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gemmatalis (Hübner)]; and in field-cage assays with SBL. 
BenningME+cry1Ac was tested in detached-leaf assays against 
SBL, VBC, and Southern armyworm [SAW, Spodoptera 
eridania (Cramer)]. In the detached-leaf assay, BenningME 
showed the strongest antibiosis against CEW, FAW, and VBC. 
In field-cage conditions, BenningME and BenningMGHE suf-
fered 61 % less defoliation than Benning. BenningME+cry1Ac 
was more resistant than BenningME and Benningcry1Ac against 
SBL and SAW. Agriculturally relevant levels of resistance in 
soybean can be achieved with just two loci, QTL-M and QTL-
E. ME+cry1Ac could present an opportunity to protect the 
durability of Bt genes in elite soybean cultivars. These results 
should assist the development of effective pest management 
strategies, and sustainable deployment of Bt genes in soybean.

Abbreviations
IPM  Integrated pest management
SSR  Simple sequence repeat
SNP  Single nucleotide polymorphism
Chr  Chromosome
cM  Centimorgans
bp  Basepair
PI  Plant introduction
QTL  Quantitative trait locus
CEW  Corn earworm
SBL  Soybean looper
VBC  Velvetbean caterpillar
FAW  Fall armyworm
SAW  Southern armyworm
Bt  Bacillus thuringiensis

Introduction

The production of soybean [Glycine max (L.) Merr], one 
of the world’s primary sources of vegetable oil and protein 

Abstract 
Key message QTL‑M and QTL‑E enhance soybean 
resistance to insects. Pyramiding these QTLs with 
cry1Ac increases protection against Bt‑tolerant pests, 
presenting an opportunity to effectively deploy Bt with 
host–plant resistance genes.
Abstract Plant resistance to leaf-chewing insects minimizes 
the need for insecticide applications, reducing crop produc-
tion costs and pesticide concerns. In soybean [Glycine max 
(L.) Merr.], resistance to a broad range of leaf-chewing insects 
is found in PI 229358 and PI 227687. PI 229358’s resist-
ance is conferred by three quantitative trait loci (QTLs): M, 
G, and H. PI 227687’s resistance is conferred by QTL-E. The 
letters indicate the soybean Linkage groups (LGs) on which 
the QTLs are located. This study aimed to determine if pyra-
miding PI 229358 and PI 227687 QTLs would enhance soy-
bean resistance to leaf-chewing insects, and if pyramiding 
these QTLs with Bt (cry1Ac) enhances resistance against Bt-
tolerant pests. The near-isogenic lines (NILs): BenningME, 
BenningMGHE, and BenningME+cry1Ac were developed. Ben-
ningME and BenningMGHE were evaluated in detached-leaf 
and greenhouse assays with soybean looper [SBL, Chryso‑
deixis includens (Walker)], corn earworm [CEW, Helicoverpa 
zea (Boddie)], fall armyworm [FAW, Spodoptera frugiperda 
(J.E. Smith)], and velvetbean caterpillar [VBC, Anticarsia 
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(Wilcox 2004), is often limited by pests. Worldwide, 11 % 
of the crop is lost to animal pests, including insects (Oerke 
2005). In the USA, the insect pests causing the most impact 
are: corn earworm [Helicoverpa zea (Boddie)], soybean 
looper [Chrysodeixis includens (Walker)], velvetbean cat-
erpillar [Anticarsia gemmatalis (Hübner)], bean leaf beetle, 
[Cerotoma trifurcata (Forster)], green stink bug [Chinavia 
hilaris (Say)], and southern stink bug [Nezara viridula (L)] 
(Boethel 2004). The corn earworm (CEW), soybean looper 
(SBL), velvetbean caterpillar (VBC), and bean leaf beetle 
are chewing insects capable of defoliating plants entirely. 
Although soybean plants can withstand moderate levels of 
leaf damage, high levels of defoliation greatly reduce seed 
yield and quality (Haile et al. 1998). The efficient use of 
insecticide applications depends on economic thresholds 
(ETs), which are based on percent of defoliation and are 
used to monitor insect populations to prevent them from 
reaching levels that may cause economic losses. The sug-
gested ETs for leaf-chewing insects in soybean are 35 % 
defoliation during the vegetative stages and 20 % defolia-
tion during the reproductive stages (Heatherly 2014).

