
Introduction

Since ancient times the search for causes of diabetes
was related to the sweetness of urine and other body
fluids. In England, Thomas Willis (1621–1675) was
among the first to taste the urine of diabetic patients
and declare that “its sweet taste was imbued with hon-
ey sugar” with the supposition that it was derived
from blood. This finding led to the addition of “melli-
tus” to the word diabetes.

We should reconsider whether the definition of dia-
betes as mellitus is justified. The traditional emphasis
on the insulin-glucose axis with respect to examining
glucose tolerance, although diagnostically useful does
not explain the basic pathophysiological mechanisms
operating in diabetes. The glucose-insulin axis has
been overemphasised, while alterations in the insulin
to non-esterified fatty acid (NEFA) ratio and metabo-
lism received much less attention both as diabetes de-
rangement and as diagnostic potential. Perhaps this is
partly due to the fact that the techniques for glucose
measurements have been considerably simplified for
home use, whereas the measurement of NEFA and tri-
glycerides is still encumbered with relative difficul-
ties, being more expensive and time consuming.

NEFA as the main fat energy supplier, 
affected by diabetes and obesity

The major change in the appreciation of the nature of
molecules supplying body energy came with the dis-
coveries by Dole [1] and Gordon and Cherkes [2] that
plasma NEFA are the major lipid transporters in the
mammalian organism. Furthermore, NEFA are the on-
ly form of fat release from adipose tissue, subject to
hormonal regulation [3]. The very rapid turnover of
plasma NEFA indicates that they are an important fuel,
which even in non-fasting conditions are the energy
source to body tissues equivalent to or greater than
glucose. Early data on the role of NEFA in glucose
homeostasis were reviewed in 1969 by Ruderman et
al. [4]. The importance of FFA in the regulation of
gluconeogenesis was extensively dealt with, but no
clear pathogenic conclusion with relation to major 
diabetes perturbations emerged at that time.

The effect of hyperinsulinaemia after a glucose load
on patterns of NEFA response in normal and diabetic
subjects is shown (Fig. 1). The gradual decrease of
plasma NEFA concentrations reached a nadir of about
200 µmol/l at 1 h. Non-obese patients with mild Type 2
diabetes showed a decrease in NEFA to a similar and
even more protracted nadir than normal subjects most
probably because of facilitated uptake of NEFA by tis-
sues in the presence of compensatory hyperinsulinae-
mia. Patients of two additional groups with high resis-
tance to insulin responded with a more limited NEFA
decline pattern and with a higher and shorter NEFA
nadir indicating a sustained presence of high NEFA in
the circulation and insulin resistance in adipose tissue.
The NEFA response is highly sensitive and provides
information supplementary to the glucose curve on the
patient’s response in this situation [5].

Obesity or diabesity as such is another example of
fat metabolism abnormality in Type 2 diabetes, whether
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due to deficiency of lipostatic hormone or to insulin +
glucose promotion of fat deposition. The mechanism
of adipose tissue weight gain will not be elaborated
here, although diabesity should definitely be looked
upon as an aspect of fat metabolism aberration.

It is important to mention at this point that Zierler
and Rabinowitz [6] showed in 1964, that infusion of a
very small amount of insulin (10 µunits·min−1·kg−1)
through the brachial artery in human forearm leads to
a significant decrease in plasma NEFA concentrations
and an increase in tissue potassium uptake without
any concomitant effect on glucose uptake. This find-
ing leads to the conclusion that the restraint of NEFA
release (from adipose tissue) is the most sensitive ac-
tion of insulin on the lipolysis regulation in compari-
son with other insulin effects and does not involve the
translocation of glucose to promote NEFA retention
by esterification.

