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Abstract

Aims/hypothesis Extracellular pre-B cell colony-enhancing
factor/nicotinamide phosphoribosyltransferase/visfatin
(ePBEF/NAMPT/visfatin) is an adipocytokine, whose
circulating levels are enhanced in metabolic disorders, such
as diabetes mellitus and obesity. Here, we explored the
ability of ePBEF/NAMPT/visfatin to promote vascular
inflammation, as a condition closely related to atherothrom-
botic diseases. We specifically studied the ability of PBEF/
NAMPT/visfatin to directly activate pathways leading to
inducible nitric oxide synthase (iNOS) induction in cultured
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human aortic smooth muscle cells, as well as the mecha-
nisms involved.

Methods iNOS levels and extracellular signal-regulated
kinase (ERK) 1/2 activity were determined by western
blotting. Nuclear factor (NF)-kB activity was assessed by
electrophoretic mobility shift assay.

Results ePBEF/NAMPT/visfatin (10-250 ng/ml) induced
iNOS in a concentration-dependent manner. At a submax-
imal concentration (100 ng/ml), ePBEF/NAMPT/visfatin
time-dependently enhanced iNOS levels up to 18 h after
stimulation. Over this time period, ePBEF/NAMPT/visfatin
elicited a sustained activation of NF-kB and triggered a
biphasic ERK 1/2 activation. By using the respective ERK
1/2 and NF-«kB inhibitors, PD98059 and pyrrolidine
dithiocarbamate, we established that iNOS induction by
ePBEF/NAMPT/visfatin required the consecutive upstream
activation of ERK 1/2 and NF-«kB. The pro-inflammatory
action of ePBEF/NAMPT/visfatin was not prevented by
insulin receptor blockade. However, exogenous nicotin-
amide mononucleotide, the product of NAMPT activity,
mimicked NF-kB activation and iNOS induction by
ePBEF/NAMPT/visfatin, while the NAMPT inhibitor
APOB866 prevented the effects of ePBEF/NAMPT/visfatin
on iNOS and NF-kB.

Conclusions/interpretation Through its intrinsic NAMPT
activity, ePBEF/NAMPT/visfatin appears to be a direct con-
tributor to vascular inflammation, a key feature of athero-
thrombotic diseases linked to metabolic disorders.

Keywords Adipocytokine - Atherosclerosis -

Inducible nitric oxide synthase - Inflammation -
PBEF/NAMPT/visfatin - Vascular smooth muscle
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Abbreviations

ePBEF/ Extracellular PBEF/NAMPT/

NAMPT/visfatin  visfatin

ERK 172 Extracellular-signal regulated
kinase 1/2

HASMC Human aortic smooth muscle cells

iNOS Inducible nitric oxide synthase

NAMPT Nicotinamide phosphoribosyltransferase

NF-xB Nuclear factor-xB

NMN Nicotinamide mononucleotide

PBEF Pre-B cell colony-enhancing factor

PDTC Pyrrolidine dithiocarbamate

Introduction

Extracellular pre-B cell colony-enhancing factor/nicotin-
amide phosphoribosyltransferase/visfatin (¢ePBEF/NAMPT/
visfatin) has been identified as an adipocytokine preferen-
tially released by visceral fat [1]. Whereas enhanced
circulating ePBEF/NAMPT/visfatin levels have been
reported in patients affected by metabolic disorders, such
as diabetes mellitus, obesity or the metabolic syndrome
[2, 3], the pathophysiological relevance of ePBEF/NAMPT/
visfatin remains poorly understood. Enhanced circulating
levels of ePBEF/NAMPT/visfatin have been positively
associated not only with increased plasma levels of
inflammatory markers [2], but also with vascular damage
and endothelial dysfunction [4, 5]. An emerging hypothesis
is that ePBEF/NAMPT/visfatin might directly promote
vascular inflammation, therefore representing a link be-
tween metabolic disorders and atherothrombotic diseases
exhibiting a chronic pro-inflammatory background, includ-
ing atherosclerosis and CHD.

Despite this latter hypothesis, the ability of ePBEF/
NAMPT/visfatin to exert direct pro-inflammatory effects on
the vasculature remains largely unknown. To address this
question, we used cultured human aortic smooth muscle
cells (HASMC) to investigate the ability of ePBEF/
NAMPT/visfatin to activate the extracellular-signal regulat-
ed kinase (ERK) 1/2-nuclear factor (NF)-kB—inducible
nitric oxide synthase (iNOS) axis, whose activation is
associated with vascular damage, inflammation and cardio-
vascular complications of diabetes [6]. We further aimed to
identify the mechanism mediating the potential pro-
inflammatory action of ePBEF/NAMPT/visfatin in human
vascular smooth muscle cells.

