
Although improved metabolic control of maternal di-
abetes has reduced the rate of complications during
pregnancy, the incidence of congenital malformations
is still increased in children of insulin-dependent-dia-
betic (IDDM) mothers [1±4]. The mechanisms by
which maternal diabetes disrupts embryonic develop-
ment are not completely understood, but the risk of
fetal malformation is strongly correlated to the ma-
ternal glucose concentration [2±4]. Maternal levels
of triglycerides, b-hydroxybutyrate and branched
chain amino acids are also of importance for the oc-
currence of fetal dysmorphogenesis [5]. In the em-
bryo, disturbed metabolism of sorbitol, inositol,
arachidonic acid and prostaglandins has been demon-
strated in experimental diabetic pregnancy and
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Summary An excess of reactive oxygen species
(ROS) has been associated with the increased rate of
congenital malformations in experimental diabetic
pregnancy. Previous in vitro and in vivo studies show
that antioxidants can protect the embryonic develop-
ment in a diabetic environment. In the present inves-
tigation we examined the antiteratogenic capacity of
vitamin C, an antioxidative agent not previously eval-
uated as a dietary supplement in diabetic pregnancy.
Normal and streptozotocin diabetic rats were either
fed a standard diet or a diet enriched with 0.9, 1.8 or
4% sodium ascorbate throughout pregnancy. On ges-
tational day 20, the litters of normal and diabetic rats
without vitamin C supplement contained 9 and 12%
early resorptions, 2 and 17% late resorptions and 1
and 27% malformations, respectively. Vitamin C
treatment reduced the rates of late resorptions and
malformations in the diabetic groups in proportion
to the dose administered. Thus, in the diabetic group
with 4% ascorbate treatment we found unchanged

numbers of early resorptions, but only 7 % late re-
sorptions (p < 0.05 vs untreated diabetic pregnancy)
and 8% malformations (p < 0.05 vs untreated diabet-
ic pregnancy). Maternal diabetes did not alter tissue
levels of ascorbic acid in the fetuses at term, whereas
vitamin C treatment caused accumulation of ascorbic
acid in the placenta, maternal and fetal liver. Vita-
min C supplementation yielded increased a-toco-
pherol concentration in the placenta and caused a re-
duction of the high concentrations of thiobarbituric
acid reactive substances (TBARS) in serum of preg-
nant diabetic rats. Vitamin C treatment reduces the
rates of congenital malformations and late resorp-
tions, thereby supporting that ROS are involved in
the embryonic dysmorphogenesis of diabetic preg-
nancy. [Diabetologia (1997) 40: 1416±1424]
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should have teratologic significance [6]. In addition,
excess embryonic reactive oxygen species (ROS) has
been implicated in the aetiology of diabetes-induced
congenital malformations [6].

In diabetic pregnancy, experimental studies have
indicated increased production of ROS [7, 8] and re-
duced concentrations of a-tocopherol [9] in embry-
onic tissues. We and others have shown that the dis-
turbed development of embryos in a diabetic milieu
can be normalised by treatment with different antiox-
idants both in vitro and in vivo [7, 9±19]. These com-
pounds include N-acetylcysteine, reduced glu-
tathione (GSH) ester, superoxide dismutase, cata-
lase, glutathione peroxidase, butylated hydroxytolu-
ene, lipoic acid and vitamin E ± a variety of substan-
ces with essentially only antioxidative capacity in
common. Notably, ascorbate (vitamin C) has not
been previously studied in this context.

Ascorbic acid concentrations in tissues and plas-
ma are reported to be decreased in both animals
and humans with diabetes [20±23]. Vitamin C acts as
an antioxidant to protect cellular components from
ROS induced damage [24, 25]. In addition, ascorbic
acid plays an important role in many biochemical
processes, such as collagen synthesis [26], cholesterol
synthesis [27, 28] and iron absorption [29]. Ascorbic
acid is synthesized from D-glucose in most species,
with the exception of primates and guinea pigs [30].
Transport of vitamin C through biological mem-
branes is facilitated by glucose transporters, especial-
ly GLUT1 [31±33], and hence, hyperglycaemia has
been shown to reduce placental transport of ascorbic
acid to the fetus [34, 35]. Ascorbic acid is a water sol-
uble antioxidant, and has the potential to scavenge
the superoxide and hydroperoxyl radicals, which are
physiological ROS [36]. In addition, ascorbic acid
may function as a chain-breaking antioxidant in the
lipid phase by an interaction with lipid soluble anti-
oxidants such as vitamin E and coenzyme Q [36,
37]. Ascorbate is the primary antioxidant to be con-
sumed in plasma exposed to oxidative stress [38,
39], and ascorbate is regarded as the most important
scavenger of oxygen radicals in the aqueous phase
[25]. However, in the presence of transition metals,
ascorbate auto-oxidizes in vitro, and superoxide for-
mation occurs [40]. The significance of the prooxi-
dant activity in vivo is unclear [41], mainly due to
low concentrations of free metal ions under physio-
logical conditions [42] and high concentrations of ur-
ate in plasma which inhibits ascorbate auto-oxidation
[43].

