
TAACTAAAGGG) in tandem in front of the herpes simplex
virus thymidine kinase promoter, followed by the firefly lu-
ciferase gene.

Reporter assay. To HeLa cells, pcDNA-mHNF-1a or pcDNA-
mHNF-1a288 t was cotransfected with pGL3-TK-bfib3 and
pCMVb (Clontech, Palo Alto, Calif., USA) by the lipofection
method using TransIT-LT1 (PanVera Corporation, Madison,
Wis., USA) according to the supplier's protocols. Luciferase
assay was carried out 48 h after transfection. Luciferase activi-
ty was normalized for transfection efficiency based on b-galac-
tosidase activity.

Adenovirus mediated gene transduction. Recombinant adeno-
viruses AdexlCAmHNF-1a288 t and AdexlCAlacZ, encoding
Escherichia coli b-galactosidase, was constructed as described

previously [10]. Adenovirus infection was done as described
in [11] at a multiplicity of infection (MOI) of 10±20 pfu/cell,
unless otherwise specified.

Semiquantification of a1-antitrypsin and phenylalanine hy-
droxylase mRNA. We extracted RNA from HepG2 cells
3 days after viral infection. The RT-PCR was carried out using
specific primer sets (5 ¢-GAA GAA GTT GGT GCA TTG
GC-3 ¢ + 5 ¢-TTG GAT GGC TGT CTT CTC C-3 ¢ for phenyl-
alanine hydroxylase (PAH), 5 ¢-AAT GCC GTC TTC TGT
CTC G-3 ¢ + 5 ¢-CGC TCT TCA GAT CAT AGG TTC C-3 ¢
for a1-antitrypsin (a1-AT), and 5 ¢-ATG TGC AAG GCC
GGC TTC GCG GGC GAC G-3 ¢ + 5 ¢-CAG CCA GGT
CCA GAC GCA GGA TGG CAT G-3 ¢ for b-actin) in the
presence of [a-32P] dCTP. Equal aliquots of PCR products
were electrophoresed through non-denaturing 5 % polyacryl-
amide gel. Radioactivities of the specific products were quanti-
fied using a BAS 2000 phosphor imager (Fuji Film, Tokyo, Ja-
pan).

Insulin release assay. Insulin secretion from MIN6 cells was
measured by the static incubation method. After preincuba-
tion for 30 min in HEPES-balanced Krebs-Ringer bicarbonate
buffer supplemented with 0.5 % bovine serum albumin (KRB-
HB) and 5 mmol/l glucose, the media were replaced with
KRB-HB containing various secretagogues. After a further
2 h incubation at 37 °C, media were collected and immunore-
active insulin was measured by RIA using rat insulin as a stan-
dard. The amounts of insulin secreted were corrected by the
amounts of cell protein in each well.

Statistical analysis. Data are presented as means ± SEM. The
statistical significance of differences between mean values
was assessed using the unpaired-Student's t test, or Mann
Whitney's U-test whenever appropriate. P-values less than
0.05 were considered significant.

Results

Truncated HNF-1a exerts a dominant negative effect
on target gene expression. The HNF-1a288t was de-
fective in promoter activation. When pcDNA-
mHNF-1a was cotransfected with pGL3-TK-bfib3,
luciferase activity increased 6.9 ± 1.9 fold. In contrast,
pcDNA-mHNF-1a288 t increased luciferase activity
only 1.3 ± 0.2 fold.

With the recombinant adenovirus AdexlCA-
HNF-1a288t, the mutant HNF-1a was efficiently
overexpressed in culture cells when examined by
western blot analysis (data not shown). We then ex-
amined the effect on target gene expression in
HepG2 cells. After 3 days of infection with Adexl-
CA-HNF-1a288t at MOI of 30, expression of the
PAH and a1-AT genes, which is largely dependent
on HNF-1a in hepatocytes [12], was suppressed to
10 and 25 % of controls, respectively (Fig.1). In con-
trast, under this condition, the expression of b-actin
was not changed. Thus, overexpression of HNF-
1a288t suppressed expression of PAH and a1-AT
genes, via a dominant negative effect on intrinsic
HNF-1a.
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Expression of dominant negative HNF-1a impairs
arginine induced insulin secretion from MIN6 cells.
We then overexpressed HNF-1a288t in MIN6 cells.
As shown in Fig.2, at 5 mmol/l glucose, insulin secre-
tion from MIN6 cells overexpressing truncated
HNF-1a (MIN6±288t) (105.5 ± 12.2 ng/ng protein)
did not differ from that from MIN6 cells overexpress-
ing b-galactosidase (MIN6-lacZ) (112.0 ± 11.2 ng/ng
protein) (p = 0.215). Insulin secretion at 25 mmol/l
glucose was increased by 11.8 ± 1.0 fold (MIN6±
288t) and 9.4 ± 0.7 fold (MIN6-lacZ) compared with
that of MIN6-lacZ at 5 mmol/l glucose, without sig-
nificant difference (p = 0.060). In the presence of
5 mmol/l glucose l-leucine (20 mmol/l) also increased
insulin secretion to the same extent in both cells
(p = 0.505).