A third of the world’s soybean crop was produced in the 
USA in 2013 (FAOSTAT 2015). The southern states of Ala-
bama, Arkansas, Louisiana, Mississippi, North Carolina, 
Tennessee, and Virginia harvested just 13.6 % of the US 
supply; yet farmers in these states spent $262 million on 
insect control to produce a $5 billion crop. Despite the con-
trol efforts, yield losses to insects amounted to $234 mil-
lion. Thus, the combined costs of insect control and yield 
loss were equivalent to $500 million. CEW, SBL, and stink 
bugs were the most important species, both in terms of con-
trol costs and yield losses (Musser et al. 2014). The need 
to lower cost of production along with increased concern 
over insecticide residues in the food chain and environment 
is incentives to develop insect-resistant cultivars to use in 
integrated pest management (IPM) strategies. However, 
these efforts have been hampered by a lack of understand-
ing of the genetic basis of resistance to most insects, in 
addition to the difficulty of developing insect-resistant cul-
tivars that yield equivalently to the existing cultivars (Lam-
bert and Tyler 1999).

The Japanese soybean landraces ‘Kosamame’ (PI 
171451), ‘Miyako White’ (PI 227687), and ‘Sodendaizu’ 
(PI 229358) are the most widely used sources of resist-
ance to defoliating insects (USDA-ARS 2015). They were 
initially discovered to be resistant to Mexican bean beetle 
[Epilachna varivestis (Mulsant)] by Van Duyn et al. (1971, 
1972). They also have been reported to be resistant to mul-
tiple coleopteran, lepidopteran, and hemipteran insects 
that are major economic pests of soybean worldwide 
(Clark et al. 1972; Gary et al. 1985; Hatchett et al. 1976; 
Hoffmann-Campo et al. 2006; Jones and Sullivan 1979; 
Komatsu et al. 2004; Lambert and Kilen 1984b; Layton 

et al. 1987; Li et al. 2008; Luedders and Dickerson 1977; 
Piubelli et al. 2003; Silva et al. 2013; Talekar and Lee 
1988; Talekar and Lin 1994).

Resistance to defoliating insects in PI 171451, PI 
227687, and PI 229358 is conferred via both antibiosis and 
antixenosis (Rector et al. 2000a, b). Antibiosis is a type of 
resistance in which the plant has a detrimental effect on 
insect growth, development, and/or reproduction (Painter 
1951). Antixenosis or non-preference is a type of resistance 
in which the plant affects insect behavior, by discourag-
ing oviposition, colonization, or feeding (Kogan and Ort-
man 1978; Painter 1951). Initial attempts to transfers insect 
resistance from these plant introductions (PIs) to elite soy-
bean lines were hindered by poor agronomic qualities of the 
PIs, and by quantitative inheritance of resistance (Boethel 
1999). The advent of marker-assisted selection (MAS) has 
made possible to reduce many of the issues caused by link-
age drag (Warrington et al. 2008).

To understand the genetic basis of resistance in these PIs, 
Rector et al. (1998, 2000a, b) identified a major QTL on 
Linkage Group (LG) M (now chromosome 7) of PI 171451 
and PI 229358. This locus named “QTL-M” accounts for 
37 % of antixenosis variance, and up to 28 % of antibiosis 
variance. In addition, there are two minor QTLs involved in 
resistance. QTL-H on chromosome (formerly LG H) condi-
tions antixenosis in PI 229358 and PI 171451, and QTL-G 
on chromosome 18 (formerly LG G) conditions antibiosis 
in PI 229358. Zhu et al. (2006) demonstrated that QTL-H, 
and QTL-G only have a detectable effect if QTL-M is pre-
sent in the genome. These minor QTLs have usually been 
missed by conventional breeding programs (Narvel et al. 
2001).