By testing the hypothesis that ROS excess is in-
volved in the aetiology of diabetes-induced dysmor-
phogenesis, we investigated whether supplementa-
tion of the maternal diet with ascorbate may restore
or normalize the disturbed embryonic development
in diabetic pregnancy. Ascorbate has been used
previously in the treatment of several diabetic

complications [44±47], but has not yet been evaluated
in the field of diabetic embryopathy.

Materials and methods

Animals. A local malformation-prone strain of Sprague-Daw-
ley rats was used in the experiments [48]. The rats were sub-
jected to a 12/12 h light/dark cycle and had free access to tap
water and laboratory chow (see below). Some of the virgin fe-
male rats were made manifestly diabetic (MD) by a single in-
travenous injection of streptozotocin (STZ 40 mg/kg, a gift
from Pharmacia & Upjohn, Kalamazoo, Mich., USA) 1±
2 weeks before mating with non-diabetic males of the same
strain. Untreated virgin females served as normal, non-diabet-
ic controls (N). Manifest diabetes was defined as a serum glu-
cose concentration exceeding 20 mmol/l (Glucose Analyser 2;
Beckman Instruments Inc., Fullerton, Calif., USA) 1 week af-
ter the STZ injection. All experimental procedures involving
animals were approved by the animal ethics committee of the
Medical Faculty of Uppsala University.

Treatment with vitamin C. The rats were given powdered rat
chow supplemented with sodium ascorbate (Merck, Darm-
stadt, Germany) at the concentrations 0.9, 1.8 or 4 % (wt/wt,
cf. Fig. 1). The food was prepared by blending ascorbate into
ground rat chow (R36; Lactamin AB, Stockholm, Sweden).

Induction and course of pregnancy. One week after the STZ in-
jection the rats were mated overnight and the morning that
sperm were found in the vaginal smear was designated gesta-
tional day 0. On gestational day 20 the pregnant rats were an-
aesthetised with ether and then blood was collected from the
abdominal aorta (Fig. 1). Serum was prepared by centrifuga-
tion and immediately frozen in liquid nitrogen. The maternal
livers were dissected, weighed, and stored at − 135 °C after rap-
id freezing in liquid nitrogen. The uterine horns were cut open
and carefully inspected to reveal all implantations, both viable
and non-viable, regardless of size. Viable fetuses and their pla-
centae were weighed and the fetuses were examined for gross
malformations, as previously outlined [49]. Briefly, viable fe-
tuses were denoted malformed when they showed facial abnor-
malities (mainly micrognathia), absence of tail, omphalocele,
cranial anomalies, or other gross malformation. Inspection of
the resorbed sites yielded a cut-off diameter of 4 mm, which di-
vided the resorptions into those with no identifiable fetal tis-
sues (diameter < 4 mm, essentially only a lump of non-mater-
nal tissue, these were denoted ªearly resorptionsº), and those
with one or more identifiable tissues (diameter > 4 mm, pla-
centa and often embryo-fetus identifiable, denoted ªlate re-
sorptionsº). The fetal liver, brain and heart were randomly col-
lected from four viable fetuses in each litter. If malformed fe-
tuses were present in a litter, 1±2 of them were used for organ
collection.

Chemical analysis. Maternal liver, placenta and fetal tissues of
N, NC 4 %, MD and MDC 4 % groups were homogenized in
double distilled water at a concentration of 200 g/l. These ho-
mogenates and maternal serum were used for determination
of lipid peroxidation (thiobarbituric acid reactive substances,
TBARS), ascorbic acid and a-tocopherol. The chemicals used
in the study were purchased from Merck.