The lack of restraint of NEFA mobilisation in hy-
poinsulinaemia leads to a marked plasma NEFA in-
crease, ectopic deposition of triglycerides, insulin re-
sistance and defect in glucose uptake by muscles. The
latter fact stresses the effect of excessive availability
of NEFA on the reduction of the insulin-mediated
muscle glucose utilisation as shown in the classic ex-
periments of Randle et al. [7, 8]. It involves a reduc-
tion of muscle glycolysis by inhibiting phosphofructo-
kinase by rising cytosolic concentrations of citrate 
and consequent accumulation of glucose 6-phosphate.
Pyruvate dehydrogenase is also inhibited by rising 

mitochondrial concentrations of acetylCoA and the
NADH:NAD ratio. In the liver, the same changes in
redox ratio and activation of pyruvate carboxylase by
acetylCoA result in stimulation of gluconeogenesis.
This is a further instance of the effect of NEFA over-
supply as a contribution to hyperglycaemia in dia-
betes.

Life-threatening events can occur when the heart
NEFA inflow becomes excessive. In acute myocardial
ischaemia, it is often associated with fatal ventricular
arrhythmia and fibrillation. NEFA have been implicat-
ed as a risk factor for sudden cardiac death in diabetes
[9, 10]. The arrythmogenic effect of NEFA, related to
acute coronary syndrome, is elicited by rapid cate-
cholamine release and massive NEFA mobilisation
from adipose tissue. The regional switch in myocar-
dial substrate metabolism to increased fat use elicits
reduction in glucose uptake, resistance to insulin ac-
tion and increase in mitochondrial NEFA oxidation,
leading to oxygen crisis.

In pronounced hypoinsulinaemia, when the NEFA
supply from adipose tissue escapes control, not only
total body glucose homeostasis is disrupted, but the
resultant ketosis and acidosis become life-threatening.
It is of interest to recall here McGarry’s thoughts of
Minkowski’s failure to identify ketonuria [11] during
his seminal experiments with dogs after pancreatecto-
my [12]. McGarry hypothesised that if Minkowski
had been aware of the ketone odour of urine rather
than of its sweetness, the importance of the deranged
fat metabolism in diabetes would have been recogni-
sed sooner.

The eminent Randle glucose-NEFA cycle concept
appears, however, to hold only in severe NEFA over-
supply in conditions similar to Type 1 diabetes. The
effect of lipid infusion in healthy volunteers and the
results of a glucose load in obese and insulin-resistant
diabetic patients in a euglycaemic clamp system have
been investigated [13]. The increased NEFA concen-
trations in the circulation in these groups, in the pres-
ence of insulin, resulted only in relatively moderate
decreases in glucose uptake, non-oxidative metabo-
lism and glucose storage with greater utilisation of the
fat substrate. The hepatic glucose production was not
abolished, which in the presence of increased NEFA
availability became non-suppressible by insulin.

The causes for the diminished muscle glucose up-
take before the onset of overt diabetes have been ex-
tensively reviewed [14, 15, 16]. Convincing evidence
that an increase in NEFA concentration, whether due
to increased endogenous mobilisation or to postab-
sorptive lipolysis on a fat-rich diet, is associated with
triglyceride deposition in muscle, liver and other tis-
sues, eliciting insulin resistance. Other studies have
also indicated that the early perturbations in glucose
metabolism as a result of augmented fatty acid utili-
sation during lipid infusion are gradual [17]. Whole
body glucose uptake decreased to about one half of
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Fig. 1. NEFA ●–● and glucose ●●–●● curves during glucose
load of 1 g/kg in 50 control and 96 patients with IGT or Type 2
diabetes, all non-obese (BMI 24 to 28 kg/m2). The patterns of
NEFA decline where divided as “Group C” (n=57) – nadir
similar to controls but occurring later than in control patients,
at 60 min and lasting up to 150 min. “Group B” (n=26) NEFA
decrease not reaching the nadir of the control groups even at
150 min. “Group A” (n=13) nadir of NEFA much higher than
normal, lasting only 30 min between 60 and 90 min, most
probably related to the high preload NEFA value. The higher
initial concentrations of NEFA and the high nadirs in groups A
and B indicate lower lipolysis restraint in adipose tissue in ad-
dition to the impaired glucose tolerance (unpublished investi-
gations of E. Shafrir and A. Gutman based on [5])



the control after 6 h, augmented lipid oxidation was
associated with a fourfold reduction in oxidative glu-
cose metabolism, including glycogen synthesis by 3 h
and the decrease in muscle glucose-6-phosphate con-
centration already by 1.5 h of infusion. Further evi-
dence has shown that NEFA reduce the insulin-stimu-
lated glucose transport and phosphorylation and whole
body glucose clearance in human volunteers [18].
Thus, preceding the changes described by Randle et
al. [7], the first effect of FFA-induced insulin resis-
tance is the restriction of glucose cell entry, followed
by reduction in its metabolism, including the incorpo-
ration into glycogen.

