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Abstract
Key Message Multi-trait genomic prediction models are useful to allocate available resources in breeding programs by 
targeted phenotyping of correlated traits when predicting expensive and labor-intensive quality parameters.
Abstract Multi-trait genomic prediction models can be used to predict labor-intensive or expensive correlated traits where 
phenotyping depth of correlated traits could be larger than phenotyping depth of targeted traits, reducing resources and 
improving prediction accuracy. This is particularly important in the context of allocating phenotyping resource in plant 
breeding programs. The objective of this work was to evaluate multi-trait models predictive ability with different depth of 
phenotypic information from correlated traits. We evaluated 495 wheat advanced breeding lines for eight baking quality 
traits which were genotyped with genotyping-by-sequencing. Through different approaches for cross-validation, we evaluated 
the predictive ability of a single-trait model and a multi-trait model. Moreover, we evaluated different sizes of the training 
population (from 50 to 396 individuals) for the trait of interest, different depth of phenotypic information for correlated traits 
(50 and 100%) and the number of correlated traits to be used (one to three). There was no loss in the predictive ability by 
reducing the training population up to a 30% (149 individuals) when using correlated traits. A multi-trait model with one 
highly correlated trait phenotyped for both the training and testing sets was the best model considering phenotyping resources 
and the gain in predictive ability. The inclusion of correlated traits in the training and testing lines is a strategic approach to 
replace phenotyping of labor-intensive and high cost traits in a breeding program.

Introduction

Wheat is one of the most important staple food crops of 
humans (Shewry and Hey 2015), providing 18% of the total 
caloric intake of the world (FAO 2017). Bread is one of 
the most important end-use products of wheat; therefore, 
improving bread quality is a key aspect of wheat improve-
ment. Baking bread quality is a complex trait with quantita-
tive inheritance, derived by several individual traits each one 
with a different level of environmental influence (Williams 
et al. 2008). One of the traits that determines baking quality 
is gluten strength, which is a key factor for loaf volume that 
determines rising and shape maintenance during the bak-
ing process (MacRitchie 1992). Gluten strength is affected 
by the proportion of glutenins and gliadins polypeptides 
(75–80% of total proteins) synthetized by each wheat vari-
ety (MacRitchie 1992). Therefore, the amount and quality of 
proteins determine gluten strength and can be evaluated with 
the sedimentation volume value (MacRitchie 1992). Protein 
quantity also determines the stability of the dough to create 
a network and retain water, which is called wet gluten (WG). 
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There is a complex interaction between proteins and other 
components such as pentosans (Hamer et al. 2009) making 
dough strength predictability from chemical composition 
very difficult. Therefore, rheological tests are required. The 
alveograph is used to investigate the stretching properties of 
the dough. The total energy required for breaking a standard-
ized bubble is called baking strength (W). The length of the 
curve (L), or the time required to break it, is the extensibil-
ity, and the height of the peak (P) represents the tenacity or 
maximum dough resistance to rupture (Indrani et al. 2007). 
All these traits are used to select varieties with better bread 
quality (Vázquez 2009).

Baking quality is a complex quantitative trait, and sev-
eral breeding strategies have been successfully used to 
improve complex traits. In the pre-genomic era, common 
breeding strategies involved the use of classical quantita-
tive genetic approaches (Lynch and Walsh 1998), includ-
ing pedigree information to estimate best linear unbiased 
predictors (BLUPs; Henderson and Quaas 1976). With the 
widespread availability of molecular markers, genomic 
approaches have been used (Lande and Thompson 1990). 
One of the most widely used strategies involves using the 
additive relationship matrix estimated from markers instead 
of the additive relationship matrix estimated from pedigree 
with BLUP models. This was the beginning of the genomic 
selection (GS) era, and the new BLUP model was called a 
G-BLUP model (Meuwissen et al. 2001; Habier et al. 2007). 
The G-BLUP model is equivalent to a ridge regression 
BLUP model (RR-BLUP; Habier et al. 2007) and to Bayes-
ian models that assume Gaussian priors for marker effects 
(i.e., Bayesian ridge regression; VanRaden 2008). The latter 
models compute genetic breeding values (GEBV) adding up 
all marker effects which were estimated assuming a normal 
distribution of marker effects with common variance. These 
models have been the model of choice in most of the predic-
tion scenarios due to their high predictive ability and simple 
implementation (Heslot et al. 2015). However, other models 
that assume heterogeneity of variances and different distri-
butions for marker effects performing variable selection (de 
los Campos et al. 2013) might have higher predictive ability 
in specific situations (reviewed in Lorenz et al. 2011).

Classical quantitative genetics theory also provides 
the necessary framework for selecting multiple traits, and 
classical approaches used for multi-trait selection include 
an independent culling approach, tandem and index selec-
tion (Falconer and Mackay 1996). Multi-trait (MT) selec-
tion is justified only when traits are genetically correlated 
(Henderson and Quaas 1976). This correlation can be the 
result of pleiotropy or linkage disequilibrium between genes 
(Falconer and Mackay 1996). A particular case of selec-
tion indices [i.e., Smith–Hazel Index (Smith 1936; Hazel 
1943)] uses the correlation and the phenotypic and geno-
typic variance–covariance matrices among traits to estimate 

the net merit of genotypes. Multi-trait predictions have 
been extended for the use of genomic information (Calus 
and Veerkamp 2011; Ceron-Rojas et al. 2015). In this case, 
the correlation among observations is a function of the 
additive genetic correlation among traits and the additive 
genetic relationship among individuals (Calus and Veerkamp 
2011). This same strategy was applied to predict lines in 
the context of genotype by environment interaction using 
the environmental correlation as multi-trait (Burgueño et al. 
2012). Similar to single-trait models, multi-trait models 
could assume different marker distributions to estimate the 
breeding values. Calus and Veerkamp (2011) presented three 
models: one model estimates all marker effects assuming a 
unique variance (multi-trait G-BLUP); the other two models 
perform variable selection; one assumes the same variance 
for all the SNPs (BayesCπ), while the other assumes differ-
ent variances whether the SNPs were or not associated with 
a quantitative trait loci (QTL; BayesSSVS). In this study, 
the differences in performance among methods were small 
(Calus and Veerkamp 2011). Jia and Jannink (2012) com-
pared three models that were similar to those of Calus and 
Veerkamp (2011), but used different genetic architectures 
for the traits, and found that the models assuming differ-
ent variances (BayesA) and performing variable selection 
(BayesCπ) were best when QTL of major effects were simu-
lated. However, for truly quantitative traits, models assuming 
normal distribution of marker effects and unique variances 
were similar to more complex models. Therefore, a simple 
model using additive relationship matrix as variance–covari-
ance matrix among individuals seems to perform well for 
predicting single- (Habier et al. 2007) and multi-trait models 
(Jia and Jannink 2012; Guo et al. 2014).