Methods

Materials Culture plastic ware was from TPP (Tragadin-
gen, Switzerland). DMEM, FCS and trypsin—-EDTA were
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from Biological Industries (Beit-Hamek, Israel). Both
human recombinant PBEF/NAMPT/visfatin and IL-1f3
were purchased from Peprotech (London, UK), with an
endotoxin level <0.1 ng/pg. APO866 was kindly donated
by Topotarget (Lausanne, Switzerland). The blocking
mouse monoclonal antibody (Ab-3, clone 47-9) against
the human insulin receptor (-subunit) was purchased from
Labvision (Fremont, CA, USA). Pyrrolidine dithiocarba-
mate (PDTC), ERK 1/2 inhibitor PD98059, human recom-
binant insulin, nicotinamide mononucleotide (NMN) and,
unless otherwise stated, all other reagents were purchased
from Sigma (St Louis, MO, USA).

Cell culture HASMC were obtained by enzymatic dissoci-
ation from the aortas of five organ donors, conforming with
the principles outlined in the Declaration of Helsinki and
accordingly to Spanish legal regulations [7]. HASMC were
routinely cultured in DMEM supplemented with 10%
(vol./vol.) FCS and antibiotics [7]. At confluence, HASMC
were deprived of serum for 24 h prior to the addition of the
different test compounds in serum-free medium supple-
mented with 0.1% (wt/vol.) BSA. Cultures between
passages three and ten were used.

Western blotting Proteins (15 pg) from HASMC lysates
were separated by SDS-PAGE, transferred to nitrocellu-
lose membranes (Whatman, Maidstone, UK) and probed
with a primary polyclonal antibody against iNOS (dilution
1/10,000; Transduction Laboratories, Lexington, KY,
USA), followed by incubation with a horseradish
peroxidase-conjugated secondary antibody (dilution
1/10,000; Chemicon, Temecula, CA, USA), as described
previously [7]. Immunoreactive bands were detected by
enhanced chemiluminescence (GE Healthcare, Uppsala,
Sweden) and quantified using NIH Image] software
(http://rsb.info.nih.gov/ij/, accessed 8 July 2005). The
membranes were stripped and reprobed with an anti-oc-
tubulin primary antibody (Sigma; dilution 1/10,000) to
ensure equal loading.

ERK 1/2 activity was determined by western blotting
using specific antibodies against both the phosphorylated
(activated) form of ERK 1/2 (dilution 1/1,000; Cell
Signaling Technology, Danvers, MA, USA) and total
ERK 1/2 (dilution 1/1,000; Santa Cruz Biotechnology,
Santa Cruz, CA, USA). ERK 1/2 activity was expressed as
the phosphorylated ERK 1/2:total ERK 1/2 ratio.

Indirect immunofluorescence In HASMC, iNOS was
visualised by indirect immunofluorescence, as previously
described [7].

Nuclear extracts and electrophoretic mobility shift assay Nu-
clear extracts from HASMC cultures were prepared as
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described before [7]. A commercial oligonucleotide
(Promega, Madison, WI, USA) encoding the NF-«B
consensus sequence (5'-AGTTGAGGGGACTTTC
CCAGGC-3") was 5'-end labelled using [y->*P]ATP and
T4 polynucleotide kinase (Promega) and purified using
MicroSpin G-25 columns (GE Healthcare, Chicago, IL,
USA). For binding reactions, nuclear extracts (5 pg) were
incubated on ice for 15 min in a reaction buffer
(40 mmol/l HEPES [pH 7.0], 140 mmol/l NacCl,
5 mmol/l dithiothreitol, 10 pg/ml BSA, 0.01% [vol./vol.]
Nonidet P-40, 4% [wt/vol.] Ficoll and 0.05 pg/ml poly
[dI-dC]). After addition of the labelled oligonucleotide
(~50,000 cpm) the reaction mix was further incubated for
20 min at room temperature. For competition experiments a
100-fold excess of unlabelled doubled-stranded oligonucleo-
tides was added to the binding reaction. DNA—protein
complexes were resolved on 4% (wt/vol.) non-denaturing
polyacrylamide gels in 0.5% TBE (45 mmol/l TRIS-borate,
1 mmol/l EDTA, pH 8.0) at 4°C. Gels were dried and exposed
to autoradiography at —80°C.

Statistical analysis Results are expressed as means+SEM
of at least three independent experiments. Statistical
analysis was performed using ANOVA for curves or
Student’s 7 test for data points, with the level of significance
chosen at p<0.05.