The intracellular muscle triglyceride deposition in
subjects susceptible to diabetes was documented by
numerous investigators [19, 20, 21, 22, 23] and shown
to attenuate glucose metabolism. The earliest ob-
served perturbations are retardation in GLUT4 traf-
ficking reducing the glucose entry into muscle cells
[24]. These early changes indicate that phosphatidyl-
inositol-3-kinase (PI3K), regulating GLUT4 translo-
cation to the cell membrane, is affected by reduced
IRS tyrosine phosphorylation. Reduction in muscle fat
by diet restriction in experimental models of diabesity,
the OLETF rats [25] caused an impressive improve-
ment in IGT and in muscle glucose uptake. Similar re-
sults were reported in patients with morbid obesity, in
which dietary fat deprivation lowered muscle triglyce-
rides, as assessed by histochemistry, ameliorated insu-
lin resistance and increased GLUT4 expression [26].
Also, weight loss after gastric bypass surgery in mor-
bid obese patients resulted in increased insulin sensi-
tivity and reduction in muscle long chain fatty acid
CoA (LCFACoA) esters [27].

As discussed in depth by McGarry [28], accumula-
tion of muscle triglycerides results in an increased in-
tracellular LCFACoA concentration, due to lipolysis
of the enlarged cell pool of triglycerides. LCFACoA
lead to impairment of glucose uptake and insulin re-
sistance through the inhibition of mitochondrial palm-
itoyl carnitine transferase (CPT) responsible for their
transport into the mitochondria and oxidation. The 
delay in LCFACoA transport causes an increase in 
the cellular intermediates of triglyceride synthesis and
breakdown, with accumulation of intermediates, par-
ticularly diacylglycerol (DAG) [29, 30] (Fig. 2). A
similar increase in LCFACoA occurs by inhibiting
CPT with etomoxir [31]. DAG is not only an outcome
of increased triglyceride turnover, but could also be
produced by phospholipase C cleavage of diacylinosi-
tol phosphates.

Causative alterations in tissue fat metabolism leading
to Type 2 diabetes: DAG and PKC

The outcome of LCFCoA and DAG accumulation is
the attenuation of the insulin signalling pathway at

several points. DAG induces an overexpression of iso-
enzymes of the PKC group, e.g. PKCθ [32] and PKCε
[33, 34, 35]. Referring to the conjunction of muscle
triglycerides, DAG and PKC, in vitro uptake of NEFA
by smooth muscle cells increases DAG concentrations
with time of incubation and with NEFA concentration
[36]. An extensive review of the effects of DAG-sen-
sitive and DAG-independent members of the PKC
family is available [37].

