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Abstract
Aims/hypothesis As microRNA-21 (miR-21) plays a patho-
logical role in fibrosis, we hypothesised that it may be a
therapeutic target for diabetic nephropathy.
Methods Abundance of miR-21 was examined in diabetic
kidneys from db/db mice. The therapeutic potential of miR-
21 in diabetic kidney injury was examined in db/db mice by
an ultrasound-microbubble-mediated miR-21 small hairpin
RNA transfer. In addition, the role and mechanisms of miR-
21 in diabetic renal injury were examined in vitro under

diabetic conditions in rat mesangial and tubular epithelial
cell lines by overexpressing or downregulating miR-21.
Results In db/db mice, a mouse model of type 2 diabetes,
renal miR-21 at age 20 weeks was increased twofold com-
pared with db/m+ mice at the same age, and this increase was
associated with the development of microalbuminuria and
renal fibrosis and inflammation. More importantly, gene trans-
fer of miR-21 knockdown plasmids into the diabetic kidneys
of db/db mice at age 10 weeks significantly ameliorated
microalbuminuria and renal fibrosis and inflammation at age
20 weeks, revealing a therapeutic potential for diabetic ne-
phropathy by targeting miR-21. Overexpression of miR-21 in
kidney cells enhanced, but knockdown of miR-21 suppressed,
high-glucose-induced production of fibrotic and inflammatory
markers. Targeting Smad7 may be a mechanism by which
miR-21 regulates renal injury because knockdown of renal
miR-21 restored Smad7 levels and suppressed activation of
the TGF-β and NF-κB signalling pathways.
Conclusions/interpretation Inhibition of miR-21 might be
an effective therapy for diabetic nephropathy.

Keywords Diabetic nephropathy . MicroRNA-21 . TGF-β
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Abbreviations
DN Diabetic nephropathy
Dox Doxycycline
MC Mesangial cell
MCP Monocyte chemotactic protein
miR-21 MicroRNA-21
miR-21 KD miR-21 knockdown
NF-κB Nuclear factor κB
shRNA Small hairpin RNA
siRNA Small interfering RNA
TβRII TGF-β receptor II
TEC Tubular epithelial cell
UTR Untranslated region
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Introduction

Diabetes is a chronic metabolic syndrome due to insulin
deficiency, and its vascular complications are responsible
for morbidity and mortality in diabetic patients. Diabetic
nephropathy (DN) is a major complication of diabetes that
leads to end stage renal disease. Among numerous media-
tors of DN [1, 2], TGF-β1 is the key one [3]. In vitro studies
have shown that induction of extracellular matrix produc-
tion by high glucose and AGE is TGF-β-dependent [3].
Results from animal models of both type 1 and type 2
diabetes confirm that TGF-β is an essential mediator of
diabetic kidney injury [3]. Targeting TGF-β signalling
should have therapeutic potential against DN. However,
blockade of TGF-β signalling may induce inflammation,
as Tgfb1 knockout mice die from massive inflammation
[4]. Alternative approaches to inhibiting TGF-β action
during DN should be developed in an attempt to protect against
renal injury.

Recently, numerous studies have demonstrated that TGF-β
regulates specific microRNAs, influencing renal fibrosis in
kidney diseases [5–9]. MicroRNA-21 (miR-21) is the most
significant microRNA involved in fibrotic disorders, and its
levels are upregulated in human kidney diseases [5, 10, 11]. In
a previous study, we demonstrated that TGF-β1 increases
miR-21 content during renal fibrosis via a Smad3-dependent
mechanism [7]. Suppression of miR-21 abundance in a mouse
model of obstructive kidney disease ameliorates renal fibrosis
and halts the progression of renal fibrosis in an established
obstructive nephropathy [7, 12], revealing a therapeutic po-
tential for miR-21 knockdown in kidney diseases.

Thus, in this study, we hypothesised that targeting miR-
21 may have therapeutic potential for DN. First, we deter-
mined whether knockdown of miR-21 in vivo would halt
the progression of renal injury in db/db mice. We deter-
mined the role of miR-21 in high-glucose-induced renal
fibrosis and inflammation by altering miR-21 levels in kid-
ney cells. Finally, we determined whether Smad7 was a
target of miR-21 during DN.