Results

ePBEF/NAMPT/visfatin induces iNOS in HASMC through
an ERK 1/2- and NK-kB-dependent mechanism In HASMC
exposed to ePBEF/NAMPT/visfatin (10-250 ng/ml) for 18 h,
a concentration-dependent increase in the levels of the pro-
inflammatory enzyme iNOS was observed, with a threshold
concentration of 50 ng/ml (Fig. 1a). Figure 1b depicts the
time course of iNOS induction by a sub-maximal
concentration of ePBEF/NAMPT/visfatin (100 ng/ml):
iNOS levels were significantly enhanced 8 h after the
addition of the adipocytokine and peaked at 18 h, with no
further induction of iNOS observed at 24 h (96.6+£12.1%
of the levels achieved at 18 h; results from three
independent experiments). The pro-inflammatory adipo-
cytokine IL-1f3 (10 ng/ml) was used as a well-known
positive control of iNOS induction (3.3+0.3-fold over
basal cultures; p<0.05, results from five independent
experiments, Fig. 1b). The induction of iNOS by ePBEF/
NAMPT/visfatin (250 ng/ml) or IL-13 (10 ng/ml) in
HASMC was visualised by indirect immunofluorescence
(Fig. lc).

In vascular smooth muscle, the induction of iNOS by IL-
13 is regulated through the activation of the transcription
factor NF-kB, which in turn requires the upstream activation

of the mitogen-activated protein kinase ERK 1/2 [8]. In
HASMC, ePBEF/NAMPT/visfatin (100 ng/ml) elicited a
gradual increase in NF-«kB binding activity from 2 to 18 h,
when the maximal activation was attained (Fig. 1d). At
24 h, NF-kB activity was about 50% of that achieved at
18 h, although it remained enhanced compared with basal
levels (Fig. 1d). IL-1( yielded a 2.7+0.4-fold increase over
basal NF-kB activity after 1 h of treatment (p<0.05; results
from three independent experiments). The addition of a
100-fold excess of cold probe blunted the formation of the
binding complexes, demonstrating their specificity (data not
shown).

In addition, ePBEF/NAMPT/visfatin (100 ng/ml)
triggered a biphasic time-dependent activation of ERK
1/2 in HASMC: at times <1 h, a transient increase in the
phosphorylated ERK 1/2:total ERK 1/2 ratio was
observed at 10 min, which decayed to basal levels
between 30 min and 1 h (Fig. 2a). Later on, a gradual
and sustained activation of ERK 1/2 was observed up to
18 h (Fig. 2a). The activation of ERK 1/2 by ePBEF/
NAMPT/visfatin (10-250 ng/ml) was concentration-
dependent, as shown in Fig. 2b. IL-13 elicited a 3.2+
0.7-fold increase over basal ERK 1/2 activity after 18 h
of treatment (p<0.05; results from three independent
experiments).

We next assessed the implication of both NF-kB and
ERK 1/2 in ePBEF/NAMPT/visfatin-mediated iNOS
induction in HASMC. The co-incubation of ePBEF/
NAMPT/visfatin (100 ng/ml) with either the ERK 1/2
inhibitor PD98059 (30 pmol/l) or the NF-kB inhibitor
PDTC (100 pmol/l) suppressed the induction of iNOS by
the adipocytokine (Fig. 2c). Neither PD98059 nor PDTC
alone modified basal iNOS levels (data not shown).
Furthermore, PD98059 abolished NF-kB activation trig-
gered by PBEF/NAMPT/visfatin (Fig. 2d), highlighting
the role of ERK 1/2 in NF-kB activation by PBEF/
NAMPT/visfatin.

The pro-inflammatory action of ePBEF/NAMPT/visfatin in
HASMC is not mediated by the insulin receptor To gain
insight into the mechanisms mediating the pro-
inflammatory action of ePBEF/NAMPT/visfatin in
HASMC, we next explored the role of the insulin receptor,
as ePBEF/NAMPT/visfatin was initially proposed as an
insulin mimetic [1]. For this purpose, we used an antibody
that binds the «-subunit of the insulin receptor and blocks
the receptor activation [9, 10] and examined NF-kB
activation as a key molecule regulating inflammation-
related genes. HASMC pre-incubation for 2 h with the
blocking antibody did not affect NF-«B activation by
ePBEF/NAMPT/visfatin (100 ng/ml) after 18 h (Fig. 3),
and did not modify the effect of IL-13 (10 ng/ml), used as
a negative control (Fig. 3). Contrarily, the antibody
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significantly reduced NF-«kB activation by insulin
(10 nmol/l), used as a positive control of the receptor
activation (Fig. 3).