Analysis of ascorbic acid. Quantification of ascorbic acid was
performed according to Jagota and Dani [50]. Initially 200 ml of
serum, tissue homogenate or standard preparations of ascorbic
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acid was precipitated with 800 ml trichloroacetic acid on ice for
5 min and centrifuged at 3000 rev/min. Thereafter, 500 ml of
the supernatant was diluted to 2 ml with double distilled water,
and 200 ml of Folin-Ciocalteus reagent, diluted in double dis-
tilled water (1 :9), was added. After 10 min the absorbance of
the samples was measured at 760 nm with a Beckman DU-65
Spectrophotometer (Beckman Instruments Inc.).

Analysis of a-tocopherol. To estimate the content of a -toco-
pherol, 500 ml of the tissue homogenate or serum in water was
initially diluted with an aliquot of 500 ml methanol. The sample
was manually shaken for 3 min with 2 ml of hexane in a Teflon
capped glass tube and then centrifuged. For fetal samples, the
hexane phase was concentrated 10 times by drying under a
stream of nitrogen and dilution in 200 ml of hexane. Subse-
quently, 100 ml of the hexane phase was analysed by normal
phase HPLC by injection into a 5 mm Spherisorb amino col-
umn (4.6 × 250 mm, Phase Separation Ltd, Deeside, UK) at a
flow rate of 1 ml/min. The eluent was isocratic isooctane/tert-
butyl-methyl-ether/methanol (75/25/0.5). The effluent was
monitored with a Shimadzu RF-10 A Fluorometer (Shimadzu
Corporation, Kyoto, Japan) at excitation wavelength 295 nm
and emission wavelength 327 nm. a -Tocopherol eluted at ap-
proximately 4.5 min.

Analysis of TBARS. TBARS was determined by a modified
version of the method described by Mihara et al. [51]. Initially,
200 ml of the tissue homogenate or serum was boiled with
750 ml phosphoric acid (0.19 mol/l), 250 ml thiobarbituric acid
(42 mmol/l) and 300 ml double distilled water for 60 min. After
boiling the samples were precipitated with an aliquot of meth-
anol/NaOH (91/9, 1 mol/l NaOH) and centrifuged for 5 min.
The supernatant was measured fluorometrically at excitation
wavelength 532 nm and emission wavelength 553 nm (Perkin
Elmer LS 5B luminescence spectrophotometer; Perkin Elmer
Ltd, Beaconsfield, Buckinghamshire, UK). Standards were
prepared from malonyldialdehydbis(dietylacetal) and were
treated identically as the tissue homogenates.

Statistical analysis. Mean ± SEM for the treatment groups was
calculated from litter means. Significant differences between
and within groups were estimated from litter means by analysis
of variance (ANOVA) with the applied test of Fishers Protect-
ed Least Significant Difference ad modum Winer [52], or the
Mann-Whitney U-test [53]. Significance levels are given in
each table legend. A numerical difference between means
which yielded a p -value in the range of 0.05 to 0.1 was denoted
ªtendencyº in the text. The statistical analyses were performed
using the program StatView (version 4.02) for Macintosh.

Results

Maternal status. On the day of conception, the mean
weight of the rats in the diabetic groups tended to
be smaller than the mean weight of those in the nor-
mal groups (Table 1). During pregnancy the diabetic
groups gained less weight than the normal groups,
regardless of diet. The ascorbate addition to the
diet did not appear to have any negative effects on
animal health, food consumption, or weight gain.
The liver weight was increased in the diabetic
groups compared to the normal groups. Again, this
was not affected by ascorbate treatment. The serum
glucose concentration of the STZ-diabetic rats was
elevated about six times compared to that of the
normal rats. Ascorbate treatment did not exert any
consistent effect on serum glucose concentrations
(Table 1).

Outcome of pregnancy. The mean number of implan-
tations per litter were similar in all groups regardless
of diabetes and ascorbate treatment (Table 2). The
total numbers of resorptions were increased in all
the diabetic groups, and no consistent effect of ascor-
bate treatment could be identified (Table 2). Com-
paring early and late resorptions, however, revealed
that the early resorption rate was similar in the nor-
mal and diabetic groups, whereas the rate of late re-
sorptions was increased in the MD group (Table 3).
Ascorbate treatment did not affect early resorptions
but decreased the frequency of late resorptions in
the diabetic groups (Table 3). The malformation
rate was increased in the diabetic groups compared
to the normal groups, as expected, but was decreased
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Table 1. Maternal body weight on gestational day 0, day 20 and the weight gain during pregnancy, maternal liver weight and serum
glucose by the interruption of pregnancy at gestational day 20