Methods

Cell culture The normal rat mesangial cell (MC) line, 1099,
and tubular epithelial cell (TEC) line, NRK52E (ATCC,
Manassas, VA ,USA) were maintained in DMEM/low
glucose (5.5 mmol/l; Life Technologies, Grand Island,
NY, USA) containing 5% FBS and 0.1% antibiotic/anti-
mycotic solution (Life Technologies), in six-well plastic
plates at 37°C in an incubator with 5% CO2. Cells were
stimulated with D-glucose at normal (5.5 mmol/l) or high
(25 mmol/l) concentration for periods of 0, 24, 48 and
72 h in serum-free medium, in accordance with our own

published procedures [13]. D-Mannitol (25 mmol/l; Life
Technologies) was used as a control for osmolality.

To impair TGF-β signalling, a stable dominant negative
form of the TGF-β receptor II (TβRII)-producing NRK-52E
cell line was used as previously described [14].

Construction of inducible cell lines of doxycycline
(Dox)-regulated miR-21 overexpression and knockdown
was performed as reported previously [7]. At 48 h before
the treatment, Dox (0.5 μg/ml) was added to induce the
levels of miR-21 or miR-21 small hairpin RNA (shRNA).
The cells were then stimulated with DMEM/high glu-
cose (25 mmol/l; Life Technologies) for 48 h in serum-
free medium, in accordance with our own published
procedures [13].

Transient transfection MCs and TECs were transfected with
30 nmol/l Silencer-select Smad7 small interfering RNA
(siRNA) or a negative control of siRNA (Life Technologies)
in six-well plates using siPort Neo-FX (Life Technologies)
according to the manufacturer’s instructions [8]. After
transient transfection, we synchronised the cells by cul-
turing them in DMEM/low glucose medium without
serum for 24 h. The cells were then stimulated with
DMEM/high glucose medium for 48 h following our
protocols [13].

Dox-regulated miR-21-overexpressing TECs were trans-
fected with 1, 2 and 4μg/well of pcDNA3.1-Smad7 expression
plasmid or empty pcDNA 3.1 plasmid (Life Technologies) in
six-well plates using Lipofectamine LTX (Life Technologies)
according to the manufacturer’s instruction. At 48 h before the
treatment, Dox (0.5 μg/ml) was added to increase the
abundance of miR-21. After transient transfection, we
synchronised the cells by culturing them in DMEM/low
glucose medium without serum for 24 h. The cells were
then stimulated with DMEM/high glucose medium for
48 h following our protocols [13].

Animal model Adult, male BKS.Cg-Dock7m +/+ Leprdb/J
db/db mice with a C57BLKS/J background (Jackson Labo-
ratory, Bar Harbor, ME, USA), at 10 weeks of age, denoting
the overt phases of the type 2 diabetes syndrome [13], were
used in these studies. Details of animal models are provided
in electronic supplementary material (ESM) Methods. All
animal studies were approved by the Chinese University of
Hong Kong’s Animal Experimental Ethics Committee.

Ultrasound-mediated gene transfer of inducible miR-21
knockdown (miR-21 KD) plasmids into the kidneys of db/
db mice The mixture of miR-21 KD and pDNA6/TR tet-on
plasmids was combined with Sonovue (Bracco, Milan,
Italy) at a ratio of 1:1 (vol./vol.) as described previously
[7, 9, 15–18]. The mixed solution (400 μl) was then injected
via the tail vein of eight db/db mice (20–22 g body weight,
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6 weeks old). The ultrasound transducer (Therasonic, Electro-
Medical Supplies, Wantage, England) was then applied to the
kidneys using ultrasound medium with a continuous wave
output of 1 MHz at 1 W power output for a total of 5 min
for each side. The same procedure was applied to eight control
animals with a mixture containing the same amount of empty
control plasmids (pSuperior/pcDNA6). To induce transgene
expression at the optimal dosage, a dose of Dox solution
(200 μg/ml in 200 μl volume) was first injected into the
peritoneal cavity after the gene transfer. The mice were then
given drinking water containing Dox (200 μg/ml) until they
were killed [16]. To maintain the transgene expression levels,
gene therapy was given at age 10, 13 and 16 weeks. A group
of eight age-matched db/mmice was used as normal controls.
All mice were killed at age 20 weeks, and their kidneys were
collected for analysis. The experimental procedures were ap-
proved by the Chinese University of Hong Kong’s Animal
Experimental Ethics Committee.