The DAG-sensitive PKC isoenzymes are known to
phosphorylate serine and threonine on several protein
components of the insulin signalling pathway causing
a negative feedback in signal transduction [38, 39, 40,
41, 42]. Inhibition of PKC activity was shown to re-
lieve the insulin signalling attenuation [43]. One of
the results of PKC-DAG interaction is the reduction of
glucose uptake in insulin-sensitive tissues as manifest-
ed by inhibition of P13K detachment from the IRS
and failure to activate and/or translocate GLUT4 vesi-
cles. A strongly reduced concentration of GLUT4 pro-
tein and mRNA was seen in the insulin-resistant
PKCε overexpressing Psammomys obesus [33, 34], a
desert gerbil, prone to nutritionally-induced insulin re-
sistance. The increase in muscle DAG was associated
with deficient activation of insulin receptor tyrosine
kinase by insulin [44], inhibition of PKB/akt, which
regulates numerous metabolic systems within the cell,
and degradation of insulin receptor [34, 35]. Apart
from PKCε overexpression there was a shift in its cel-
lular distribution towards the membrane, indicating its
activation. PKCε and PKCα were correlated with
muscle DAG content in Psammomys [35] and PKCθ
in high fat fed rats [45, 46]. However, in cultured
myotubes obtained from IGT patients, the activation
of PI3K and a non-DAG sensitive PKCζ in response
to insulin was decreased [47], which was interpreted
as inducing insulin resistance. In human subjects an
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Fig. 2. Source of tissue diacylglycerol (DAG). Synthesis of tri-
glycerides from glucose or intracellular lipolysis of preformed
triglycerides involves diacylglycerol as an intermediate. This
could also include long-chain fatty acyl CoA (LCFACoA)
which accumulate within the cells when their entry into the 
mitochondria is retarded. Action of phospholipase C on phos-
phatidylinositol-diphosphate (PIP2)



increase in circulating NEFA for a few hours, by lipid
+ heparin infusion, led to muscle DAG and PKC rise
and insulin resistance [32]. The overall effect of PKC
on muscle insulin signal transduction is shown in
Fig. 3.

Muscle also contains a specific acetyl-CoA carbox-
ylase, which produces malonyl-CoA. However, malo-
nyl-CoA is not used further for fatty acid synthesis as
muscles are deficient in fatty acid synthase effecting
fatty acid elongation. Malonyl-CoA in muscle is a
sensor of NEFA oxidation, its concentrations regulat-
ing the entry of LCFACoA into the mitochondria [48,
49]. In turn, the concentrations of malonyl-CoA, apart
from acetyl-CoA carboxylase, are also regulated by
malonyl-CoA decarboxylase and AMP-activated pro-
tein kinase [50]. In muscle, when acetyl-CoA carbox-
ylase and malonyl-CoA are overexpressed, the entry
of NEFA into the mitochondria and their oxidation be-
comes retarded and LCFACoA rise in concentration.
As a result, DAG accumulation ensues, inducing PKC
activation and insulin resistance by attenuation of the
signalling pathway. Evidence of lower than normal
muscle capacity to oxidise fatty acids in the clinical
situation is also available. Obese women who reverted
to normal weight after caloric restriction, did not re-
spond to a fatty meal with appropriate fat oxidation
compared with matched non-obese women [51]. A re-
duced capacity to oxidise fat was also shown in mus-
cle samples of obese subjects [52]. Despite consider-
able uptake of palmitate, the muscle of diabetic pa-
tients released fewer oxidation products than healthy
control subjects [53]. In contrast, muscle fat oxidation
was enhanced when rat muscle acetyl-CoA carboxyl-
ase, malonyl-CoA decarboxylase and AMP protein 
kinase responded in opposite direction as a result of
exercise [54].

Other lipid substrates and cytokines involved 
in attenuation of insulin signaling

It has been shown that the spingolipid ceramide, a ma-
jor membrane component, can undergo lipolysis by
sphigomyelinase, activated by TNFα [55, 56]. This
cytokine is secreted by adipose tissue and other tissues
in diabesity and effects an inhibition of PKB/akt, IRS
and of other components of the insulin signalling
pathway in cultured muscle cells [57, 58]. Placental
TNFα, mostly released into the maternal circulation,
is considered to be partly responsible for the gestatio-
nal insulin resistance in human pregnancy [59]. Adi-
pose tissue also shows an endocrine-like activity and
the abdominal fat is one of the most important risk
factors for Type 2 diabetes. In addition to TNFα, it is
a prominent source of cytokines affecting tissue insu-
lin sensitivity and beta-cell function [60]. They in-
volve interleukin-6 [61], resistin [62] and adiponectin
[63].