Prediction of new un-phenotyped individuals has been 
studied using multi-trait and single-trait genomic predic-
tions models (Calus and Veerkamp 2011; Jia and Jannink 
2012; Guo et al. 2014). Calus and Veerkamp (2011) did 
not find significant differences between both models using 
simulated data for predicting traits with different but high 
heritability (h2 = 0.6 and h2 = 0.9). However, the multi-trait 
model showed good performance to predict low heritability 
traits with the help of correlated traits with high heritabil-
ity (Jia and Jannink 2012; Guo et al. 2014) and was opti-
mal when the genetic architecture was explained by major 
QTL. Finally, the advantage of multi-trait models to predict 
new un-phenotyped individuals was not so obvious when 
using experimental data for diseases resistance in pine (Jia 
and Jannink 2012), grain yield and protein content in rice 
(Schulthess et al. 2016), several traits in maize (Dos Santos 
et al. 2016) and grain yield in wheat through normalized 
difference vegetation index (NDVI) and canopy temperature 
(Sun et al. 2017). Therefore, the superiority of multi-trait 
models for predicting un-phenotyped individuals when using 
simulated data was not confirmed using experimental data.
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On the other hand, simulated and empirical studies show 
that multi-trait models were useful for predicting traits when 
individuals were partially phenotyped (Rutkoski et al. 2012; 
Jia and Jannink 2012; Guo et al. 2014; Rutkoski et al. 2016; 
Hayes et al. 2017; Sun et al. 2017). Both Rutkoski et al. 
2012 and Sun et al. (2017) found advantages of multi-trait 
models using correlated traits from high-throughput pheno-
typing (i.e., NDVI and canopy temperature) in wheat. Jia 
and Jannink (2012) also found an improvement in predict-
ing rust gall volume and the presence or absence of rust in 
pine. Finally, Hayes et al. 2017 found that end-use quality 
traits could be better predicted using near-infrared (NIR) 
or nuclear magnetic resonance (NMR). The results show 
that multi-trait models could be used to decide the optimal 
depth of phenotyping for each trait, mainly for expensive or 
difficult-to-measure traits (Guo et al. 2014). However, there 
is no evaluation on how much phenotyping of the labor-
intensive and expensive traits could be replaced by evaluat-
ing correlated inexpensive traits.

The objective of this work was to evaluate how multi-trait 
models could be used to optimize phenotyping resource allo-
cation in breeding programs for expensive or labor-intensive 
traits. Specifically, we evaluated whether the phenotyping of 
expensive and labor-intensive traits could be replaced by the 
use of simple-to-measure traits without affecting the predic-
tive ability; and we compared phenotyping strategies includ-
ing the use of purposefully unbalanced designs that would 
require phenotyping the same number of individuals for each 
trait but in an unbalanced manner such that the population 
evaluated is significantly larger and therefore the predictive 
ability potentially larger.

Materials and methods

Plant material

Advanced inbred lines from the wheat breeding program 
from the ‘Instituto Nacional de Investigación Agropecuaria’ 
(INIA), Uruguay, were used for this study. We used 820 
advanced inbred lines for the phenotypic analysis and 1974 
advanced inbred lines for the genotypic analyses. Finally, 
only 495 advanced inbreed lines, having both genotypic and 
phenotypic information, were used to adjust the genomic 
selection models.

Phenotyping

The advanced inbred lines from INIA’s wheat breeding pro-
gram were phenotyped for eight baking quality traits. The 
lines were grown in 82 trials in nine location-year combina-
tions (environment) as part of the wheat breeding program 
(Table S1). There were trials from different breeding scheme 

stages in each environment: preliminary and advanced tri-
als, and two maturity groups: short and long maturity. The 
traits were evaluated in field nurseries located in La Estan-
zuela (34°20′S, 57°42′W; 81 m asl), Colonia, Uruguay, over 
5 years (2010–2014). Additionally, approximately one-
third of the lines were also evaluated in Young (32°76′S, 
57°57′W; 85 m asl) and Ruta2 (33°45′S, 57°90′W; 95 m asl; 
Table S1). There were two to eight lines that linked the trials 
within and among environments (Table S2).

Eight baking quality traits were evaluated in 820 experi-
mental advanced inbred lines. Most lines were evaluated in 
a single environment (~ 680 lines), while the most promis-
sory lines were evaluated in multiple environments (~ 140 
lines). Grain protein content (Pt) and test weight (TW) were 
determined with methods 46–12 and 55–10 of the American 
Association of Cereal Chemists (AACC 2000), respectively. 
Refined flour was obtained using the Bühler Mill (AACC 
Approved Method 26–21A, AACC 2000) method or equiva-
lent. Flour attributes: wet gluten content (WG), alveograph 
parameters (W and L), and mixograph parameters (stabil-
ity (MH) and time (MT)), were evaluated using the AACC 
methods 38–12, 54–30 and 54–40 (AACC 2000), respec-
tively. Sedimentation volume (SV) was measured according 
to Peña et al. (1990).

Phenotypic analyses

Best linear unbiased estimation (BLUE) for bread baking 
quality traits was estimated from data coming from the dif-
ferent trials and environments using the following model:

where yijk is the phenotypic value of the i-th genotype in 
j-th year location for k-th trial, µ is the overall mean, gi is 
the fixed effect of the i-th genotype, ej is the fixed effect of 
j-th environment, tk(j) is the random effect of the k-th trial 
nested within j-th environment, and εijk is the residual error 
for the i-th genotype in the in j-th environment and k-th trial, 
where tk(j) and εijk were random variables being tk(j) ~ N(0,σt

2) 
and εijk ~ N(0, σe

2). The BLUEs were estimated using ‘nlme’ 
(Pinheiro and Bates 2017) and ‘lsmeans’ (Lenth 2016) pack-
ages from the R statistical software (R Development Core 
Team 2016).