Hulburt (2002) identified a major insect-resistance QTL 
in a mapping population from a PI 227687 × ‘Cobb’ cross. 
This QTL (QTL-E) on LG E (now chromosome 12) of PI 
227687 conveys both antibiosis and antixenosis. QTL-E co-
maps with the Pb locus that controls sharp (Pb_) vs. blunt 
(pbpb) leaf pubescence in soybean (Ting 1946). Although 
there are earlier reports on the effect of pubescence traits 
on soybean resistance to insect (Hollowell and Johnson 
1934; Johnson and Hollowell 1935; Kanno 1996), is the 
first report that a sharp-trichome locus co-localizes with an 
insect-resistance QTL. Hulburt et al. (2004) confirmed that 
sharp-trichome NILs from ‘Clark’ and ‘Harosoy’ are more 
resistant to lepidopterans, compared to the blunt-trichome 
cultivars. Nevertheless, given that Lambert and Kilen 
(1984b) showed that PI 227687’s resistance is graft-trans-
missible, it remains possible that resistance is really due to 
an as of yet unidentified gene linked to Pb.

Pyramiding is used to combine multiple desirable genes 
for the same trait into a single genetic background (Ye 
and Smith 2008). This strategy is advantageous for devel-
opment of insect-resistant cultivars; it permits genes with 
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different modes of action to be combined to obtain more 
durable resistance. Accordingly, Walker et al. (2002) dem-
onstrated that QTL-M enhances the effectiveness of Bt 
in soybean plants expressing the cry1Ac transgene, while 
Santos et al. (1997) found that the use of cowpea trypsin 
inhibitor countered the effects of Cry1Ac in arabidopsis. 
In addition, Zhu et al. (2008) analyzed sixteen NILs carry-
ing all possible combinations of the insect-resistance QTLs 
from PI 229358 and the cry1Ac transgene in a ‘Benning’ 
background (Boerma et al. 1997). CEW and SBL bioassays 
confirmed that Cry1Ac is more effective in the presence of 
insect-resistance QTLs from PI 229358.

The main goal of this research is to enhance soybean 
resistance to leaf-chewing insects by identifying the best 
combination of host–plant resistance QTLs. The objec-
tives of this study were to: (1) develop NILs containing 
novel combinations of the insect-resistance QTLs from PI 
229358 and PI 227687; (2) characterize the NILs for their 
resistance to defoliating insects, and (3) evaluate the effect 
of the combination of QTL-M, QTL-E, and Bt for control-
ling Bt-tolerant pests.

Materials and methods

Characterization of BenningME and BenningMGHE

Development of near‑isogenic lines

The BC6F2-derived NILs, BenningME and BenningMGHE 
[i.e., Benning with QTLs M and E in the first case and M, 
G, H, and E in the second case, backcrossed into it] were 
developed using a marker-assisted backcross approach 
(Fig. 1). Benning, a Maturity Group VII elite cultivar 
adapted to Georgia, was used as the recurrent parent. The 
NIL development took approximately 10 years, and started 
before SNPs were commonplace. Simple sequence repeat 
(SSR) markers linked to each QTL were used during back-
cross and selfing generations to select lines carrying a spe-
cific QTL combination. The flanking markers were: Sat_258 
(5′-GCGCAATAGATAATCGAAAAACATACAAGA-3′ 
and 5′-GCGGGGAAAGTGAAAACAAGATCAAATA-3′) 
and Satt702 (5′-GCGGGGTTCTGTGGCTTCAAC-3′ 
and 5′-GCGCATTGGAATAACGTCAAA-3′) for 
QTL-M (Zhu et al. 2009); Sct_199 (5′-GCGACAATG-
GCTATTAGTAACAATCA-3′ and 5′-GCGATTTTC-
TATTTTCCTCACAGTG-3′) and Satt191 
(5′-CGCGATCATGTCTCTG-3′ and 5′-GGGAGTTGGT-
GTTTTCTTGTG-3′) for QTL-G (Zhu et al. 2008); Sat_334 
(5′-GCGTAACGTAGCAAATTGACTATAAGA-3′ and 
5′-GCGTGTGCAAAGACAATTTCAATGA-3′) and 

Sat_122 (5′-GTGACAAATGGATGGACAATAG-3′ 
and 5′-AAGAAAAATAAAATAATGTAGAGTGGT-
GAT-3′) for QTL-H (Zhu et al. 2008); and Sat_112 
(5′-TGTACAGTATACCGACATAATA-3′ and 5′-CTA-
CAAATAACATGAAATATAAGAAATA-3′) and Satt411 
(5′-TGGCCATGTCAAACCATAACAACA-3′ and 
5′-GCGTTGAAGCCGCCTACAAATATAAT-3′) for 
QTL-E (Hulburt 2002). Primer sequences for the SSR 
markers were obtained from SoyBase (http://www.soybase.
org) (Grant et al. 2010). Genomic DNA isolation, PCR, 
and electrophoresis protocols for SSRs were performed 
as described by Zhu et al. (2008). Single nucleotide poly-
morphism (SNP) markers (Ortega 2016, personal com-
munications) were used to genotype the plants used in the 
bioassays.