In situ hybridisation A specific 5′-FITC-labelled antisense-
locked nucleic acid oligonucleotide for mmu-miR-21 and a
scramble probe as a negative control were purchased from
Exiqon (Vedbaek, Denmark). The detailed procedure for in
situ hybridisation was carried out according to the manufac-
turer’s protocol [19]. In brief, 10–14 μm slides were pre-
pared from optimal cutting temperature compound-
embedded kidney tissues. The slides were then fixed in
4% paraformaldehyde for 10 min, followed by prehybrid-
isation with 1× hybridisation buffer (Exiqon) without the
probe. The hybridisation was carried out overnight in 1×
hybridisation buffer (30–70 μl) with FITC/anti-sense micro-
RNA probe at 45°C overnight. After being washed, the
slides were blocked and incubated with Smad7 antibody
(Abcam, Cambridge, MA, USA), and subsequently with
Alexa Fluor 555-conjugated secondary antibody (Life Tech-
nologies, Carlsbad, CA, USA). Signals were visualised and
detected under a fluorescence microscope (Axioplan2 Im-
aging; Carl Zeiss, Oberkoche, Germany).

RNA extraction and quantitative RT-PCR analyses, western
blot analysis, urine albumin excretion measurement, histology,
immunohistochemistry and luciferase reporter assay Details
of these methods are provided in ESM Methods.

Construction of Smad7 overexpression plasmid and plasmids
for luciferase reporter assay Details of the cloning procedure
are provided in ESM Methods.

Statistical analysis Data from real-time PCR and immuno-
histochemical and western blot analysis were expressed as
mean ± SEM and compared using ANOVA with the New-
man–Keuls comparison program from GraphPad Prism 5.0
(GraphPad Software, San Diego, CA, USA).

Results

Knockdown of miR-21 in db/db mice reduces miR-21 levels,
improves renal function, and inhibits renal fibrosis and inflam-
mation during kidney damage caused by type 2 diabetes We
found that at the age of 10 weeks, renal miR-21 content in
db/db mice was already significantly higher than in the db/
m+ littermates (Fig. 1a). At age 20 weeks, renal miR-21 was
twofold higher in db/db mice. This result provides the first
in vivo evidence that miR-21 levels may play a role in DN.

We then investigated whether knockdown of miR-21 pre-
vented renal injury in db/db mice by delivering miR-21 KD
plasmids into kidneys with ultrasound-microbubble-mediated
gene transfer at age 10, 13 and 16 weeks (Fig. 1b). As
described previously [7], this knockdown plasmid targets the
stem loop sequence of pre-miR-21 and suppresses renal miR-
21 abundance for at least 14 days [7]. The dose of miR-21
shRNA was carefully increased by Dox to avoid inducing
dramatic cell death in diabetic kidneys [7].

At age 20 weeks, db/db mice developed similar levels of
hyperglycaemia regardless of the treatment (blood glucose
concentration 30.15±0.78 mmol/l with control plasmids and
30.97±1.15 mmol/l with miR-21 KD plasmids), indicating
that delivery of miR-21 KD plasmids did not affect blood
glucose levels. In addition, db/db mice treated with miR-
21 KD plasmids developed less severe microalbuminuria
than normal db/db mice over the 20-week disease course
(Fig. 1c). Pathologically, an increase in mesangial matrix
and thickness of the glomerular basement membrane was
apparent in db/db mice at week20 after diabetes onset,
which was reduced in diabetic mice receiving miR-21
shRNA treatment (Fig. 1d, e). These results suggest that in
vivo inhibition of miR-21 improved renal function in type 2
diabetic mice. Compared with db/m+ littermates, the renal
content of TGF-β1 and miR-21 in db/db mice was elevated
from the age of 10 weeks (Fig. 1f, g). However, delivery of
miR-21 KD plasmids into the diabetic kidneys of db/db
mice suppressed the renal content of TGF-β1 and miR-21
at age 20 weeks to the levels of 10-week-old db/db mice,
suggesting that progression of diabetic kidney injury was
suppressed (Fig. 1f, g). No effect was observed when con-
trol plasmids with scrambled RNA sequence [7] were used
(Fig. 1f, g).