NAMPT enzymatic activity mediates the pro-inflammatory
action of ePBEF/NAMPT/visfatin in HASMC As it has
been reported that ePBEF/NAMPT/visfatin may exert its
cellular actions through its intrinsic NAMPT enzymatic
activity [11], we first explored whether NMN, the product
of NAMPT activity and a precursor of NAD [12], could
mimic the pro-inflammatory effect of PBEF/NAMPT/
visfatin in HASMC. Figure 4a shows that exogenous
NMN (100 pumol/l) stimulated NF-kB activity to a similar
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extent as ePBEF/NAMPT/visfatin (100 ng/ml). NMN
(100 pmol/l) also triggered iNOS induction in HASMC,
which was not significantly different from that achieved by
100 ng/ml ePBEF/NAMPT /visfatin (Fig. 4b).

We next assessed the impact of NAMPT activity
inhibition on the pro-inflammatory action of ePBEF/
NAMPT/visfatin. As shown in Fig. 4c, the activation of
NF-«B elicited by ePBEF/NAMPT/visfatin (100 ng/ml) in
HASMC was completely abolished by co-incubation with
the NAMPT activity inhibitor APO866 (100 nmol/l) [13].
Analogously, APO866 (100 nmol/l) blocked iNOS induc-
tion by 100 ng/ml ePBEF/NAMPT/visfatin (Fig. 4d).
APO866 itself did not modify NF-«kB activity or iNOS
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levels in non-stimulated HASMC (Fig. 4c,d). It is worth
noting the NAMPT substrate nicotinamide is contained in
the culture medium of HASMC (DMEM).

Discussion

In the present study, we have demonstrated the ability of the
adipocytokine PBEF/NAMPT/visfatin to exert a direct
activation of pro-inflammatory signals in human vascular
smooth muscle. Indeed, ePBEF/NAMPT/visfatin upregu-
lated the levels of iNOS, a nitric oxide- and peroxynitrite-
forming enzyme that plays a key role in vascular
inflammation and endothelial dysfunction, and which is

0

+ Visfatin
PD98059

overproduced in vascular diseases like atherosclerosis or
diabetes-associated vasculopathy [6]. Analogously to the
pro-inflammatory and pro-atherogenic adipocytokine IL-
13, the induction of iNOS by PBEF/NAMPT/visfatin
required the sequential upstream activation of ERK 1/2
and NF-«B [8]. This latter transcription factor, which plays
a pivotal role in the transcriptional regulation of multiple
inflammation-related genes, is activated by ePBEF/
NAMPT/visfatin in another vascular cell type, the endo-
thelial cell, resulting in the production of intercellular
adhesion molecule-1, vascular cell adhesion molecule-1
and other mediators of inflammation [14, 15].

It is worth noting that the pro-inflammatory action of
ePBEF/NAMPT/visfatin in HASMC was observed from a
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concentration of 50 ng/ml. Although the number of studies
measuring plasma levels of ePBEF/NAMPT/visfatin is still
limited, circulating levels of ePBEF/NAMPT/visfatin of
40-60 ng/ml have been reported in obese or type 2 diabetic
patients, whereas their matched healthy controls showed
lower levels [2, 3]. Such elevated levels of plasma ePBEF/
NAMPT/visfatin have also been detected in patients with
chronic kidney disease [5].

The current knowledge of the actions of PBEF/NAMPT/
visfatin in vascular smooth muscle cells is still limited. On
the one hand, intracellular PBEF/NAMPT/visfatin has been
reported to induce maturation [16] and to extend the
lifespan of human vascular smooth muscle cells by
activating members of the sirtuin family and restraining
the accumulation of p53 [17]. On the other hand, ePBEF/
NAMPT/visfatin, released by different cells and tissues
including the visceral and perivascular adipose tissue, can
reach vascular smooth muscle and behave as a growth
factor for this cell type [18]. In the present study, we have
further identified ePBEF/NAMPT/visfatin as a pro-
inflammatory factor for vascular smooth muscle cells.