Defoliation

To estimate defoliation percentage, a soybean leaf defolia-
tion chart (Fig. 2) was built from a collection of chewed 
leaves for which the percentage of consumed leaf area was 
calculated in Image J (Rasband 1997). A chart including 
5 % increments was the most useful to estimate the percent 
defoliation in NILs carrying the minor insect-resistance 
QTLs (QTL-G and QTL-H) in combination with the major 
QTLs (QTL-M and QTL-E).
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Fig. 1  Breeding scheme for pyramiding insect-resistance QTLs in 
Benning. BenningMGH (Zhu et al. 2007) and BenningE, developed 
from a cross between Benning and PI 227687, were crossed; and the 
QTL combinations BenningME and BenningMGHE were selected in the 
progeny. SSRs were used for marker-assisted selection (MAS) of QTL 
pyramids in each generation, and SNPs (Ortega 2016, personal com-
munications) were used to genotype the plants used in the bioassays

http://www.soybase.org
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Bioassays

SBL, CEW, fall armyworm [Spodoptera frugiperda (J.E. 
Smith)], and VBC caterpillars were used to evaluate the 
insect-resistant NILs performance in antibiosis, antixeno-
sis, and field-cage assays. Eggs were obtained from Benzon 
Research Inc. (Carlisle, PA). Eggs were incubated for 72 h 
at 25 °C in a 600-ml (20 oz) clear polystyrene cup (Let-
ica Corporation, Rochester Hills, MI, USA) sealed with a 
dome lid (Letica Corporation); the cup contained 7 ml of 
plaster of Paris saturated with water to maintain 75 % rela-
tive humidity. Neonate caterpillars were used to infest the 
bioassays.

Detached‑leaf experiments Antibiosis (non-choice) 
assays were used to determine the effect of the ME and 
MGHE QTL combinations on caterpillar weight gain. Ben-
ning (susceptible check), BenningM, BenningE, BenningH, 
BenningG, and BenningMGH were included in each experi-
ment. The NILs were tested for antibiosis to SBL, CEW, 
FAW, and VBC. Each species was evaluated independently 

using a randomized complete block design with 15 replica-
tions. Each replication included one plant from each geno-
type as the experimental unit. The experimental procedures 
included: (1) One seed was planted in a 450-ml polystyrene 
foam cup filled with Fafard 2 mix (Conrad Fafard, Aga-
wam, MA, USA) with three holes punched in the bottom 
to provide drainage. Plants were grown in an insecticide-
free greenhouse under a photoperiod of 16 h. Sunlight was 
supplemented with 400 J s−1 Phillips ED-18 high-pressure 
sodium lamps (Phillips Inc., Andova, MA, USA) to keep 
the plants in a vegetative stage. The temperature was regu-
lated to approximately 28 °C during the day, and 20 °C at 
night. Newly expanded trifoliolate leaves were collected, 
once plants reached the V4 stage (Fehr and Caviness 1977). 
One trifoliolate leaf was placed into a 600-ml (20-oz) clear 
polystyrene cup (Letica Corporation) sealed with a dome lid 
(Letica Corporation). Each cup contained 7 ml of plaster of 
Paris saturated with water, to maintain 75 % relative humid-
ity. Five SBL or FAW neonate caterpillars were placed in 
each cup, whereas only one CEW and VBC neonate was 
used per cup, with two cups per plant, to avoid cannibalism. 