In contrast to the responses to glucose and leucine,
potentiation of insulin secretion by l-arginine was se-
verely impaired. In the presence of 5 mmol/l glucose,
20 mmol/l l-arginine potentiated insulin secretion
from MIN6-lacZ cells (8.08 ± 0.50 fold). This potenti-
ation was, however, nearly abolished in MIN6±288t
cells. Similarly, diminished potentiation of insulin se-
cretion was observed for arginine at 25 mmol/l glu-
cose and for homoarginine, a non-metabolizable argi-
nine analogue. One of the mechanisms by which argi-
nine potentiates insulin secretion is direct depolariza-
tion of the beta-cell membrane potential through up-
take of cationic amino acids into cells [13]. Thus, we
examined the insulin secretory response to mem-
brane depolarization by 50 mmol/l KCl, but found
no statistically significant difference.

To exclude the possibility that the impairment of
arginine potentiation of insulin secretion is due to ad-
enovirus infection, we repeated the experiments at
various MOIs. Potentiation of insulin secretion by
arginine was severely impaired in cells infected with
Ade � 1CA-HNF-1a288t even at a MOI of 1.6,
whereas it was not altered in cells infected with
Ade � 1CA-lacZ even at a MOI as high as 36 (data
not shown).

Expression of insulin, GLUT2 and cationic amino
acid transporter mRNA in MIN6 cells expressing
dominant negative HNF-1a. It has been suggested
that HNF-1a affects the expression of insulin and
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Fig. 1.A,B Dominant negative effect of HNF-1a288 t on target
gene expression in HepG2 cells. Messenger RNA for phenyl-
alanine hydroxylase (PAH), a1-antitrypsin (a1-AT) and actin
were semiquantified by the RT-PCR method. The experiments
were repeated twice and essentially the same results were ob-
tained. Representative data are shown. A Amounts of RT-
PCR products for each PCR cycle. B Representative autorad-
iogram. PAH: at 20 cycles, a1-AT: at 10 cycles, actin: at 20 cy-
cles. A Adex1CA-lacZ (MOI 10), Adex1CA-lacZ (MOI
30), Adex1CA-HNF1a-288 t (MOI 10), & Adex1CA-
HNF1a-288 t (MOI 30)

Fig. 2. Effects of HNF-1a288 t overexpression on insulin secre-
tory responses of MIN6 cells. After 5 days of recombinant ade-
novirus infection, insulin secretion was measured by the static
incubation method as described in Materials and methods. In
each set of experiments, 5 mmol/l glucose stimulation was in-
cluded and responses of MIN6-lacZ or MIN6±288 t cells to
each secretagogue were expressed as fold increases from the
values obtained from MIN6-lacZ cells with 5 mmol/l glucose
stimulation (112.0 ± 11.2 ng/ng protein). Each assay was done
in triplicate wells and values are means + SEM of at least 3 ex-
periments. 5G: 5 mmol/l glucose, 25G: 25 mmol/l glucose, L:
20 mmol/l l-leucine, A: 20 mmol/l l-arginine, HA: 20 mmol/l
homoarginine, 50 K: 50 mmol/l KCl. * p < 0.0001, **
p = 0.027, *** p = 0.0024. A MIN6-lacZ, R MIN6±288t



GLUT2 genes [14, 15], but no differences in their
mRNA expression was observed between
MIN6±288t and MIN6-lacZ cells (Fig.3 and data not
shown). The cationic amino acid transporter CAT2
was suggested to be involved in the potentiation of in-
sulin secretion by arginine [13]. No reduction in
CAT2 mRNA was, however, observed in MIN6±288t
cells (Fig.3).

Discussion

We first showed that overexpression of the truncated
HNF-1a, HNF-1a288t, suppressed target gene
(PAH and a1-AT) expression in hepatoma cells.
This effect is attributable to a dominant negative ef-
fect of the mutant HNF-1a on the intrinsic HNF-1a.
We then studied the effects of decreased HNF-1a
function on insulin secretion.

In MIN6±288t, impairment of arginine-stimulated
insulin secretion was striking. Potentiation of insulin
secretion by arginine was barely detectable at either
the basal (5 mmol/l) or a high (25 mmol/l) glucose
concentration. Arginine is a potent potentiator of in-
sulin secretion in the presence of glucose, although
the mechanism is still not clear. Nitric oxide, which
is generated from arginine, was proposed as a media-
tor of insulin secretion [16] but this is controversial
[13, 17]. A more favoured hypothesis is that the up-
take of cationic amino acids directly depolarizes the

beta-cell membrane and triggers insulin secretion
[13, 18]. Recently, the high capacity, low affinity cat-
ionic amino acid transporter, CAT2 was suggested to
mediate the potentiation of insulin secretion [13].
The expression of CAT2 mRNA in MIN6±288t cells
was, however, not decreased, but increased com-
pared with MIN6-lacZ cells (Fig.3). Thus, impaired
potentiation is not simply explained by decreased
arginine transport by CAT2. Insulin secretion evoked
by direct membrane depolarization by 50 mmol/l
KCl was not impaired in MIN6±288t cells (Fig.2),
suggesting that the insulin secretory pathway was in-
tact after depolarization of this membrane. These re-
sults indicate that undefined mechanisms other than
direct membrane depolarization may account for
the potentiation of insulin secretion by arginine, and
the pathway is likely to be impaired in MIN6±288t
cells.