Group n Weight day 0 (g) Weight day 20 (g) Weight gain (g) Liver weight (g) Glucose (mmol/l)

N 10 259 ± 5 349 ± 11 90 ± 8 10.2 ± 0.3 5.7 ± 0.2
NC 1.8 % 4 262 ± 7 250 ± 6 88 ± 8 10.5 ± 0.8 5.7 ± 0.2
NC 4% 6 260 ± 5 363 ± 5 103 ± 7 10.6 ± 0.5 6.6 ± 0.2
MD 15 255 ± 4 294 ± 6c 42 ± 4c 13.1 ± 0.9b 35.3 ± 1.0c

MDC 0.9% 6 258 ± 7 297 ± 13c 39 ± 10c 13.3 ± 0.8b 30.5 ± 1.3c, e

MDC 1.8% 14 247 ± 3a 300 ± 9c 54 ± 8c 13.2 ± 0.5b 34.6 ± 0.3c

MDC 4% 11 254 ± 5 302 ± 9c 47 ± 10c 12.5 ± 0.4b 38.5 ± 1.2c, d

Normal and diabetic rats with standard diet (N and MD) or
with 0.9 % (MDC 0.9 %), 1.8 % (NC 1.8 % and MDC 1.8 %) or
4 % (NC 4 % and MDC 4 %) ascorbate added to the diet. Da-
ta are presented as mean ± SEM. n = number of observations

Statistical analysis with ANOVA: a p < 0.05 vs N; b p < 0.01 vs
N; c p < 0.001 vs N; d p < 0.05 vs MD; e p < 0.01 vs MD

Fig.1. Experimental design



by ascorbate treatment. The decrease of the malfor-
mation rate was proportional to the increase in
ascorbate dose in the diet. Micrognathia accounted
for 79% of all malformations, although it was never
found in any of the normal groups, as previously ob-
served [48]. Cranial skeletal anomalies (micro-
gnathia, exencephaly, short nose, distorted mid face
with protruding forehead) accounted for 87% of
the malformations, whereas absence of tail (11%),
and omphalocele (2%) were much less common.
Ascorbate treatment prevented micrognathia in a
dose-dependent manner (data not shown), whereas

the other anomalies were too few to allow a statisti-
cal analysis. Altogether, the data show that ascor-
bate treatment decreases the rates of malformations
and late resorptions, but not early resorptions
(Fig.2).

Fetal and placental weights. Fetuses from diabetic
groups were found to be smaller than fetuses from
normal groups (Table 4). Vitamin C treatment did
not affect fetal weight. The placental weight tended
to be increased in diabetic groups compared to nor-
mal groups. Vitamin C treatment did not affect pla-
cental weight in the normal groups, but 4 % vitamin C
supplementation tended to reduce the increase of
placental weight in the diabetic group (Table 4).

Organ weights. The fetal organ weight per body
weight did not differ between morphologically nor-
mal and malformed fetuses, therefore, the data were
combined (Table 5). The relative weight of fetal liver
did not differ between the N and MD groups, whereas
the fetal brain was slightly smaller in the MD group
compared to the N group. Vitamin C treatment tend-
ed to increase these organ weights in the MDC group.
In marked contrast, the relative weight of the fetal
heart was increased in the diabetic groups compared
to the normal groups and vitamin C treatment did
not normalize this difference (Table 5).
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Table 2. Outcome of pregnancy on gestational day 20

Litters
No.

Impl
No.

Res
No.

Malf
No.

Mean
Impl/litter

Mean
Res/litter

Mean
Malf/litter

Res %/
litter

Malf %/
litter

N 10 109 12 1 10.9 ± 0.9 1.2 ± 0.7 0.1 ± 0.1 11.2 ± 6.7 1.2 ± 1.2
NC 1.8 % 4 47 7 0 11.7 ± 0.6 1.7 ± 1.1 0 16.7 ± 11.3 0
NC 4% 7 73 8 1 10.4 ± 2.0 1.1 ± 0.3 0.1 ± 0.1 16.2 ± 4.9 1.0 ± 1.0
MD 15 164 53 26 10.9 ± 0.8 3.5 ± 0.8a 1.7 ± 0.3c 29.3 ± 5.6b 27.2 ± 6.6c