A pro-inflammatory action of ePBEF/NAMPT/visfatin
has been reported in non-vascular cell types and it has been
related to different pathologies, such as arthritis, acute lung
injury, inflammatory bowel disease or pre-term parturition
[19, 20]. In the context of cardiovascular diseases, ePBEF/
NAMPT/visfatin is seen as a new agent favouring vascular
inflammation, a condition that plays a key role in the
initiation and progression of atherosclerosis. Indeed,
ePBEF/NAMPT/visfatin triggers the release of monocyte
chemotactic protein-1, IL-6 and IL-8 and the activation of
matrix metalloproteinases in human endothelial cells [21,
22]. Furthermore, an enhanced PBEF/NAMPT/visfatin
content has been reported in human unstable carotid and
coronary atherosclerotic plaques [23], as well as in the
adipose tissue of patients with coronary artery disease,
when compared with control individuals [24]. The ability of
ePBEF/NAMPT/visfatin to activate and inflame human
vascular smooth muscle demonstrated herein reinforces a
potential pro-atherosclerotic action of the adipocytokine.

Although ePBEF/NAMPT/visfatin was initially claimed
as an insulin mimetic acting through the insulin receptor
and exhibiting glucose-lowering properties [1], such a
statement was later on retracted and remains highly
controversial [25]. On the one hand, Xie et al. [26] have
reported that the regulation of glucose uptake, cell
proliferation and type I collagen production in human
osteoblasts by ePBEF/NAMPT/visfatin requires the activa-
tion of the insulin receptor. Furthermore, other cellular
effects triggered by ePBEF/NAMPT/visfatin, including the
secretion of IL-8 and TNF-o by human peripheral blood
mononuclear cells [23] and the uptake of glucose in rat
mesangial cells [27], also seem to involve the insulin

receptor. Other studies, however, have discarded a role for
this receptor in mediating the actions of ePBEF/NAMPT/
visfatin in a wide range of cell types, including vascular
cells, macrophages and pancreatic beta cells [11, 14, 18,
28]. The results presented herein do not support a role for
the insulin receptor in mediating the pro-inflammatory
action of ePBEF/NAMPT/visfatin in human vascular
smooth muscle cells. Indeed, blocking the activation of
the insulin receptor did not interfere with NF-kB
activation by ePBEF/NAMPT/visfatin or IL-1f3, and only
abrogated the effects of insulin. The activation of NF-«kB
by insulin at pathophysiological concentrations (10 nmol/
1) [29] observed herein is in line with recent studies
showing a vascular pro-inflammatory action of insulin
through endothelial cell activation [30] and chemotaxis
induction [31]. Nevertheless, our data indicate that insulin
and ePBEF/NAMPT/visfatin exert their direct pro-
inflammatory actions in vascular smooth muscle through
distinct mechanisms.

In 2006, Revollo et al. [11] demonstrated that ePBEF/
NAMPT/visfatin regulates insulin secretion in pancreatic
beta cells through its intrinsic NAMPT enzymatic activity.
NAMPT converts nicotinamide to NMN, which is then
transformed into NAD by nicotinamide/nicotinic acid
mononucleotide adenylyltransferase [12]. In vertebrates,
intracellular NAMPT plays an essential role in the
biosynthesis of NAD from nicotinamide and therefore in
the regulation of many cellular processes [12].

Here, we show that exogenous NMN mimicked the
effects of ePBEF/NAMPT/visfatin on iNOS induction and
NF-kB activation in HASMC. In line with our observa-
tions, Wang et al. have recently reported that exogenous
NMN, at the same concentration used in this study, mimics
the proliferative action of ePBEF/NAMPT/visfatin in rat
vascular smooth muscle [18]. Here, we demonstrate that
extracellular NMN can also be considered as a pro-
inflammatory agent for human vascular smooth muscle.
Furthermore, the stimulatory action of ePBEF/NAMPT/
visfatin on iNOS and NF-kB in HASMC was abolished
upon co-incubation with the NAMPT activity inhibitor
APO866. Taken together, these results strongly suggest that
extracellular NMN generation through NAMPT activity is
on the basis of the pro-inflammatory action of ePBEF/
NAMPT/visfatin in human vascular smooth muscle. Such a
mechanism of action also seems to account for the growth
factor-like properties of ePBEF/NAMPT/visfatin in vascu-
lar smooth muscle cells [18]. NMN has been recently
proposed to permeate mammalian cell membranes, possibly
through NAD uptake mechanisms [11, 18, 32]. Therefore,
the extracellular NMN generated trough NAMPT activity
may enter the cell and then trigger the intracellular pro-
inflammatory signals explored herein through mechanisms
that remain to be elucidated.
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In conclusion, our findings identify ePBEF/NAMPT/
visfatin as an adipocytokine that can promote vascular smooth
muscle cell inflammation. We propose that this effect is not
mediated by the activation of the insulin receptor, but rather
relies on the intrinsic NAMPT activity of the adipocytokine.
We finally suggest that ePBEF/NAMPT/visfatin may have a
direct role in vascular dysfunction and inflammation associ-
ated to metabolic disorders.
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