Immunohistochemistry revealed that, although increased
collagen I deposition in diabetic kidneys was largely con-
fined to the area of tubulointerstitium, and abundant colla-
gen IV accumulation was noted in both glomerular and
tubulointerstitial areas, their levels were largely reduced in
db/db mice treated with miR-21 shRNA compared with
mice treated with control plasmids (Fig. 2a–d). Real-time
PCR and western blot analyses also demonstrated that,
compared with the 10-week-old db/db mice, there was a
20–30% increase in both mRNA and protein abundance of
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fibrotic markers at 20 weeks (Fig. 3a–g), whereas treat-
ment with miR-21 KD plasmids reduced abundance of
these markers to the levels at 10 weeks (Fig. 3a–g).
These findings suggest that the reduction in miR-21
levels halted the progression of renal fibrosis, as evidenced
by the decrease in synthesis and deposition of extracellular
matrix.

Owing to the essential role of inflammation during DN
[20, 21], we also examined whether suppression of miR-21
influenced renal inflammation under diabetic conditions.
Quantification of immunohistochemical results showed that
the amount of macrophage infiltration into diabetic kidneys
was increased after age 10 weeks, but this increase was
markedly reduced after treatment with miR-21 KD plasmids
(Fig. 4a, b). Similarly, the proinflammatory cytokine TNF-
α, and the chemokine monocyte chemotactic protein
(MCP)-1, were upregulated in diabetic kidneys of db/db

mice after 10 weeks of age compared with their db/m+

littermates. Suppression of miR-21 caused a reduction in
both TNF-α and MCP-1 in diabetic kidneys (Fig. 4a, c and
d; ESM Fig. 1a, b), implying that miR-21 plays a role in
renal inflammation during DN.

MiR-21 is an important mediator of high-glucose-induced
renal fibrosis and inflammation in vitro To confirm the role
of miR-21 in kidneys under diabetic conditions, we first
determined whether a high-glucose concentration upregu-
lated miR-21 abundance in both MCs and TECs. High-
glucose concentration, but not the controls, induced miR-
21 abundance in a time-dependent manner in both MCs and
TECs (ESM Fig. 2a). This upregulation was blocked by the
presence of the dominant negative form of TβRII (ESM
Fig. 2b), implying that TGF-β signalling was necessary for
the high-glucose-induced miR-21 level.
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TGF-β1 and miR-21 and improves renal function in 20-week-old db/
db mice. (a) Renal miR-21 content in db/db mice (black bars) and db/
m+ littermates (white bars) at age 10 and 20 weeks. (b) Schematic
diagram of the experimental approach. (c) Urinary albumin to creati-
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CV; crosses, db/db + KD. (d) Histology (periodic acid–Schiff [PAS]-
stained sections). (e) Mesangial expansion. (f) Renal TGF-β1 mRNA
level. (g) Renal miR-21 abundance. Real-time PCR results show that
renal TGF-β1 and miR-21 content in diabetic kidneys are increased at