Fig. 2  Soybean defoliation chart. Percentage of leaf area consumed by herbivores was calculated using Image J
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Infested cups were placed in a growth chamber set at 27 °C, 
and a 14-h light period was maintained with fluorescent 
lights (T8 F032/730/Eco, Sylvania Octron, Danvers, MA, 
USA) providing ca. 40 µmol photons m−2 s−1 (Zhu et al. 
2008) (Fig. 3a). Trifoliolate leaves were replaced with fresh 
leaves on the 4th day, and subsequently whenever 60 % of 
the leaf area had been consumed. The average percentage 
of defoliation was estimated based on the appearance of the 
entire leaf. The experiment was terminated after 7 days; cat-
erpillars were immobilized by placing the cups at 4 °C for 
24 h. Caterpillars from each cup were weighed and their 
mean weights were used for analysis of variance.

Greenhouse experiments Antixenosis (choice) assays 
were used to evaluate caterpillars’ feeding preference when 
foliage of the null, M, E, H, G, ME, MGH, and MGHE NILs 
formed a canopy. The percentage of leaf area consumed by 
SBL, CEW, FAW, and VBC was determined for the each 
entire plant. Each insect species was tested independently 
using a randomized complete block design with 15 repli-
cations, with one plant from each NIL as the experimental 
unit. One seed was planted in a 450-ml polystyrene foam 
cup as described previously and grown in an insecticide-free 
greenhouse with the conditions as described above. Once 
plants reached the V4 stage, each block was transferred to 
a 24 × 24 × 36″ polyester-mesh cage (BioQuip products, 
Rancho Dominguez, CA, USA) (Fig. 3b). Each plant was 
infested with 10 neonate caterpillars. Since leaves of neigh-
boring plants were in contact with each other, the caterpil-

lars were able to move from plant to plant at will. Feeding 
was terminated when defoliation of Benning was higher 
than 50 %, which took approximately 10 days. Percent defo-
liation of each entire plant was estimated by at least three 
researchers, and the mean of the estimates for each plant 
was used for an analysis of variance.

Field‑cage experiments This assay was designed to evalu-
ate resistance to SBL under field conditions; resistance was 
scored as percent defoliation, which includes the effects of 
antibiosis and antixenosis. A field-cage containing the null, 
M, E, H, G, ME, MGH, and MGHE NILs was installed at 
the University of Georgia Plant Sciences Farm (Fig. 3c). 
The experiment was planted on 1 July 2013 in a randomized 
complete block design with 15 replications. The experimen-
tal unit was a 6-plant hill plot (Bonnett and Bever 1947); 
each block contained one plot per NIL. Hills were spaced 
76.2 cm apart and were thinned to six plants after germina-
tion. A single border row of Benning hill plots surrounded 
the experiment. After the plants reached the V2 stage, a 
cage covered with 0.9 × 0.9 mm Saran screen (Asahi Kasei, 
Tokyo, Japan) was placed over the experimental area. This 
confined the test insects and prevented immigration of 
parasitoids, predators, and other insect pests. The hill plots 
were infested when plants reached the V3 stage. Each hill 
plot was initially infested with 200 caterpillars. After that, 
50 neonate caterpillars were added to the each hill plot twice 
a week for 2 consecutive weeks. The percent defoliation for 
each hill of plants was estimated by four researchers at 5, 

Fig. 3  Insect bioassay settings: a Detached-leaf assay: caterpillars 
feeding on soybean leaves were contained in plastic cups. b Green-
house assay: each cage contained caterpillars feeding on a block of 

test soybeans. c Cage built at the UGA Athens Plant Sciences farm to 
perform the field-cage assays
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7, 11, and 14 days after the first infestation. A second field 
cage containing the null, M, E, ME, MGH, and MGHE 
NILs was planted in 26 August 2013. This cage was infested 
and evaluated for defoliation as described for the first cage.

Characterization of BenningME+cry1Ac

Line development

The BenningME+cry1Ac line was developed from a cross 
between BenningMGH and Benningcry1Ac (Zhu et al. 2008); 
the breeding scheme is shown in Fig. 4. The presence of 
QTL-M and QTL-E was confirmed by genotyping for 
Sat_258 and Satt702, and for Sat_112 and Satt411, respec-
tively. The presence of cry1Ac was confirmed by PCR, 
using the primers described by Stewart et al. (1996).