In MIN6±288t cells, glucose-stimulated insulin se-
cretion was not impaired under our experimental
conditions, in which the glucose concentration was
changed rapidly and sustained for 2 h. Leucine, which
stimulates insulin secretion through intracellular me-
tabolism and ATP generation, also stimulated insulin
secretion to the same extent as control MIN6-lacZ
cells. The results indicate that the basic machinery
necessary for glucose-stimulated insulin secretion is
intact. Our results were unexpected given those of
earlier clinical studies [5] and pancreas perfusion
and perifusion studies of islets from diabetic HNF-
1a (±/±) mice [19]. Insulin secretory defects in human
MODY3 patients seems not to be simple. Although
insulin secretion was impaired in some patients with
MODY3 [5], another report described a non-diabetic
carrier of a MODY3 mutation, in whom the insulin
response to an intravenous glucose load was some-
what exaggerated, despite the response to an oral glu-
cose load being lower than in controls [6]. It is also
noteworthy that in a non-diabetic MODY1 mutation
carrier, insulin secretion in response to sustained hy-
perglycaemia (11.1 mmol/l) or bolus glucose infusion
was not impaired [7]. Because the expression of
HNF-1a is regulated by HNF-4a [3], mechanisms of
beta-cell failure in MODY1 patients probably over-
lap those of MODY3 patients. These findings indi-
cate that in certain circumstances, glucose-stimulated
insulin secretion is intact in beta cells of MODY1/3
patients as in MIN6±288t cells under our experimen-
tal conditions. Insulin secretion from the islets of
HNF-1a ( ± ) mice was normal [19]. In the
MIN6±288t cells, transcriptional activity of HNF-1a
is likely to be suppressed by overexpression of the
dominant negative mutant HNF-1a. One possible ex-
planation for the normal glucose-stimulated insulin
secretion in HNF-1a ( ± ) mouse islets and
MIN6±288t cells is that in murine beta cells, glucose-
stimulated insulin secretion is less sensitive to the de-
creased HNF-1a activity than in human beta cells. A
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Fig. 3. Expression of CAT2 and insulin mRNA in MIN6±288 t
and MIN6-lacZ cells. After viral infection for 5 days, total cel-
lular RNA was isolated. Twenty micrograms of RNA from
MIN6±288 t cells (lane 1) or MIN6-lacZ cells (lane 2) were
electrophoresed, blotted onto a nylon membrane and probed
sequentially with 32P-labelled cDNA probes. Positions of ribo-
somal RNA are indicated. In addition to the 7±9 kb major
CAT2 transcript, approximately 4 and 5 kb minor transcripts
were also detected in MIN6 cells. Experiments were repeated
three times independently and representative data are shown



changed expression pattern of the transcription regu-
lators in the MIN6 insulinoma cells could also be the
factor. It is also possible that the insulin secretory re-
sponse from HNF-1a deficient beta cells remains rel-
atively intact when there is a rapid increase in glucose
concentration, or prolonged exposure to a high glu-
cose concentration as under our experimental condi-
tions (2 h at 25 mmol/l) but is impaired in response
to a gradual increase in glucose concentration.

Clearly, the molecular mechanisms of beta-cell
dysfunction in the MODY3 patients are complex. As
a transcription factor, HNF-1a, regulates expression
of the multiple genes in beta cells. Although the tar-
get genes are still not well defined, they are probably
involved in multiple steps from secretagogue stimula-
tion to insulin secretion and also possibly in insulin
biosynthesis. The expression of two possible target
genes, the GLUT2 and the insulin genes, was not im-
paired in MIN6±288t cells (Fig.3 and data not shown)
and HNF-1a (±/±) mice [19] and thus their expression
is probably less dependent on HNF-1a in beta cells.
Insulin secretion from MIN6±288t cells is clearly ab-
normal in respect to arginine potentiation. Insulin
secretory response to arginine was also diminished
in non-diabetic MODY1 subjects with a mutation in
the HNF-4a gene [7] and in HNF-1a (±/±) mouse is-
lets [19]. Therefore, MIN6±288t cells could represent
at least a part of the beta cells in MODY3 patients.
The molecular mechanism whereby the suppressed
HNF-1a function leads to insulin secretory defects
observed in MIN6±288t cells and in beta cells from
MODY3 patients, is not fully understood. Elucidat-
ing the mechanisms underlying these unique insulin
secretory defects and their link to the MODY3 phe-
notype would facilitate further understanding of the
regulation and maintenance of normal beta-cell func-
tion. It may lead to the discovery of another key ele-
ment in the regulation of beta-cell function, abnor-
malities of which play a role in the more common
form of type 2 diabetes mellitus.
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