age 10 and 20 weeks, but are decreased after gene transfer of miR-
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We next either overexpressed miR-21 (Fig. 5a, e) or
inhibited miR-21 (Fig. 5i, m) in MCs and TECs to study
the functional role of miR-21 in high-glucose-induced renal
fibrosis and inflammation. Overexpression of miR-21 fur-
ther magnified the high-glucose-induced abundance of
fibrotic markers, such as collagen I, collagen IV and
fibronectin, in MCs and TECs (MCs, Fig. 5b–d and
ESM Fig. 2c, d; TECs, Fig. 5f–h and ESM Fig. 2e, f),
but knockdown of miR-21 in cells significantly attenuated
the abundance of these markers (MCs, Fig. 5j–l and ESM
Fig. 2g, h; TECs, Fig. 5n–p and ESM Fig. 2i, j). Similar-
ly, miR-21 overexpression further promoted increases in
the levels of proinflammatory markers (Tnf-α, Il-1β, Mcp-
1 and intercellular adhesion molecule (Icam)-1) (Fig. 6a–d
and ESM Fig. 1c, d) under diabetic conditions, which was
reversed by knocking down the miR-21 levels (Fig. 6e–
h and ESM Fig. 1e, f). These results provide strong
evidence that miR-21 plays a pathological role in high-
glucose-mediated renal fibrosis and inflammation and
support the therapeutic effect of targeting miR-21 to block
the progression of renal fibrosis and inflammation by
delivering miR-21 KD plasmids into diabetic kidneys.

Smad7 is a target of miR-21 during renal fibrosis and
inflammation The next question to ask was how miR-21
affects both renal fibrosis and inflammation. Therefore, we
examined the signalling pathways related to renal fibrosis
and inflammation, such as the TGF-β and NF-κB pathways,
in diabetic kidneys. After 10 weeks of age, TGF-β1 protein
was upregulated in kidneys from db/db mice (Fig. 7a). At
the same time, both phosphorylated Smad3 and NF-κB-p65
were increased, implying that both TGF-β and NF-κB path-
ways were activated during diabetic renal injury. After
treatment with miR-21 KD plasmids, TGF-β1 protein,
phosphorylated Smad3 and NF-κB-p65 were observed to
decline (Fig. 7a), suggesting that suppression of miR-21
inhibited activation of the TGF-β and NF-κB signalling
pathways.

As reported in lung fibrosis, Smad7 is a target of miR-21
[22], and overexpression of Smad7 can suppress the TGF-β
and NF-κB pathways [16, 23]. We therefore examined
whether renal Smad7 abundance was also altered after
miR-21 inhibition. Consistent with the type 1 diabetic
mouse model [24], Smad7 (both RNA and protein levels)
was significantly reduced during diabetic kidney injury in
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db/db mice aged 20 weeks (Fig. 7a and ESM Fig. 3a, b).
Suppression of miR-21 partially restored the Smad7 con-
tent of 20-week-old db/db mice to that at age 10 weeks.
Results from in situ hybridisation with FITC-miR-21
showed that miR-21 was induced in both glomeruli and
renal tubules during DN (Fig. 7b). More significantly,
results from a combination of immunohistochemical stain-
ing with Smad7 antibody and in situ hybridisation with
FITC-miR-21 showed that the levels of renal Smad7 cor-
related negatively with miR-21 abundance during renal
fibrosis (Fig. 7b). This negative correlation was confirmed
by the results from in vitro studies. Overexpression of
miR-21 further decreased the Smad7 mRNA content in
both MCs and TECs, while knockdown of miR-21 restored
Smad7 levels (ESM Fig. 3c–f).

To assess the functional contributions of loss of Smad7
to renal fibrosis and inflammation, we then examined
whether knocking down Smad7 promoted the high-
glucose-induced renal fibrosis and inflammation, by tran-
siently transfecting Smad7 siRNA into MCs and TECs.
Expression of collagen I, fibronectin, Tnf-α and Il-1β
induced by high glucose was significantly enhanced by
treatment with Smad7 siRNA (Fig. 8a–f and ESM Fig. 3g–j),
confirming that Smad7 plays a protective role in renal fibrosis
and inflammation.