MDC 0.9% 6 66 17 8 11.0 ± 1.0 2.8 ± 0.9 1.3 ± 0.3b 25.1 ± 7.2 18.2 ± 5.6b

MDC 1.8% 14 144 22 14 10.3 ± 0.9 1.6 ± 0.4d 1.0 ± 0.3b 17.9 ± 5.0 12.8 ± 3.8a

MDC 4% 11 116 28 8 10.5 ± 0.7 2.5 ± 0.7 0.7 ± 0.3d 23.7 ± 5.4 8.1 ± 2.9d

Normal and diabetic rats with standard diet (N and MD) or
with 0.9 % (MDC 0.9 %), 1.8 % (NC 1.8 % and MDC 1.8 %)
or 4 % (NC 4 % and MDC 4 %) ascorbate added to the diet.
Implantations, resorptions and malformations are given as

absolute number, mean number per litter and mean proportion
per litter (%), the two later categories as mean ± SEM.
Statistical analysis with Mann-Whitney U-test: a p < 0.05 vs N;
b p < 0.01 vs N; c p < 0.001 vs N; d p < 0.05 vs MD

Table 3. Early and late resorptions on gestational day 20

Impl
No.

Early res
No.

Late res
No.

Early res/
litter

Late res/
litter

% Early
res/litter

% Late
res/litter

N 109 10 2 1.0 ± 0.5 0.2 ± 0.2 9.2 ± 4.7 2.0 ± 2.0
NC 1.8 % 47 5 2 1.3 ± 0.6 0.5 ± 0.5 11.7 ± 6.4 5.0 ± 5.0
NC 4% 73 6 2 0.9 ± 0.1 0.3 ± 0.2 13.9 ± 5.1 2.3 ± 1.5
MD 164 22 31 1.5 ± 0.5 2.1 ± 0.4c 11.7 ± 3.9 17.5 ± 2.8b

MDC 0.9% 66 9 8 1.5 ± 0.6 1.3 ± 0.6a 12.5 ± 4.9 12.6 ± 4.9a

MDC 1.8% 144 13 9 0.9 ± 0.2 0.6 ± 0.3e 12.2 ± 4.6 5.7 ± 2.8e

MDC 4% 116 20 8 1.8 ± 0.5 0.7 ± 0.2d 17.2 ± 4.2 6.6 ± 2.2d

Normal and diabetic rats with standard diet (N and MD) or
with 0.9 % (MDC 0.9 %), 1.8 % (NC 1.8 % and MDC 1.8 %)
or 4 % (NC 4 % and MDC 4 %) ascorbate added to the diet.
Number of implantations, early and late resorptions are given

as absolute number, mean number per litter and mean propor-
tion per litter (%)
Statistical analysis with Mann-Whitney U-test: a p < 0.05 vs N;
b p < 0.01 vs N; c p < 0.001 vs N; d p < 0.05 vs MD; e p < 0.01 vs
MD

Table 4. Fetal and placental weight on gestational day 20

n Fetal weight
(g)

Placental weight
(g)

N 10 3.87 ± 0.05 0.56 ± 0.03
NC 1.8 % 4 3.65 ± 0.05 0.50 ± 0.01
NC 4% 7 3.74 ± 0.07 0.60 ± 0.04
MD 15 2.62 ± 0.09c 0.66 ± 0.01b

MDC 0.9% 5 2.81 ± 0.13c 0.63 ± 0.03
MDC 1.8% 14 2.79 ± 0.10c 0.63 ± 0.03
MDC 4% 11 2.72 ± 0.07c 0.61 ± 0.02

Normal and diabetic rats with standard diet (N and MD) or
with 0.9 % (MDC 0.9 %), 1.8 % (NC 1.8 % and MDC 1.8 %) or
4 % (NC 4 % and MDC 4 %) ascorbate added to the diet. Da-
ta are presented as mean ± SEM. n = number of observations
Statistical analysis with ANOVA: b p < 0.01 vs N; c p < 0.001 vs N



Biochemical analysis. We were unable to detect any
biochemical difference with regard to concentration
of vitamin C, vitamin E, or TBARS between mal-
formed and non-malformed fetuses within each
group, which allowed the data on the fetal outcome
to be combined without regard to morphology of the
fetus. The biochemical estimation in tissues of un-
treated rats (N and MD groups) and their offspring
revealed the lowest ascorbic acid concentrations in
placenta and the highest in fetal brain (Table 6). Ma-
ternal and fetal liver had similar ascorbic acid con-
centration. For a-tocopherol, the order of tissue con-
centration was: maternal liver > placenta > fetal
brain > fetal liver, which is opposite that of TBARS
in the same tissues (Table 6). Compared to maternal
liver, maternal serum had low concentration of ascor-
bic acid and a -tocopherol, but similar concentration
of TBARS (Table 6).