To evaluate the genotype by environment interaction and 
the impact of unbalanced designs, Pearson’s correlation 
between environments was estimated using BLUEs com-
puted by environment (as in model 1 but without the envi-
ronmental effect). Additionally, genotypic, environmental 
and genotype by environment interaction variance compo-
nents were estimated. Finally, Pearson’s correlation and prin-
cipal component analysis between traits were estimated to 
evaluate the correlation among traits using the BLUEs esti-
mated from model 1. The final additive variance–covariance 

(1)yijk = � + gi + ej + tk(j) + �ijk
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matrix between traits was later estimated from the genomic 
prediction model.

Broad sense heritability for baking quality traits was esti-
mated as follows (Piepho and Möhring 2007):

where σg
2 is the genotypic variance and �̄� the mean variance 

of the difference of two adjusted means.

Genotyping

Leaf tissue from 1974 lines was collected, and the CTAB 
method (Saghai-Maroof et al. 1984) was used to isolate 
DNA for genotyping-by-sequencing (Poland et al. 2012a). 
The TASSEL-GBS pipeline (Glaubitz et al. 2014) was run 
with modifications for non-reference genomes (Poland et al. 
2012b). SNPs were filtered setting maximum missing value 
of 20%. Individuals with more than 50% missing informa-
tion were also discarded. The initial calling of alleles was 
conducted on the large number of individuals, and then, 
marker information for the 495 individuals for which phe-
notypic information was available was used. Therefore, the 
remaining 6655 SNPs were those with minor allele fre-
quency larger than 0.05 across the 495 individuals. SNP 
imputation was conducted using the multivariate normal 
expectation maximization method (Endelman 2011; Poland 
et al. 2012a). The additive relationship matrix (K) was esti-
mated as K =

WW �

2
∑

pmqm
 where W is the centered genotypic 

matrix, Wim = Xim +
(
1 − 2pm

)
 with Xim the genotype of the 

i-th individual for the m-th marker as {− 1,0,1} and pm, qm 
the allelic frequencies where qm = 1 − pm (Endelman and 
Jannink 2012). K was estimated using the ‘rrBLUP’ package 
in R Statistical Software (Endelman 2011).

Genomic prediction models

Predictions were obtained from 495 inbreed lines with phe-
notypic and genotypic information.

Single‑trait model

Using the single-trait model (ST), the prediction perfor-
mance values were obtained for the eight baking quality 
traits using a Bayesian ridge regression (BRR) model by 
trait.

(2)H2 =
𝜎2
g

𝜎2
g
+ �̄�∕2

(3)yi = 1� +

j=p∑

j=1

xij�j + �i

where yi is the adjusted phenotypic mean of individual i for 
a single trait; μ is the overall mean; xij the score of the j-th 
SNP in individual i; �j is the effect of j-th marker; and εi is 
the vector of residual errors. The conditional prior distribu-
tion is �i ∼ N

(
0, �2

)
 with �2 ∼ �−2(�2|df , S ) for residuals, 

and �j ∼ N
(
0, �2

�

)
 with �2

�
∼ �−2(df� , S� ) for genotypic 

values. Genotypic effects (gi) were predicted as 
gi =

∑j=p

j=1
xij𝛽j . Starting values were set for the degrees of 

freedom of the inverse Chi-squared distributions (df) as 5 
and scale parameters were calculated as S = var(y) × 0.5 fol-
lowing Pérez and de los Campos (2014). We used 1500 
burn-in and 3000 iterations for the Gibbs sampler algorithm 
implemented in ‘BGLR’ package (Pérez and de los Campos 
2014). Prediction accuracies for the ST model were esti-
mated using only one cross-validation approach CV1 (de 
Leon et al. 2016), explained below and in Fig. 1. 

Multi‑trait models

Multi-trait models (MT) were estimated fitting a Bayesian 
multivariate Gaussian model estimating an unstructured var-
iance–covariance matrix between traits (∑) and a residual 
matrix (R). The multi-trait model is:

where y is a vector of N × t length (N individuals and t 
traits), µ is the means vector of length N × t; u is a vector 
of predicted genetic values of the individuals for all traits 
with u ∼ N

�
0,
∑

⊗K
�
 and ε is a vector of residuals with 

𝜀 ∼ N(0,R⊗ I) , where K is the realized additive relation-
ship matrix among individuals estimated from the markers, 
and ∑ and R are the variance–covariance matrices for the 
genetic and residual effects for each individual in all traits, 
respectively, estimated using a Gibbs sampler algorithm 
with 1500 burn-in and 3000 iterations. ∑ was estimated as 
an unstructured matrix and R as a diagonal matrix. We used 
a diagonal matrix for R instead of an unstructured matrix 
because the predictive ability was higher with the diago-
nal matrix. To estimate ∑ and R, scaled inverse Chi-square 
prior distributions were assigned to ∑ ~ �−2

(
df� , S�

)
 and 

R ~ �−2
(
dfR, SR

)
 , with arbitrary assigned initial scale random 

matrix S� = It, SR = 1t and degrees of freedom df� = 4 and 
dfR = 1t . The predictions were obtained using the ‘MTM’ 
package in R (de los Campos and Grüneberg 2016). Finally, 
a multi-trait model without marker information was evalu-
ated using the same multi-trait model but with an identity 
matrix for K instead of the realized additive relationship 
matrix.

(4)y = 1� + Zu + �
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Cross‑validation scheme

Prediction accuracies were estimated using two main strate-
gies of cross-validation also shown in Fig. 1. The first cross-
validation strategy (CV1 following de Leon et al. 2016) used 

phenotypic and genotypic information from a random set 
of the advanced inbred lines to train the model (for exam-
ple, 60% of the population or 297 individuals). Then, the 
remaining lines (for example, 40% or 198) were predicted 
using genotypic data only. Pearson’s correlations between 