Diabetes complications: atherosclerosis 
and hyperlipidaemia

Among the diabetes complications, there is a pro-
nounced acceleration of atherosclerosis, another pro-
cess based on fat metabolism abnormality. Hyper-
glycaemia results in a plethora of advanced glycation
products, giving rise to reactive oxygen molecules,
which activate monocytes and macrophages, causing
the proliferation of vascular smooth muscle cells and
an overall diabetic angiopathy. One of the main ac-
tions in this process is the oxidation of the unsaturated
fatty acids esterified to cholesterol in LDL [64]. The
oxidized hydroperoxides of cholesterol esters impart a
structural change in their apoB protein carrier and thus
the LDL bind to surrogate scavenging receptors on
macrophages due to nonrecognition by the genuine re-
ceptors [65]. The LDL accumulate in atherosclerotic
plaques by association with intimal proteoglycans, fa-
cilitate macrophage – foam cell conversion, endothe-
lial deposition and smooth muscle cell proliferation
[66]. The presence of the scavenger receptor in
smooth muscle cells is increased by PKCα [67]. The
increase in VLDL and LDL emphasises the role of
cholesterol oxidation in the accelerated atherogenesis
in diabetes.

Dyslipidaemia plays an important role in diabetic
complications, especially cardiovascular disease [68,
69]. The major lipoprotein abnormality in Type 2 dia-
betes is increased VLDL synthesis, in part due to the
hepatic recirculation of NEFA outflowing in excess
from adipose tissue, and in part as a result of de novo
synthesis in the presence of hyperglycaemia and hy-
perinsulinaemia. This occurs because the hepatic
VLDL synthesis, usually suppressed by insulin, con-
tinues unabated in the condition of insulin resistance
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Fig. 3. Protein kinase C and insulin signaling pathway. The
scheme illustrates the association of PKC overexpression (in
particular PKCε in Psammomys obesus) and the attenuating
action on insulin receptor tyrosine kinase (TK), phosphatidyl-
inositol-3-kinase (PI3K) regulating the translocation of
GLUT4 to the membrane and protein kinase B/akt. (Repro-
duced with permission from [35])



[70]. There is also an impediment in VLDL and chy-
lomicron removal due to lower than normal lipopro-
tein lipase (LPL) activity in adipose tissue in diabetes
[71, 72, 73]. Changes in VLDL composition, such as
excessive triglyceride and low apoE contents [74], can
also reduce the LPL activity.

The volume of VLDL particles is of major impor-
tance in the atherogenicity in diabetes by determining
the size and cholesterol content of the ensuing LDL
particles. Large VLDL particles with high triglyce-
ride content are the precursors of small, dense LDL,
which determine the severity of atherosclerosis [76,
77]. The activity of cholesterol ester transfer protein
(CETP), exchanging triglyceride for cholesterol in
hypertriglyceridemic VLDL is increased in diabetes
[78]. CETP could contribute to the formation of ath-
erogenic lipoprotein phenotype of diabetes by pro-
ducing VLDL particles rich in cholesterol and HDL
rich in triglyceride not functioning well in the uptake
of cholesterol from LDL and from the vessel wall
[79].

VLDL in diabetes contain increased Apo B48 of
intestinal origin [80, 81], indicating that the diabetic
dyslipidaemia is a postprandial metabolic disorder.
Improvement in diabetic control reduces the ApoB48
concentrations in VLDL [82]. The avid binding of
ApoB48 to the intima, smooth muscle cells and mac-
rophages indicates the presence of high receptor affin-
ity and could explain the preferential appearance of
ApoB48 derived from the large VLDL in the athero-
sclerotic plaques [83, 84].

Diabetic complications: fatty acid 
and PKC-related complications

Hyperglycaemia in poorly controlled Type 1 diabetes
or beta-cell deficient Type 2 diabetes is the main rea-
son for complications as established in the DCCT and
UKPDS studies. Nephropathy, neuropathy and reti-
nopathy, have also been indicated as associated with
increased oxidative stress and flawed fat metabolism,
including vascular contractility, basement membrane
thickening, extracellular matrix expansion, microangi-
opathy and macroangiopathy. Many biochemical and
pathological lesions in these insulin independent tis-
sues have been associated with the DAG-sensitive
PKC isoenzymes and have been related to changes in
Na+K+ ATPase activity, and MAP kinase. Among the
PKC isoenzymes overexpressed in these tissues and
actively investigated with a specific inhibitor are
PKCβ2 and PKCδ [85].