In maternal serum, diabetes did not affect ascorbic
acid concentration, but increased a -tocopherol levels
and tended to increase TBARS concentration.
Ascorbate treatment of the diabetic rats yielded in-
creased ascorbic acid concentration and decreased
TBARS levels in serum (Table 6). In maternal liver,
diabetes did not affect any of the measured substan-
ces, whereas ascorbate treatment increased ascorbic
acid and reduced TBARS concentrations in the
MDC 4% group (Table 6). In the placenta, diabetes
did not alter the levels of any of the estimated
compounds. In both NC 4 % and MDC 4 % groups
ascorbate treatment increased ascorbic acid and a -
tocopherol levels in the placenta of the diabetic rats

(tendency for a-tocopherol in NC 4%), but did not
affect TBARS concentration (Table 6). In fetal brain,
maternal diabetes increased a -tocopherol and
TBARS levels, whereas ascorbate treatment of the
mother did not change any of the studied parameters,
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Fig.2. Outcome of pregnancy on gestational day 20 in the dif-
ferent experimental groups. The numbers of early resorptions,
late resorptions, and malformations are expressed in percent
of the total number of implantations in each group. Normal
and diabetic rats (N and MD) supplemented with 0.9, 1.8 or
4 % of ascorbate in the diet (MDC 0.9 % or NC 1.8 % and
MDC 1.8 % or NC 4 % and MDC 4 %, respectively)

Table 5. Relative organ weight on gestational day 20

n Liver/fetal
weight (mg/g)

Brain/fetal
weight (mg/g)

Heart/fetal
weight (mg/g)

N 10 45 ± 1 78 ± 1 5.4 ± 0.2
NC 1.8 % 4 44 ± 1 71 ± 3a 5.5 ± 0.3
NC 4% 7 44 ± 1 78 ± 12 5.7 ± 0.2
MD 13 45 ± 1 73 ± 1a 6.5 ± 0.2c

MDC 0.9% 5 48 ± 2 77 ± 4 6.4 ± 0.1b

MDC 1.8% 14 50 ± 1b e 73 ± 2 7.0 ± 0.3c

MDC 4% 11 48 ± 1 78 ± 2d 6.3 ± 0.2b

Normal and diabetic rats with standard diet (N and MD) or
with 0.9 % (MDC 0.9 %), 1.8 % (NC 1.8 % and MDC 1.8 %)
or 4 % (NC 4 % and MDC 4 %) ascorbate added to the diet.
Data are presented as fetal organ weight per fetal body weight,
mean ± SEM. n = number of observations
Statistical analysis with ANOVA: a p < 0.05 vs N; b p < 0.01 vs
N; c p < 0.001 vs N; d p < 0.05 vs MD; e p < 0.01 vs MD

Table 6. Estimation of contents of vitamin C, vitamin E, and
TBARS in maternal serum, maternal liver, placenta, fetal
brain, fetal liver

n Ascorbic acid
(mg/ml)

a -Tocopherol
(mg/ml)

TBARS
(nmol/ml)

Maternal serum
N 10 14 ± 5 3 ± 1 10 ± 1
NC 4% 6 17 ± 2 6 ± 1 7 ± 1
MD 12 19 ± 7 9 ± 2a 15 ± 2
MDC 4% 10 38 ± 4c d 11 ± 2b 8 ± 2d

Maternal liver
N 10 190 ± 14 83 ± 10 12 ± 0.3
NC 4% 6 463 ± 24c 95 ± 7 11 ± 0.3
MD 12 180 ± 28 87 ± 12 12 ± 0.9
MDC 4% 10 468 ± 49c f 96 ± 8 10 ± 0.3a

Placenta
N 10 46 ± 5 9 ± 1 20 ± 2
NC 4% 5 151 ± 13c 14 ± 1 20 ± 1
MD 12 50 ± 11 9 ± 1 19 ± 3
MDC 4% 10 149 ± 11c f 16 ± 3b e 20 ± 2

Fetal brain
N 10 605 ± 20 2 ± 0.5 54 ± 3
NC 4% 6 561 ± 31 3 ± 0.7 50 ± 5
MD 11 580 ± 14 3 ± 0.4a 66 ± 3b

MDC 4% 11 629 ± 31 3 ± 0.4 63 ± 3

Fetal liver
N 10 192 ± 9 0.7 ± 0.2 68 ± 5
NC 4% 6 238 ± 25b 0.7 ± 0.3 80 ± 12
MD 10 163 ± 18 0.9 ± 0.3 411 ± 27c