Fig. 1  Predictive strategies for an expensive or difficult-to-measure 
trait (i.e., Trait 1). ST-CV1: single-trait prediction cross-validation 1 
where a trait is predicted at a time; we used 60% of individuals as 
the training population (phenotyped and genotyped, green) and 40% 
of the individuals as the testing population (genotyped but not pheno-
typed, purple) as an example; MT-CV1: multi-trait prediction for new 
un-phenotyped individuals; we used 60% of individuals as the train-
ing population (phenotyped for all traits and genotyped, green) and 
40% of the individuals as the testing population (genotyped but not 
phenotyped for any trait, purple) as an example; MT-CV2: multi-trait 
prediction with cross-validation 2 where 100% of the information 
from three correlated traits is available for the individuals to be pre-
dicted; we used 60% of individuals as the training population (pheno-

typed for all traits and genotyped, green) and 40% of the individuals 
as the testing population (phenotyped for correlated traits but not for 
the targeted trait, and genotyped, purple) as an example; MT-CV2-
50%b: multi-trait prediction cross-validation 2 with 50% of balanced 
information in three correlated traits where the same 50% of indi-
viduals were phenotyped for each correlated traits; MT-CV2-50%u: 
multi-trait prediction cross-validation 2 with 50% of unbalanced 
information in three correlated traits where 50% of individuals were 
phenotyped for each correlated trait but in an unbalanced manner 
such that each individual is not necessarily phenotyped for all corre-
lated traits. Rectangles represent lines and colors the presence (green) 
or absence (purple) of phenotypic information (color figure online)
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the adjusted phenotypic means (model 1) and their predicted 
values (model 3) were estimated. This process was iterated 
100 times selecting different sets of lines each time. This 
scheme of cross-validation was used for ST and MT models 
(ST-CV1 and MT-CV1).

The second cross-validation strategy (CV2 following de 
Leon et al. 2016) used phenotypic and genotypic informa-
tion from a random set of lines (for example 60% or 297 
individuals) from the trait of interest to train the model. In 
addition, phenotypic and genotypic information for all lines 
of correlated traits was used. The trait of interested was 
predicted in the lines not phenotyped for the trait of inter-
est (for example, 40% or 198 individuals, Fig. 1). Pearson’s 
correlations between adjusted phenotypic means (model 1) 
and predicted values (model 4) were estimated. This pro-
cess was iterated 100 times selecting different set of lines 
each time. This scheme of cross-validation was used only 
for the MT models (MT-CV2). Multi-trait models were used 
to predict traits including information from up to three cor-
related traits which were chosen based on their relationships 
revealed by principal component analyses and their Pear-
son’s correlations.

Improving efficiency of phenotyping

In order to evaluate the possibility to train the models with 
fewer phenotyped lines, we trained the MT models using 50 
to 396 individuals (10 to 80%) from the training population 
and 100% of the lines phenotyped for the other correlated 
traits for W, L and MH. This strategy was used to predict 
each trait at a time using three correlated traits from the 
same group of traits (4T), two traits from the group (3T) 
or one trait from the group (2T). The 2T models were con-
structed with SV for both W and MH and with WG for L. 
The 3T models were constructed with SV and MH for W, 
SV and TW for MH, and WG and Pt for L. We evaluated the 
accuracy of the predictions using 100 iterations in all traits 
and CV2.

Prediction for alveograph and mixograph parameters (MH, 
W and L)

In order to improve the efficiency to predict complex traits 
such as the parameters from the alveograph or mixograph, 
we compared the prediction of MH, W and L using differ-
ent depth of phenotypic information on correlated traits. 
The mixograph parameter MT was not evaluated because it 
is poorly correlated with other traits in its group. First, we 
evaluated different sizes of this training population for the 
predicted traits when information on the other three traits 
was present only in 50% of the lines in a balanced or unbal-
anced manner. We used the same approach as before with 
10–80% of the training population for predicting the traits 

but using phenotypic information for only 50% of the lines 
for each correlated trait. To mask 50% of the lines, we fol-
lowed two strategies: designed as balanced (MT-CV2-50%b) 
or unbalanced (MT-CV2-50%u). The balanced strategy 
masks the same 50% of the lines in all correlated traits. In 
the unbalanced strategy, each trait is also phenotyped in 50% 
of the individuals, but different individuals are phenotyped 
for different traits. To mask 50% of the lines, both, the train-
ing and testing sets were divided in four equal parts. Then, 
two different sets from the training and two different sets 
from the testing were masked in each correlated trait. The 
lines were randomly assigned to each of the four sets. This 
procedure was conducted for 100 random iterations (Fig. 1).

Results

Phenotypic characterization of the population

Genotypic means for the multi-environment evaluation 
were used for genomic predictions since genotype by envi-
ronment interaction among years was low (i.e., high cor-
relation between environments, large heritability across 
environments, and relatively low proportion of the total 
phenotypic variance explained by the genotype by environ-
ment interaction; Table S2). Two groups of correlated traits 
were defined using principal component analysis (Fig. 2) and 
Pearson’s correlation between traits (Fig. 3). The first and 
second principal components explained 40 and 20% of the 
total phenotypic variance, respectively. Both groups were 

Fig. 2  Principal component analysis for the eight baking bread qual-
ity traits where the total phenotypic variance explained by each prin-
cipal component is indicated
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represented by four traits. Group 1 includes MH, SV and W 
with high correlation and TW with intermediate correlation 
with all other traits (Fig. 3). Group 2 includes Pt, WG, MT 
and L. MT had a low and negative correlation with all traits 
in this group. The heritability for each trait was medium 
(0.36–0.64, Fig. 3).

Multi‑trait genomic predictions

Similar predictive ability of ST and MT models was found 
for predicting new un-phenotype individuals (ST-CV1 and 
MT-CV1, Fig. 4). The traits with the highest predictive abil-
ity were TW and Pt ( r(y,ŷ) = 0.43 for both), while the trait 
with the lowest predictive ability was L ( r(y,ŷ) = 0.24 , Fig. 4).

Multi‑trait predictions using correlated traits

Using information of correlated traits from predicted indi-
viduals increased the predictive ability for all traits (MT-
CV1 vs MT-CV2, Fig. 4). The improvement in predictive 
ability through CV2 was different for each trait and related 
to the correlation between traits. In the group 1, TW was the 
trait with the smallest increase in predictive ability (Fig. 4) 
due to its low correlation to other traits (Fig. 3). On the other 
hand, the increase obtained for highly correlated traits, MT, 
W and SV, was high. In the group 2, WG was the trait with 
the largest increase in predictive ability, and this was the 

trait with the highest correlation with the others three traits 
in the group (Figs. 3, 4).