To determine whether Smad7 acted downstream of miR-
21 function, we overexpressed Smad7 in Dox-induced miR-
21-overexpressing TECs by transiently transfecting differ-
ent dosages of Smad7 overexpression plasmid without the 3′
untranslated region (UTR) into Dox-induced miR-21-
expressing TECs. Results of real-time PCR and western blot
assays demonstrated that miR-21 overexpression increased
the high-glucose-induced mRNA content of collagen I, fi-
bronectin, Tnf-α and Il-1β (Fig. 8g, h and ESM Fig. 4a–e).
Overexpression of Smad7 resulted in >1.5-fold increase in
abundance of Smad7, thereby largely reversing the stimu-
lating effect of miR-21 on high-glucose-induced expression
of collagen I, fibronectin, Tnf-α and Il-1β in a dose-
dependent manner (Fig. 8g, h and ESM Fig. 4a–e). Thus,
overexpression of Smad7 in miR-21-overexpressing re-
nal cells reduced the abundance of inflammatory and
fibrosis markers, suggesting that Smad7 is downstream
of miR-21.

To determine whether miR-21 directly regulates Smad7
content, we assessed the complementarity of miR-21 to the
Smad7 3′-UTR using TargetScan (http://www.targetscan.org/;
accessed 7 February 2012). The computational algorithm
from TargetScan predicted miR-21-binding sites in the Smad7
3′-UTR that are highly conserved between humans and
rodents (ESM Fig. 4f), suggesting that Smad7 may be a

FN

COL I 

COL IV 

β-Actin

C
O

L 
I p

ro
te

in
/β

-a
ct

in

0

1

2

3

4

5

*** ***
* *

1

2

3

4

C
O

L 
IV

 p
ro

te
in

/β
-a

ct
in

1

2

3

4

F
N

 p
ro

te
in

/β
-a

ct
in******

* * ***
******

***

0

1

2

C
ol

 I 
m

R
N

A
(f

ol
d 

ch
an

ge
) 

C
ol

 IV
 m

R
N

A
(f

ol
d 

ch
an

ge
) 

F
n1

 m
R

N
A

(f
ol

d 
ch

an
ge

) 

0

1

2

0

2

4
** **

** **

***
*** ***

*** *** ***

a

cb

Mice:          db/m+      db/m+ db/db        db/db       db/db                 db/db
Age:        10w          20w         10w  20w          20w 20w
Treatment:     - - - - CV KD

††
††

††††

††††††

††† †††
†††

††† †††

†††

Age: 20w  10w   20w  20w 20w
Treat:    - - - CV    KD
Mice: 

db/m+ db/db 

Age: 20w  10w   20w  20w 20w
Treat:    - - - CV     KD
Mice: 

Age: 20w  10w   20w  20w 20w
Treat:     - - - CV     KD
Mice:

Age: 10w 20w 10w 20w 20w 20w
Treat:   - - - - CV   KD
Mice: db/db 

db/m+ db/db db/m+ db/db 

db/m+

0
Age: 10w 20w 10w 20w 20w 20w
Treat:   - - - - CV   KD
Mice: db/db db/m+

0
Age: 10w 20w 10w 20w 20w 20w
Treat:   - - - - CV   KD
Mice: db/db db/m+

d

e f g

Fig. 3 Delivery of miR-21 KD
plasmids slows the progression
of renal fibrosis in db/db mice.
(a) Representative western
blots; (b–d) quantitative analy-
sis of western blots; (e–g) Real-
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Col I (also known as Col1a1),
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Col4a1) in diabetic kidneys are
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the mean ± SEM for at least
eight mice.
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0.001 compared with db/m+

mice; ††p<0.01, †††p<0.001 as
indicated. CV, control vectors;
KD, miR-21 KD plasmids;
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miR-21 target. Therefore we subcloned various fragments
of mouse Smad7 3′-UTR and sequences with native and
mutated miR-21-binding sites downstream of the lucifer-
ase gene. Overexpression of miR-21 significantly down-
regulated luciferase activity in the reporter constructs
containing the entire Smad7 3′-UTR or the 3′-UTR with
a miR-21-binding site compared with normal TECs
(Fig. 8i). Furthermore, miR-21 overexpression signifi-
cantly reduced luciferase activity in the reporter contain-
ing the sequences with a native, but not mutant, miR-21-
binding site. Collectively, these results suggest that miR-
21 binds to the Smad7 3′-UTR and downregulates Smad7
abundance to derepress TGF-β and NF-κB signalling
pathways, which are enhanced in renal fibrosis and in-
flammation during DN.