MDC 4% 11 279 ± 18c f 0.6 ± 0.1 354 ± 27c

Normal and diabetic rats with standard diet (N and MD) or
with 4 % ascorbate (NC 4 % and MDC 4 %) added to the
diet. Data are presented as mean ± SEM (n ).
Statistical analysis with ANOVA: a p < 0.05 vs N; b p < 0.01 vs
N; c p < 0.001 vs N; d p < 0.05 vs MD; e p < 0.01 vs MD;
f p < 0.001 vs MD



not even ascorbic acid concentrations (Table 6). In fe-
tal liver we found extremely low a -tocopherol levels
(less than 1% of the concentration in maternal liver).
No change in ascorbic acid or a-tocopherol levels was
caused by diabetes, but a pronounced increase in
TBARS concentration was detected in the MD off-
spring. Ascorbate treatment increased ascorbic acid
concentration, did not affect a -tocopherol concentra-
tion, but tended to decrease the elevated TBARS lev-
els in the offspring of diabetic rats (Table 6).

Discussion

The current report shows that vitamin C treatment of
pregnant streptozotocin diabetic rats has the poten-
tial to prevent congenital malformations as well as re-
sorptions occurring in the later part of gestation. The
rate of malformations in the diabetic group given
4% ascorbate in the present study (8.1%) is com-
parable to the rates we previously demonstrated in
diabetic rats supplemented with 2% vitamin E
(5.5% malformations) or 1% BHT (2.3% malforma-
tions) [9, 14]. The doses of vitamin E and BHT are of
similar molar concentration, whereas the ascorbate
molar dose is approximately four times that of vita-
min E and BHT. Thus, it appears that the water solu-
ble antioxidant requires higher doses in order to
have a similar effect as the previously tested lipid sol-
uble antioxidants. Assuming that these three antioxi-
dants have the same antioxidative capacity per mole-
cule, the results may suggest that the oxidative pro-
cess damaging the embryogenesis is mainly confined
to the lipid compartment of the cell.

The ascorbate treatment diminished the malfor-
mation rate, but also decreased the occurrence of
larger resorptions. The latter represents implanted
conceptii which died in the later part of pregnancy,
presumably due to severe lethal malformations. This
notion is supported by findings of malformations in
early pregnancy but only resorptions at term in off-
spring exposed to excess mannose in utero [54]. As-
suming that a large proportion of these are due to dis-
turbances in the development of the heart ± which is
suggested by the persistent cardiac hypertrophy in fe-
tuses of diabetic rats found in this and other studies [9,
55, 56], as well as by the increased cardiac malforma-
tion rate in human diabetic pregnancy [57] ± we can
suggest a unifying concept for the diabetic dysmor-
phogenesis by identifying the neural crest cell popula-
tion as a specific vulnerable cell population. A large
proportion of the diabetes-induced viable malforma-
tions in this study are likely to be of neural crest origin
(micrognathia, and some other facial anomalies), and
the late resorptions may represent other, more severe,
neural crest cell defects, leading to hampered devel-
opment of the great vessels and the fetal heart [58].
The effect of the anti-teratogenic treatment would be

to block oxidative damage in this cell population. In-
deed, this notion is supported by earlier results in vit-
ro, where antioxidant treatment (N-acetylcysteine)
diminished the disrupting effect of high glucose on
embryonic neural crest cell development [59].

On the other hand, the small early resorptions are
likely to be the result of other aetiologic processes
than the late resorptions, since they are only margin-
ally increased in frequency, if at all, by the maternal
diabetic state, and they remain unaffected by the
ascorbate treatment. In this study, the small resorp-
tions seem to represent a strain-related defect in early
embryonic development [60].

The measurement of maternal and fetal anti-oxi-
dative status at term rather than during organogene-
sis when the dysmorphogenesis is likely to be induced
[56, 61, 62] was dictated by the necessity to recognize
the malformations, which in the majority of cases is
possible only towards the end of gestation. This ap-
plies to micrognathia and other gross malformations.
Also, we were interested in studying the effects of
the ascorbate treatment, and to find out if a putative
imbalance of fetal and maternal antioxidative param-
eters during early pregnancy would have a discernible
correlation in the late gestation. Finding such a fetal
or maternal parameter (e.g. in maternal serum) could
be of clinical importance, since a large proportion of
human malformations present themselves for the first
time at birth or in late pregnancy, when there is no
possibility of acquiring a sample from the organoge-
netic period.