Replace phenotyping

Using correlated traits from predicted individuals, the train-
ing population size can be reduced up to 30% of its size 
without significantly affecting the predictive ability of the 
model (Fig. 5). In addition, the inclusion of marker infor-
mation improved 2–14% the predictive ability of multi-trait 
models for W and there was no improvement for L trait 
(Fig. 5).

One highly correlated trait (2T) increased more than 50% 
the predictive ability compared to the single-trait model for 
both W and L (Fig. 5). Two highly correlated traits (3T) 
increased the predictive ability a 14% for W and a 3% for 
L compared to the model with one correlated trait (Fig. 5). 
TW did not contribute substantially to W predictions, while 
MH and SV improved the predictive ability regardless of 
the model used (Fig. 5). In addition, MT and Pt did not con-
tribute to L predictions, while WG increased the predictive 
ability for L.

To predict an expensive trait using correlated traits with 
equal phenotyping cost, a purposefully unbalanced pheno-
typing design with 50% of each trait was explored (MT-CV2 
50%u). In this case, each trait was phenotyped for 50% of the 
individuals but for different individuals with some overlaps. 
This strategy yielded higher predictive ability than using 

Fig. 3  Scatter plot matrix with Pearson’s correlations and phenotypic 
distributions and trait heritability (on the diagonal) for each group 
of traits. Group 1 (left) including: TW, test weight; MH, mixograph 
height; SV, SDS sedimentation volume; W, alveograph parameter 

W. Group 2 (right) including: WG, wet gluten; MT, mixing time; Pt, 
grain protein content; L, alveograph L. *** indicates significantly dif-
ferent from 0 with α = 0.05
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even more phenotyping but only in the training population 
(MT-CV1 vs MT-CV2 50%u, Fig. 6). For example, 396 indi-
viduals phenotyped for W on a ST model had a predictive 
ability of 0.361 ± 0.09, while phenotyping 99 individuals for 
W and 495 for SV had a predictive ability of 0.404 ± 0.06 
(Fig. 6). The predictive ability using MT-CV2 50%u for two 
traits was between 28 and 34% higher than the ST model for 

MH, W and L (Fig. 6). Deep phenotyping on correlated trait 
always reached higher predictive ability than reducing the 
phenotyping to 50% of the lines for these traits. The predic-
tions obtained using an unbalanced strategy were slightly 
larger than using the balanced strategy. However, there were 
no differences in the predictive ability of both strategies used 
to phenotype 50% of the lines.

Fig. 4  Predictive ability ( r(y, ŷ) ) for eight baking bread quality traits. 
Single-trait prediction model (ST-CV1), and multi-trait prediction 
model (MT) with two schemes of cross-validation (MT-CV1, pre-
dicting new individuals and MT-CV2, predicting individuals phe-
notyped for correlated traits) with or without genotypic information 

 (CV2G and  CV2NG, respectively). Group 1 of traits (above): TW, test 
weight; MH, mixograph height; SV, SDS sedimentation volume; W, 
alveograph parameter W. Group 2 of traits (below): WG, wet gluten; 
MT, mixograph parameter-mixing time; Pt, grain protein content; L: 
alveograph parameter L 
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Discussion

Our grouping of traits, where one group was associated 
with gluten strength and the other one was related to protein 
quantity, is similar to that found in Vázquez et al. (2012). 
The high correlation we found between MH, W and SV 
was also found in others studies (Peña et al. 1994; Ruiz and 
Carillo 1995; Indrani et al. 2007). Model predictive abil-
ity using single-trait prediction through CV1 with 40% of 
randomly masked individuals (198 individuals) was lower 
(between 0.24 and 0.43) than previously found in Batten-
field et al. 2016 (between 0.45 and 0.60) predicted using 
20% randomly masked individuals. In addition, they were 
higher than those found in Hayes et al. (2017) although the 
strategy used to predict performance was different; here, we 
used cross-validation approaches and Hayes et al. (2017) 
predicted traits across years and locations.

Multi‑trait genomic predictions

Predicting new un-phenotyped individuals is always 
a challenge, and different strategies have been used to 
improve the predictive ability in those circumstances. The 

use of correlated trait responses has been effective when 
the predicted trait is of low heritability and the highly cor-
related trait is of high heritability (Jia and Jannink 2012; 
Guo et al. 2014; Jiang et al. 2015). These has been thor-
oughly studied both theoretically and empirically, within 
classic quantitative genetic studies (Falconer and Mackay 
1996; Lynch and Walsh 1998) and with genomic studies 
(Calus and Veerkamp 2011; Jia and Jannink 2012; Guo 
et al. 2014; Jiang et al. 2015). However, for very complex 
polygenic traits, there is a small advantage of a multi-trait 
model with correlated responses even with high herit-
ability differences among traits (Jia and Jannink 2012). 
Furthermore, studies with real experimental data from 
quantitative genetics using genomic information did not 
show a significant improvement of multi-trait models in 
mice (Jiang et al. 2015), avocado (He et al. 2016), maize 
(Dos Santos et al. 2016) or rice (Schulthess et al. 2016). 
We found a similar response, where the multi-trait model 
(MT-CV1) did not perform better than the single-trait 
model (ST-CV1). This was somewhat expected because 
although our traits were correlated, all traits have high her-
itability and because of the theoretical complexity of the 
traits (Nelson et al. 2006; Sun et al. 2008; Li et al. 2016).

Fig. 5  Predictive ability ( r(y, ŷ) ) and standard deviation (shadowed 
interval) for the alveograph parameters W and L using different sizes 
of the training population (N = 495) on the predicted trait. The traits 
were predicted using the multi-trait model cross-validation 2 (MT-

CV2) with four, three or two traits (4T, 3T and 2T), and single-trait 
model (ST-CV1) to predict one trait (1T). Prediction was assessed 
using genotypic information (WG and LG) and without genotypic 
information (WNG and LNG)



2728 Theoretical and Applied Genetics (2018) 131:2719–2731

1 3

Predictions for partially phenotyped individuals

Correlated traits can also be used to predict a correlated 
response when the individuals have been phenotyped for 
other traits (Rutkoski et al. 2012; Jia and Jannink 2012). 
Some previous work showed high prediction accuracy using 
highly correlated traits, but not with intermediate to low 
correlated traits (Calus and Veerkamp 2011; Jia and Jannink 
2012; Jiang et al. 2015). We found the same trend in our 
study, where the use of correlated responses using infor-
mation from other traits increased the predictive ability of 
models, and the predictive ability was directly related to the 
correlation between traits. Therefore, correlated traits in the 
lines to be predicted can be used to increase the predictive 
ability of the models.