Cry1Ac toxin in leaf tissue

The cry1Ac and ME+cry1Ac plants were tested for cry1Ac 
expression using the Cry1Ab/Cry1Ac ImmunoStrip test 
(Agdia Inc., Elkhart, IN, USA). Two leaf punches were 
collected per plant. Samples were ground in 300 µl of 
SEB4 extraction buffer (Agdia Inc.) using a GenoGrinder 
210 (Spex SamplePrep, Metuchen, NJ, USA). Leaf 
extracts were processed according to the manufacturer’s 
instructions.

Detached‑leaf experiments

SBL, VBC, and southern armyworm (SAW) [Spodop‑
tera eridania (Cramer)] were used in non-choice assays 
to determine the effect of the ME+cry1Ac pyramid on 

caterpillar weight gain. These species were chosen because 
they vary in their sensitivity to Cry1Ac; SBL and VBC are 
susceptible, while SAW is resistant (Bernardi et al. 2014b). 
Eggs were obtained from Benzon Research Inc. (Carlisle, 
PA, USA). In each assay, Benning, BenningME, and Ben-
ningcry1Ac were included as controls. The assays were set up 
and evaluated, as described in the previous section. Each 
assay consisted of a randomized complete block design 
with six replications. For the SAW assay, one cup contain-
ing five caterpillars was used to test each plant.

Data analyses

Data recorded from antibiosis, antixenosis, and field-cage 
assays were analyzed using JMP statistical software ver-
sion 10.0 (SAS Institute, Inc., Cary, NC, USA). Each data-
set was tested for normality using the Shapiro–Wilk test 
(P > 0.05) (Shaphiro and Wilk 1965). A one-way ANOVA 
test (P > 0.01) was used to detect any difference among 
genotypes and experimental blocks, and a post hoc Tukey–
Kramer multiple comparison test (P > 0.01) (Kramer 1956, 
1957; Tukey 1953) was used to determine significant dif-
ferences between genotypes.

Results

Characterization of BenningME and BenningMGHE

Detached‑leaf experiments

The results for the non-choice assays are shown in Fig. 5. 
MGHE had the strongest antibiotic effect against SBL; 
SBL feeding on BenningMGHE was 48 % smaller than that 
feeding on Benning. However, ME had the strongest antibi-
otic effect against CEW, FAW, and VBC. CEW feeding on 
BenningME weighed 83 % less than CEW feeding on Ben-
ning. FAW feeding on BenningME weighed 69 % less than 
that feeding on Benning. Finally, VBC feeding on Ben-
ningME weighed 70 % less than VBC feeding on Benning. 
Lines carrying QTL-H and QTL-G did not show antibiosis 
to any of the insect species.

Greenhouse experiments

Results for the SBL, CEW, FAW, and VBC choice assays 
are shown in Fig. 6. The pyramided NILs BenningME, Ben-
ningMGH, and BenningMGHE were the least defoliated across 
the four experiments. In the SBL and CEW bioassays, the 
combinations ME and MGHE were as resistant as MGH 
(P > 0.01). BenningME tended to have less SBL defoliation 
than BenningMGH and BenningMGHE; however, this differ-
ence was not significant. Similarly, BenningMGHE tended to 
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Fig. 4  Breeding scheme for pyramiding insect-resistance QTLs and 
cry1Ac in Benning. SSRs were used for marker-assisted selection (MAS) 
of QTLs in each generation. SNPs (Ortega 2016, personal communica-
tions) were used to genotype the plants used in the phenotyping assays
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have less CEW defoliation than BenningME and Benning-
MGH (13.3 %). In the FAW and VBC bioassays, BenningME 
was more resistant than BenningMGH, but not significantly 
different from BenningMGHE (P > 0.01).

Benning and BenningG were the most susceptible lines 
averaged across experiments. BenningH showed resistance 
to CEW and VBC assays; however, QTL-H alone failed to 
protect the plants from SBL and FAW caterpillars. Ben-
ningM and BenningE were the most resistant single-QTL 
NILs. QTL-M and QTL-E provided similar levels of resist-
ance against SBL, VBC, and FAW. Nonetheless, Ben-
ningM was significantly more resistant against VBC than 
BenningE.