Discussion

Our findings identify miR-21 as an important signature
microRNA in DN because renal miR-21 was shown to be
markedly upregulated in diabetic kidneys of db/db mice,
and this is associated with the development of microalbu-
minuria and renal fibrosis and inflammation. More impor-
tantly, our study shows that in vivo inhibition of miR-21
ameliorated progression of DN in an established experimen-
tal model of type 2 diabetes. Suppressing Smad7 levels to
promote activation of the TGF-β and NF-κB signalling
pathways may be the mechanism whereby miR-21 promotes
renal fibrosis and inflammation in diabetic kidney injury.
Targeting miR-21 may be a good approach to preventing
diabetic kidney injury.
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We have previously shown that, during renal fibrosis, TGF-
β1 upregulates the miR-21 level via a Smad3-dependent
mechanism [7]. Results from this study confirm that TGF-β
signalling is necessary for high-glucose-induced miR-21 pro-
duction. Upregulation of renal miR-21 content during DN in
mouse models of type 1 [25] and type 2 diabetes shows a
positive correlation between miR-21 and progression of renal
injury in DN. This study further shows that, under diabetic
conditions, overexpression of miR-21 increases renal fibrosis,
but suppression of miR-21 reduces renal fibrosis. These
results are consistent with the pathological role of miR-21 in
cardiac, lung and renal fibrosis [7, 22, 26]. Furthermore, we
demonstrate for the first time that overexpression of miR-21 in

kidney cells promotes, and knockdown of miR-21 reduces,
renal inflammation under diabetic conditions. Thus, inhibiting
both renal fibrosis and inflammation by in vivo suppression of
miR-21 may be the mechanism by which miR-21 ameliorates
progression of DN in type 2 diabetes.

In this study, we identified Smad7 as a target of miR-21
during renal injury and demonstrated that overexpression of
Smad7 was able to reverse the pathological effects of miR-
21 on renal fibrosis and inflammation. These findings are
significant because, during DN, renal abundance of Smad7
is downregulated and gene therapy with Smad7 ameliorates
proteinuria and suppresses both renal fibrosis and inflam-
mation [24]. Overexpression of Smad7 can suppress the
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results of miR-21 in TECs with overexpression of miR-21. (f, g) Real-
time PCR and (h) representative western blot results of fibrotic markers
in TECs with overexpression of miR-21. White bars, + control vectors
(CV); black bars, + miR-21 overexpression plasmids (OE). (i) Real-
time PCR results of miR-21 in MCs with knockdown of miR-21. (j, k)
Real-time PCR and (l) representative western blot results of fibrotic
markers in MCs with knockdown of miR-21. (m) Real-time PCR
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in TECs with knockdown of miR-21. White bars, + CV; black bars, +
miR-21 KD plasmids. Overexpression of miR-21 in MCs and TECs
increases levels of collagen I (COL I), fibronectin (FN) and collagen
IV (COL IV) induced by high glucose for 48 h, while knockdown of
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same time point
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TGF-β and NF-κB pathways by blocking the activation of
Smad3 and stimulating IκBα production, respectively [16,
23]. Now, we demonstrate that knockdown of miR-21 in
diabetic kidneys restores Smad7 levels and reduces phos-
phorylation of Smad3 and NF-κB/p65. Results from in vitro
studies confirm the ability of miR-21 to reduce Smad7
content by binding to the Smad7 3′-UTR. As Smad7 knockout