NEFA, triglyceride and beta-cell lipotoxicity

NEFA are known to be insulinotropic [86]. This prop-
erty represents a very important protection against hy-

poinsulinaemia on fasting, when the glucose is not
available for the stimulation of the pancreatic insulin
secretion. The increased mobilisation of NEFA from
adipose tissue provides enough insulin to ensure a
minimal insulin level necessary for preventing unre-
strained NEFA outpour with ketosis.

However, a large inflow of NEFA and an accumu-
lation of triglycerides in beta cells have a negative ef-
fect on insulin secretion. In massive obesity with ex-
cessive NEFA flow the increased secretion pressure
results in beta-cell deterioration up to apoptosis. This
has been shown in ZDF rats on relatively high fat di-
ets [87], in Psammomys obesus on a high energy diet
in the terminal stage characterized by hypoinsulinae-
mia and an increase in plasma NEFA and triglyceride
concentrations [88] and in isolated islets exposed to
high NEFA concentrations [89, 90]. The triglyceride
content of beta cells increased, intracellular lipolysis
raised the NEFA concentration, insulin stores became
depleted and the response to glucose was minimal. 
In human islets preculturing with NEFA caused a
caspase-mediated apoptosis possibly involving the 
ceramide pathway [91].

Fat metabolism targeted antidiabetic modalities

Most drugs used in Type 2 diabetes affect fat metabo-
lism albeit in an indirect fashion. However, one of the
prominent mechanisms for the increase of insulin sen-
sitivity in muscle and liver by thiazolidinediones
(TZD) is their effect on PPARγ receptors in adipose
tissue. They promote preadipocyte proliferation, sens-
itise the inhibition of triglyceride lipolysis by insulin
[92, 93, 94], which results in triglyceride retention in
adipose tissue and reduction of NEFA availability in
the circulation. As discussed above, this prevents the
ectopic fat deposition and the development of insulin
resistance. Similarly, TZD reduce NEFA oxidation
and glucose production in the liver [95]. Perhaps the
most impressive model showing this aspect of TZD
action is the fat-depleted transgenic mouse model [96,
97]. Because of the non-availability of fat substrate,
muscle insulin responsiveness was very high but
could be reversed by fat implantation. Similarly, the
surgical excision of visceral fat in ageing Zucker dia-
betic and FBN insulin-resistant rats markedly im-
proved the peripheral and hepatic insulin action [98].
In high fat fed rats, treatment with another TZD,
BRL49653, reduced systemic NEFA and pronounced-
ly improved insulin action and glucoregulation [99].
Treatment with rosiglitazone of Type 2 diabetic pa-
tients resulted in a shift of skeletal muscle, mesenteric
and hepatic and beta-cell triglyceride content to extra-
cellular sites; hyperinsulinaemic-euglycaemic clamp
demonstrated a remarkable improvement in glucose
metabolism and an inhibitory activity on adipocyte 
lipolysis [100].
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Conclusion

We invite comments as to what extent the accumulat-
ing evidence indicates that multiple aberrations in fat
metabolism, reviewed above, play a pivotal role in the
abnormalities of glucose homeostasis in diabetes. In
our view the new findings of ectopic fat deposition in
muscles and other tissues, linked to DAG accumula-
tion and activation of DAG-sensitive PKC isoen-
zymes, are responsible for the emerging insulin resis-
tance and beta-cell dysfunction, with the transition to
full-fledged Type 2 diabetes. These findings implicate
the derangements in fat metabolism as the main cul-
prit of metabolic deviations in Type 2 diabetes: the
negative feedback of the insulin signalling pathway.
We maintain that these findings clarify the pathophys-
iology of diabetes and require redefinition of the glu-
cocentric versus lipocentric approach. Our recommen-
dation is as a first step to drop the adjective “mellitus”
from diabetes and then to consider the introduction of
a new adjective “lipidus” or “lipomellitus”.
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