Predictions for replace phenotyping

We showed that the use of correlated traits from predicted 
individuals (MT-CV2) increase the predictive ability of 
the models, and this was somewhat already shown. The 
next question we wanted to address was how much could 
we reduce the depth of phenotyping of an expensive trait 
(i.e., W or L in or study based on prices from the Canadian 

Grain Commission, Wheat Marketing Center, and AIB 
International), and in consequence the training population 
size, by using correlated traits without compromising the 
predictive ability of the model. It has been widely proven 
that smaller population sizes reduce prediction accuracy 
(Asoro et al. 2011; Heffner et al. 2011; Rincent et al. 2012; 
Akdemir et al. 2015; Rutkoski et al. 2015; Cericola et al. 
2017). However, our hypothesis was that by using corre-
lated traits we could somewhat offset the effect of smaller 
population sizes. This hypothesis was tested with a range 
of population sizes (i.e., 50 to 396 individuals or 10 to 
80%) and with real data. We found that the training popu-
lation could be reduced up to 30% of the total population 
without significantly affecting the predictive ability of the 
models if correlated traits were used. Our results show 
that it is possible to effectively design training popula-
tions where expensive or difficult-to-phenotype traits are 
phenotyped at a smaller depth than cheaper or easier-to-
phenotype correlated traits. Our results were obtained with 
individuals from the training population chosen at random. 
Other studies (Akdemir et al. 2015; Isidro et al. 2015; 
Rincent et al. 2017) found that optimizing the training 
population to select the most predictive individuals instead 
of using a random sample increases the predictive ability. 

Fig. 6  Predictive ability ( r(y, ŷ) ) and standard deviation (shadowed 
interval) of alveograph parameters (W, L) and mixograph param-
eter (MH) predictions using different sizes of training population 
(N = 495). Single-trait predictions (ST-CV1) were obtained using 
the predicted trait to train model (1T), or one, two or three correlated 
traits to train the model (MT-CV2 for 2T, 3T and 4T, respectively). 

MT-CV2: multi-trait predictions with 100% of information in three 
correlated traits; MT-CV2-50%u: multi-trait predictions with 50% of 
unbalanced information in three correlated traits; MT-CV2-50%b: 
multi-trait predictions with 50% of balanced information in three cor-
related traits
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We would therefore expect that our results are the base-
line for the gain that could be achieved by using replaced 
phenotyping when the training population is optimized.

We found that the increase in predictive ability includ-
ing marker information was marginal compared to the 
multi-trait model using phenotypic data from correlated 
traits when a large number of highly correlated traits were 
used. However, Crain et al. (2018) showed the importance 
of using marker information to predict traits in a new envi-
ronment where phenotypic correlation could be lower than 
expected due to genotype by environment interaction. In 
our work, we conducted cross-validation using the same 
population, but this will not be the situation during selec-
tion in a breeding program.

We showed that expensive traits could be assessed for 
fewer individuals without affecting its predictive ability if 
information of correlated trait is used from all individu-
als. This requires extensive phenotyping for all correlated 
traits. Our results showed that the predictive ability using 
50% of correlated information (MT-CV2-50%u) was lower 
than in the full phenotyping (MT-CV2) models. However, 
the predictive ability was still high. In addition, the use 
of an unbalanced strategy to reduce phenotyping on cor-
related traits was slightly better than reducing phenotyping 
using a balanced strategy (MT-CV2-50%u vs MT-CV2-
50%b). Therefore, unbalanced phenotyping of correlated 
traits could be another approach to predict traits that are 
expensive or labor-intensive.

Finally, we evaluated whether the inclusion of more 
than one trait increases the predictive ability of the model 
if this trait is highly correlated. We found that models 
with two highly correlated traits are better than models 
with one highly correlated trait. However, the increase in 
predictions is low with the addition of a second correlated 
trait. Therefore, it will be important to evaluate the cost of 
prediction using two instead of one correlated trait, bal-
ancing gain in accuracy with the costs of using another 
trait to help predictions. The use of mildly correlated traits 
such as TW, MT, and Pt was not useful.

Conclusion

The use of multi-trait models is useful to improve the pre-
dictive ability of partially phenotyped individuals. Expen-
sive or difficult-to-phenotype traits can be phenotyped in 
smaller population sizes if the predicted individuals are 
phenotyped fully or partially for less expensive correlated 
traits. Particularly, we found that the use of only one cor-
related trait in the model was the most effective way to 
increase the predictive ability with fewer resources.

Author contribution statement DV and MQ designed the 
phenotyping experiments. BL and PS performed genotyp-
ing analyses. BL, LG and IA performed statistical analyses. 
BL, LG, PS and IA wrote the paper. LG designed the study 
and hypothesis. All authors read and approved the final 
manuscript.

Acknowledgements We express our appreciation for the effort of 
the technical personnel of INIA La Estanzuela from ‘Laboratorio de 
calidad industrial de granos.’ Support for doctoral work of BL was 
provided by Agencia Nacional de Investigación e Innovación (ANII), 
Uruguay, through Grant POS_NAC_2013_1_11261 and by Comisión 
Sectorial de Investigación Científica (CSIC), Uruguay, through grants 
in the program internships abroad. We would like to thank two anony-
mous reviewers for their comments that improved the manuscript.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

AACC (2000) AACC International approved methods of analysis, 11th 
edn. AACC International, St. Paul, MN. http://metho ds.aaccn 
et.org/toc.aspx. Accessed 23 Jan 2018

Akdemir D, Sanchez JI, Jannink JL (2015) Optimization of genomic 
selection training populations with a genetic algorithm. Genet Sel 
Evol 47:38

Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink J-L (2011) 
Accuracy and training population design for genomic selection 
on quantitative traits in Elite North American Oats. Plant Genome 
J 4:132–144

Battenfield SD, Guzmán C, Gaynor RC, Singh RP, Peña RJ, Dreisi-
gacker S, Fritz AK, Poland JA (2016) Genomic selection for 
processing and end-use quality traits in the CIMMYT spring 
bread wheat breeding program. Plant Genome 9:1–12. https ://
doi.org/10.3835/plant genom e2016 .01.0005

Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic 
prediction of breeding values when modeling genotype × environ-
ment interaction using pedigree and dense molecular markers. 
Crop Sci 52:707–719

Calus MPL, Veerkamp RF (2011) Accuracy of multi-trait genomic 
selection using different methods. Genet Sel Evol 43:26

Cericola F, Jahoor A, Orabi J, Andersen J, Janss L (2017) Optimizing 
training population size and genotyping strategy for genomic pre-
diction using association study results and pedigree information. 
a case of study in KASP. PLoS ONE 12:e0169606

Ceron-Rojas JJ, Crossa J, Arief VN, Basford K, Rutkoski J, Jarquín D, 
Alvarado G, Beyene Y, Semagn K, DeLacy I (2015) A genomic 
selection index applied to simulated and real data. G3 (Bethesda) 
5:2155–2164

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://methods.aaccnet.org/toc.aspx
http://methods.aaccnet.org/toc.aspx
https://doi.org/10.3835/plantgenome2016.01.0005
https://doi.org/10.3835/plantgenome2016.01.0005


2730 Theoretical and Applied Genetics (2018) 131:2719–2731

1 3

Crain J, Mondal S, Rutkoski J, Singh RP, Poland J (2018) Combin-
ing high-throughput phenotyping and genomic information to 
increase prediction and selection accuracy in wheat breeding. 
Plant Genome 11:170043

de Leon N, Jannink J, Edwards JW, Kaeppler SM (2016) Introduction 
to a special issue on genotype by environment interaction. Crop 
Sci 56:2081–2089

de los Campos G, Grüneberg A (2016) MTM package. http://quant gen.
githu b.io/MTM/vigne tte.html. Accessed 23 Jan 2018

de los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus 
MPL (2013) Whole-genome regression and prediction methods 
applied to plant and animal breeding. Genetics 193:327–345

Dos Santos JPR, De Castro Vasconcellos RC, Pires LPM, Balestre 
M, Von Pinho RG (2016) Inclusion of dominance effects in the 
multivariate GBLUP model. PLoS One 11:e0152045

Endelman JB (2011) Ridge regression and other kernels for genomic 
selection with R package rrBLUP. Plant Genome 4:250–255

Endelman JB, Jannink J-L (2012) Shrinkage estimation of the realized 
relationship matrix. G3 Genes Genomes Genetics 2(11):1405–
1413. https ://doi.org/10.1534/g3.112.00425 9

Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 
4th edn. Ronald Press Company, New York

FAO (2017) Food and agriculture organization of the United Nations. 
http://www.fao.org/faost at/en/#home. Accessed 23 Jan 2018

Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, 
Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by 
sequencing analysis pipeline. PLoS One 9:e90346

Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G (2014) Comparison of 
single-trait and multiple-trait genomic prediction models. BMC 
Genet 15:30–36

Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic 
relationship information on genome-assisted breeding values. 
Genetics 177:2389–2397

Hamer RJ, MacRitchie F, Weegels PL (2009) Chapter 6: structure and 
functional properties of gluten. In: Khan K, Shewry PR (eds) 
Wheat: chemistry and technology. AACC International, Inc., St. 
Paul, pp 153–178

Hayes BJ, Walker JPCK, Kant ALCS (2017) Accelerating wheat 
breeding for end- use quality with multi- trait genomic predic-
tions incorporating near infrared and nuclear magnetic resonance-
derived phenotypes. Theor Appl Genet 130:2505–2519

Hazel LN (1943) The genetic basis for constructing selection indexes. 
Genetics 28:476–490

He D, Kuhn D, Parida L (2016) Novel applications of multitask learn-
ing and multiple output regression to multiple genetic trait predic-
tion. Bioinformatics 32:i37–i43

Heffner EL, Jannink J, Sorrells ME (2011) Genomic selection accuracy 
using multifamily prediction models in a wheat breeding program. 
Plant Genome 4:65–75

Henderson CR, Quaas RL (1976) Multiple trait evaluation using rela-
tives’ records. J Anim Sci 43:1188–1197

Heslot N, Jannink J-L, Sorrells ME (2015) Perspectives for genomic 
selection applications and research in plants. Crop Sci 55:1–12

Indrani D, Manohar RS, Rajiv J, Rao GV (2007) Alveograph as a tool 
to assess the quality characteristics of wheat flour for parotta mak-
ing. J Food Eng 78:1202–1206

Isidro J, Jannink J-L, Akdemir D, Poland J, Heslot N, Sorrells ME 
(2015) Training set optimization under population structure in 
genomic selection. Theor Appl Genet 128:145–158

Jia Y, Jannink J-L (2012) Multiple-trait genomic selection meth-
ods increase genetic value prediction accuracy. Genetics 
192:1513–1522

Jiang J, Zhang Q, Ma L, Li J, Wang Z, Liu J (2015) Joint prediction of 
multiple quantitative traits using a Bayesian multivariate antede-
pendence model. Heredity (Edinb) 115:29–36

Lande R, Thompson R (1990) Efficiency of marker-assisted selection 
in the improvement of quantitative traits. Genetics 124:743–756

Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat 
Softw 69:1–33

Li C, Bai G, Chao S, Carver B, Wang Z (2016) Single nucleotide poly-
morphisms linked to quantitative trait loci for grain quality traits 
in wheat. Crop J 4:1–11

Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith 
KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant 
breeding. Knowledge and prospects. Adv Agron 110:77–123

Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. 
Sinauer Associates Inc, Sunderland

MacRitchie F (1992) Physicochemical properties of wheat proteins in 
relation to functionality. Adv Food Nutr Res 36:1–87

Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total 
genetic value using genome-wide dense marker maps. Genetics 
157:1819–1829

Nelson JC, Andreescu C, Breseghello F, Finney PL, Daisy G, Perre-
tant MR, Leroy P, Bergman CJ, Pe RJ, Qualset CO, Sorrells ME 
(2006) Quantitative trait locus analysis of wheat quality traits. 
Euphytica 149:145–159

Peña RJ, Amaya A, Rajaram S (1990) Variation in quality character-
istics associated with some spring IB/IR translocation wheats. J 
Cereal Sci 12:105–112

Peña RJ, Zarco-Hernandez J, Amaya-Celis A, Mujeeb-Kazi A (1994) 
Relationship between chromosome 1B-encoded glutenin subu-
nit composition and bread-making quality characteristic of some 
durum wheat (Triticum turgidum) cultivars. J Cere 19:243–249