mice develop more severe renal fibrosis in both obstructive
nephropathy and diabetic kidney disease as renal TGF-β/
Smad3 signalling is increased [24, 27], we also demonstrated
that knockdown of Smad7 in kidney cells increases renal
fibrosis and inflammation, as observed when miR-21 was
overexpressed. More importantly, we showed that the renal
fibrosis and inflammation present under diabetic conditions
associated with miR-21 overexpression were reversed by
restoration of target protein, Smad7, levels when transfection
of miR-21-expressing cells with the Smad7 expression con-
struct rendered miR-21 insensitive by deletion of its 3′-UTR.
Thus the possible mechanism by which miR-21 regulates
high-glucose-induced renal fibrosis and inflammation has
been deduced to be via targeting of Smad7 so as to induce
the TGF-β and NF-κB signalling pathways. MiR-21 may
function in a feed-forward loop, which amplifies TGF-β
signalling during renal injury.
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However, the precise mechanism by which miR-21
affects fibrosis and inflammation may also be related to
other putative target genes of miR-21. Studies of cardiac
fibrosis indicate that SPRY and PTEN are potential targets of
miR-21 [26, 28]. Recent studies of miR-21 knockout mice
show that miR-21 promotes renal fibrosis by silencing met-
abolic pathways via suppression of peroxisome proliferator-
activated receptor-α [11]. Another study on diabetic kidney
injury has shown that PRAS40, a negative regulator of
TORC1, is a target of miR-21 [25]. For renal inflammation,
we and others have shown that blocking miR-21 reduces
macrophage infiltration in diseased kidneys [12]. However,
other studies demonstrate anti-inflammatory properties of
miR-21 in macrophages by targeting the proinflammatory
programmed cell death 4 gene (PDCD4) [29, 30]. Negative
correlation between miR-21 and PDCD4 has been reported
in TECs, with induction of ischaemia [31]. Further studies
should be performed to clarify whether miR-21 regulates
inflammation in a cell-type-dependent fashion.

Although our present findings are consistent with previ-
ous studies showing that miR-21 plays a pathological role in
tumorigenesis [32, 33], immunity [34, 35], inflammation
[36] and fibrosis [7, 12, 22, 26], they are inconsistent with
a report on miR-21 during diabetic kidney injury suggesting
that it has a protective role in DN [37]. In that report, Zhang
et al showed by microarray analysis that renal miR-21 levels
were downregulated threefold in 8-week-old db/db mice. In
addition, overexpression of miR-21 by intraperitoneal injec-
tion in 4-week-old mice improved kidney function and
inhibited glomerular expansion at 8 weeks of age. The

authors suggest that miR-21 suppresses Pten expression in
MCs and diabetic kidneys, resulting in mesangial hypertrophy
[37]. Although these discrepancies are as yet unexplained, the
differences in disease nature, conditions and timing should be
considered. First, we used BKS.Cg-Dock7m +/+ Leprdb/J with
a C57BLKS/J background because it is widely used as a type
2 diabetic mouse model. Zhang et al used C57BL/6JLep mice
[37], and the diabetic phenotype of this strain has been
reported to be less severe than that in C57BLKS/J [38].
Second, in the present study, we chose to study db/db mice
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at the age of 10 weeks because db/db mice rapidly develop
hyperglycaemia between 6 and 10 weeks of age and diabetic
renal injury occurs after 10 weeks of age [39–41]. In the study
by Zhang et al [37], miR-21 treatment in mice started at the
age of 4 weeks, before the increase in microalbuminuria.
Third, we used ultrasound-microbubble-mediated gene trans-
fer to deliver miR-21 KD plasmids specifically into the living
kidneys [16]. However, Zhang et al delivered miR-21-
overexpression plasmids into diabetic kidneys by systemic
intraperitoneal injection. However, the quantitative measure-
ment of miR-21 abundance and functional role of miR-21 in
kidneys and cells under diabetic conditions have not been
investigated, which prevents further discussion about the dis-
crepancies between these studies. In the present study, the
pathological role of miR-21 during diabetic kidney injury is
based on two observations. On the one hand, miR-21 levels
were further increased in 20-week-old db/db mice compared
with 10-week-old mice, when hyperglycaemia and microal-
buminuria worsen. On the other hand, suppression of miR-21
ameliorated progression of DN at the age of 20 weeks.

In summary, we propose that miR-21 is an important
component of high-glucose-induced signalling, as upregula-
tion of miR-21 reduces Smad7 abundance, increasing high-
glucose-induced fibrosis and NF-κB-mediated inflammation.
Delivery of miR-21 KD plasmids offers an alternative thera-
peutic treatment for preventing diabetic kidney injury.
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