The biochemical changes estimated in the different
maternal and fetal compartments/organs displayed
marked variations, both with regard to diabetes and
ascorbate treatment. Thus, the maternal diabetic state
did not cause decrease of ascorbate levels, as has been
described by other authors [20±23]. Another, some-
what paradoxical, effect of the diabetic state was the
slight increase in a -tocopherol concentration in ma-
ternal serum and fetal brain tissue. These results
have been encountered previously in studies of vita-
min E administration to pregnant diabetic rats [9,
15], and should be related to the high lipid concentra-
tion of the maternal diabetic serum, as well as in the
fetal brain [63], thereby allowing a large amount of
a -tocopherol to be dissolved in the particular com-
partments. A compensatory reaction to a diabetes-in-
duced state of oxidative stress, as revealed by the in-
creased TBARS levels in maternal serum and fetal
tissue, may also have contributed to the accumulation
of a -tocopherol in maternal serum and fetal brain.

If the measurements of a -tocopherol did not al-
ways display an expected pattern, the effect of ascor-
bate treatment was more predictable. Thus, in almost
all tissues we found increased ascorbate levels after
administration of the antioxidant to the mother, irre-
spective if she was diabetic or not. In the placenta,
there was evidence of an interaction between the
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antioxidants, since the ascorbate-treated animals
showed increased a -tocopherol concentration. Last-
ly, the TBARS concentration was decreased in mater-
nal serum, and tended to be in fetal liver, by ascor-
bate administration. The results support the notion
that ascorbate is readily transported to the conceptus,
taken up by the embryonic and fetal tissues, and
thereby exerts an antioxidative (and developmentally
beneficial) effect in the offspring.

It is evident that diabetes can cause ROS-induced
damage in embryonic and fetal tissue [9, 64], and
that antioxidants can prevent this damage [9]. The
presence of excess radicals has been indicated in vitro
in embryonic tissue exposed to high glucose concen-
trations [7, 8]. The suggested source for the ROS has
been the embryonic mitochondria [8, 65], and the ef-
fect of the antioxidative agents would be to block
the oxidative damage caused. Recently, however, an-
other compound, the reactive oxo-aldehyde 3-de-
oxyglucosone (3-DG), a strong glycating agent [66],
was implicated as a bridging teratogen in hyperglyce-
mia-induced dysmorphogenesis in vitro [67]. This
compound is much more reactive than glucose, and
able to modify proteins to form AGE-like com-
pounds, which may have profound effects on embryo-
genesis, unless enough compensatory forces, such as
sufficient antioxidative capacity, are present in the
embryo. Since the teratogenic effect of 3-DG can be
diminished by antioxidants in vitro [67], it is possible
that vitamin C may have exerted some of its effects
by counteracting the glycating action of 3-DG, an is-
sue which is currently under investigation.

We found no signs of toxicity with the doses used in
the present study, thereby providing support for the
feasibility of an anti-teratogenic antioxidant therapy
in diabetic pregnancy. If antioxidative treatment with
ascorbate will become a clinical entity in the future,
the potential prooxidative activity of vitamin C has
to be considered carefully. In the presence of free met-
als, ascorbic acid can induce radical damage, both in
vitro [40] and in vivo in patients with idiopathic hae-
mochromatosis and iron overload [41]. Since free
metals are essential for the prooxidative effect, the
question arises whether there are sufficient amounts
of unbound metals in diabetic individuals to induce
autooxidation of ascorbic acid. Glycation of proteins
occurs in diabetes, and the binding capacity of trans-
ferrin to iron is reduced when this transport protein
is glycated [68]. On the other hand, the relevance of
glycation in vivo has been questioned [69]. To our
knowledge, there are at present no reports showing a
prooxidative effect of ascorbic acid in vivo in diabetes
(without haemochromatosis). Due to the potential
use of ascorbic acid in future prophylactic therapies,
these questions need to be further addressed.

In conclusion, we have shown that vitamin C
supplementation to the diet exerts antioxidative ef-
fects in pregnant diabetic rats and restores fetal

development, i. e. decreases the occurrence of late re-
sorptions and malformations in the litters. Further-
more, the data support that the mechanisms causing
early and late resorptions are different. Excess ROS
apparently contribute to the aetiology of diabetic
complications in pregnancy, and this finding may indi-
cate a direction for future preventive treatments.
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