Pérez P, de los Campos G (2014) Genome-wide regression and predic-
tion with the. Genet Soc Am 198:483–495

Piepho H-P, Möhring J (2007) Computing heritability and selec-
tion response from unbalanced plant breeding trials. Genetics 
177:1881–1888

Pinheiro J, Bates D (2017) Linear and nonlinear mixed effects models. 
https ://cran.r-proje ct.org/web/packa ges/nlme/nlme.pdf. Accessed 
23 Jan 2018

Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012a) Development 
of high-density genetic maps for barley and wheat using a novel 
two-enzyme genotyping-by-sequencing approach. PLoS One 
7:e32253

Poland J, Endelman J, Dawson J, Rutkoski J, Wu S, Manes Y, Dreisi-
gacker S, Crossa J, Sánchez-Villeda H, Sorrells M, Jannink J-L 
(2012b) Genomic selection in wheat breeding using genotyping-
by-sequencing. Plant Genome J 5:103–113

R Development Core Team (2016) R: the R project for statistical com-
puting. https ://www.r-proje ct.org/. Accessed 23 Jan 2018

Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rod-
ríguez VM, Moreno-Gonzalez J, Melchinger A, Bauer E, Sch-
oen C-C, Meyer N, Giauffret C, Bauland C, Jamin P, Laborde J, 
Monod H, Flament P, Charcosset A, Moreau L (2012) Maximizing 
the reliability of genomic selection by optimizing the calibration 
set of reference individuals: comparison of methods in two diverse 
groups of maize inbreds (Zea mays L.). Genetics 192:715–728

Rincent R, Oury EKHMFX, Rousset M, Allard V (2017) Optimization 
of multi-environment trials for genomic selection based on crop 
models. Theor Appl Genet 130:1735–1752

Ruiz M, Carillo M (1995) Relationships between different prolamin 
proteins and some quality properties in durum wheat. Plant Breed 
114:40–45

Rutkoski J, Benson J, Jia Y, Brown-guedira G, Jannink J, Sorrells M 
(2012) Evaluation of genomic prediction methods for fusarium 
head blight resistance in wheat. Plant Genome 5:51–61

Rutkoski J, Singh RP, Huerta-Espino J, Bhavani S, Poland J, Jannink 
JL, Sorrells ME (2015) Efficient use of historical data for genomic 

http://quantgen.github.io/MTM/vignette.html
http://quantgen.github.io/MTM/vignette.html
https://doi.org/10.1534/g3.112.004259
http://www.fao.org/faostat/en/#home
https://cran.r-project.org/web/packages/nlme/nlme.pdf
https://www.r-project.org/


2731Theoretical and Applied Genetics (2018) 131:2719–2731 

1 3

selection: a case study of stem rust resistance in wheat. Plant 
Genome 8:1–10

Rutkoski J, Poland J, Mondal S, Autrique E, Pérez LG, Crossa J, 
Reynolds M, Singh R (2016) Canopy temperature and vegeta-
tion indices from high-throughput phenotyping improve accuracy 
of pedigree and genomic selection for grain yield in wheat. G3 
(Bethesda) 6:2799–2808

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) 
Ribosomal DNA spacer-length polymorphisms in barley: mende-
lian inheritance, chromosomal location, and population dynamics. 
Proc Natl Acad Sci USA 81:8014–8018

Schulthess AW, Yu W, Miedaner T, Wilde P, Reif JC, Zhao Y (2016) 
Multiple-trait and selection indices genomic predictions for grain 
yield and protein content in rye for feeding purposes. Theor Appl 
Genet 129:273–287

Shewry PR, Hey SJ (2015) The contribution of wheat to human diet 
and health. Food Energy Secur 4:178–202

Smith HF (1936) A discriminant function for plant selection. Ann 
Eugen 7:240–250

Sun H, Lu J, Fan Y, Zhao Y, Kong F, Li R, Wang H, Li S (2008) Quan-
titative trait loci (QTLs) for quality traits related to protein and 
starch in wheat. Prog Nat Sci 18:825–831

Sun J, Rutkoski JE, Poland JA, Crossa J, Jannink J, Sorrells ME (2017) 
Multitrait, random regression, or simple repeatability model in 
high-throughput phenotyping data improve genomic prediction 
for wheat grain yield. Plant Genome 10:1–12

VanRaden PM (2008) Efficient methods to compute genomic predic-
tions. J Dairy Sci 91:4414–4423

Vázquez D (2009) Aptitud industrial de trigo. In: Inst. Nac. Investig. 
Agropecu. http://www.inia.uy/Publi cacio nes/Docum entos compa 
rtido s/18429 13070 91335 40.pdf. Accessed 24 Jan 2018

Vázquez D, Berger AG, Cuniberti M, Bainotti C, Zavariz de Miranda 
M, Scheeren PL, Jobet C, Zúñiga J, Cabrera G, Verges R, Peña RJ 
(2012) Influence of cultivar and environment on quality of Latin 
American wheats. J Cereal Sci 56:196–203

Williams RMA, Brien LOB, Eagles HAC, Solah VAA, Jayasena VA 
(2008) The influences of genotype, environment, and genotype 
x environment interaction on wheat quality. Aust J Agric Res 
59:95–111

http://www.inia.uy/Publicaciones/Documentoscompartidos/18429130709133540.pdf
http://www.inia.uy/Publicaciones/Documentoscompartidos/18429130709133540.pdf

	Resource allocation optimization with multi-trait genomic prediction for bread wheat (Triticum aestivum L.) baking quality
	Abstract
	Key Message 
	Abstract 

	Introduction
	Materials and methods
	Plant material
	Phenotyping
	Phenotypic analyses
	Genotyping
	Genomic prediction models
	Single-trait model
	Multi-trait models

	Cross-validation scheme
	Improving efficiency of phenotyping
	Prediction for alveograph and mixograph parameters (MH, W and L)


	Results
	Phenotypic characterization of the population
	Multi-trait genomic predictions
	Multi-trait predictions using correlated traits
	Replace phenotyping


	Discussion
	Multi-trait genomic predictions
	Predictions for partially phenotyped individuals
	Predictions for replace phenotyping


	Conclusion
	Acknowledgements 
	References