Field‑cage experiments

Defoliation progression in cage 1. The mean percentage 
of defoliation on each NIL at 5, 7, 11, and 14 days after 
infestation is shown in Fig. 7. At 5 days, defoliation ranged 
between 12 and 18 %, and no significant differences were 
observed between the NILs. At 7 days, Benning showed the 
most defoliation (32 %) and BenningME was the least defo-
liated (14 %). At this time point, caterpillars were actively 
moving between hills, and towards the Benning hills used 

as borders. At 11 days, susceptible and resistant hills were 
easily distinguishable (Fig. 8); Benning still showed the 
most defoliation (63 %) and BenningME was the least defoli-
ated (26 %). At day 14, the rate of feeding was significantly 
slower; few caterpillars had migrated to the resistant NILs, 
but the majority of them were located on the cage’s mesh.

Defoliation in cage 1. The data collected at 11 days after 
infestation were analyzed to determine differences in lev-
els of resistance among NILs. This time point was selected, 
because the plants were highly defoliated and the caterpil-
lars were still highly active. BenningME (21 %), Benning-
MGH (25 %), and BenningMGHE (27 %) were the most resist-
ant lines in this cage, followed by BenningE (52 %) and 
BenningM (38 %), which were moderately resistant. Ben-
ning (63 %) BenningH (62 %), and BenningG (61 %) were 
the most susceptible (Fig. 9a).

Defoliation in cage 2. BenningG and BenningH were 
excluded, because in the first cage they were not resistant 
to SBL. BenningMGHE (27 %) was the most resistant line in 
this cage, followed by BenningME (34 %) and BenningMGH 
(39 %). BenningE (65 %) and BenningM (45 %) were more 
defoliated than BenningME and BenningMGH in this cage; 
however, BenningE and BenningM were less defoliated than 
Benning (75 %) (Fig. 9b).
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Fig. 6  Mean defoliation by 
SBL, CEW, FAW, and VBC 
caterpillars on NILs during 
greenhouse (antixenosis) assays. 
Significant differences (Tukey–
Kramer post hoc test, p < 0.05) 
between NILs are indicated by 
letters
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Characterization of BenningME+cry1Ac

Detached‑leaf experiments

The results for the non-choice assays are shown in Fig. 10. 
The pyramid of QTL-M, QTL-E, and cry1Ac showed 
enhanced antibiosis against SBL and SAW when com-
pared to BenningME and Benningcry1Ac. SBL fed on Ben-
ningME and Benningcry1Ac weighed 61 % and 43 % less 
than SBL fed on Benning. However, the strongest antibi-
otic effect against SBL was observed in BenningME+cry1Ac; 
these caterpillars weighed 88 % less than Benning-fed 
caterpillars. SAW fed on BenningME and Benningcry1Ac 
weighed 68 % and 59 % less than SAW fed on Benning. 
The strongest antibiotic effect against SAW was observed 
on BenningME+cry1Ac; these caterpillars weighed 89 % 
less than those fed on Benning. VBC fed on BenningME 
weighed 81 % less than VBC fed on Benning. VBC fed on 
Benningcry1Ac died at the first instar; their weight was 98 % 

less than Benning-fed VBC. VBC fed on BenningME+cry1Ac 
also died at the first instar; therefore, the effect of QTL-M 
and QTL-E could not be measured for this species.

Discussion

PI 229358 and PI 227687 have been used in soybean 
breeding programs worldwide to introgress resistance 
to chewing insects. This is the first time that the resist-
ance of NILs carrying pyramids of insect-resistance 
QTLs from PI 229358 and PI 227687 has been evalu-
ated. The rationale was based on work by Lambert and 
Kilen (1984a), showing that F1 progeny from PI 229358 
x PI 227687 are more resistant than either parent. In this 
study, it was demonstrated that the QTL combinations 
ME and MGHE are able to confer high levels of resist-
ance against multiple insect species via antibiosis and 
antixenosis, in the cultivar, Benning. The ME and MGHE 

Fig. 7  Feeding progression of 
SBL in the first field cage. Per-
centage of defoliation per hill 
was recorded at 5, 9, 11, and 
14 days after the first infesta-
tion. Each time point shows the 
mean defoliation per NIL
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NILs exhibit similar levels of resistance in all but one of 
the bioassays. Therefore, there is no indication that the 
addition of QTL-G and/or QTL-H to the ME combination 
is required to reach agriculturally relevant levels of resist-
ance. Although the results of are encouraging, a limitation 
of this study might be that ME and MGHE were charac-
terized in a single genetic background (Benning), due to 
the time and resources needed to develop the NILs. Nev-
ertheless, QTLs M (Narvel et al. 2001; Walker et al. 2002; 
Walker et al. 2004) and E (Hulburt 2002; Hulburt et al. 
2004) have been verified to work in different backgrounds 
when independently tested. From a breeding perspec-
tive, introgressing just QTL-M and QTL-E into an elite 

cultivar is simpler than introgressing all four QTLs. As 
the number of QTLs increases, pyramiding in an elite line 
becomes increasingly difficult; especially when selection 
involves several traits at a time (Bernardo 2008). Further-
more, QTL-G is associated with a yield penalty (War-
rington 2006). Altogether, pyramiding the major insect-
resistance QTLs from PI 229358 and PI 227687 presents 

Highly susceptible 
65% defoliation

Moderately resistant
45% defoliation

Resistant
32% defoliation

Highly resistant
20% defoliation

Fig. 8  Leaf damage on NILs exposed to SBL feeding in the field 
cage, at 11 days after infestation
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an effective genetic combination to deploy host–plant 
resistance to insects in soybean.

In Brazil, the genetically modified MON 87701 × MON 
89788 soybean, which expresses the Bt toxin Cry1Ac, 
is used for the integrated pest management of lepidop-
teran pests (Berman et al. 2011). This soybean is resistant 
to SBL, VBC (Bernardi et al. 2012), tobacco budworm 
[Heliothis virescens (Fabricius)] (Bernardi et al. 2014a), 
and the recently imported old world cotton bollworm 
[Helicoverpa armigera (Hübner)] (Azambuja et al. 2015). 
However, Cry1Ac is not sufficient to protect soybeans 
from FAW, SAW, and the velvet armyworm [Spodoptera 
latifascia (Walker)] (Bernardi et al. 2014b). Frequent SAW 
outbreaks have been already reported in Brazil (Bueno 
et al. 2007; Santos 2005); SAW’s high defoliation capac-
ity (Bueno et al. 2011) and its large populations make this 
species an important pest that can cause severe economic 
losses to Brazilian soybean production. A synergistic rela-
tionship between cry1Ac and the insect-resistance QTLs 
from PI 229358 was previously reported (Walker et al. 
2002; Zhu et al. 2008). PI 227687 has shown resistance to 
SAW via antibiosis (Souza et al. 2014). There was inter-
est in determining if the combination of QTL-M, QTL-E 
and cry1Ac would also provide enhanced resistance to 
lines with only the cry1Ac transgene or the QTLs by them-
selves. BenningME+cry1Ac was developed and characterized 
in antibiosis assays. This line is more resistant than Ben-
ningME and Benningcry1Ac against SBL and SAW. Although 
this combination would need to be thoroughly studied in 
antixenosis field-cage assays and, if possible, in field tests 
with natural pest infestations, the results from the antibiosis 

assays indicate the potential of combining QTL-M, QTL-E 
and cry1Ac to improve soybean resistance to insects that 
are naturally tolerant to cry1Ac. The use of this pyramid 
as part of a resistance management strategy (Bates et al. 
2005) could help preserve the effectiveness of Bt, which 
could lead to durable resistance to leaf-chewing insects in 
soybean.

Breeding high-yielding soybean cultivars with agri-
culturally relevant levels of insect-resistance has been a 
long-term goal. In the past, lines carrying only PI 229358 
QTLs were either lower yielding (e.g., BenningMGH; War-
rington et al. 2008), or not highly resistant in the field 
(e.g., BenningMH; Zhu et al. 2008). With only two insect-
resistance QTLs, BenningME is at least as resistant to sev-
eral important lepidopteran pests as BenningMGH, without 
carrying QTL-G. Lines carrying QTLs from PI 229358 
QTLs enhance the resistance provided by cry1Ac in lines 
like BenningMH+cry1Ac (Zhu et al. 2008). The combination 
of ME+cry1Ac described here could present an opportu-
nity to effectively deploy Bt, in a pyramid with host–plant 
resistance genes.
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