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Abstract Flax is an important oilseed crop in North

America and is mostly grown as a fibre crop in Europe. As

a self-pollinated diploid with a small estimated genome

size of *370 Mb, flax is well suited for fast progress in

genomics. In the last few years, important genetic resour-

ces have been developed for this crop. Here, we describe

the assessment and comparative analyses of 1,506 putative

simple sequence repeats (SSRs) of which, 1,164 were

derived from BAC-end sequences (BESs) and 342 from

expressed sequence tags (ESTs). The SSRs were assessed

on a panel of 16 flax accessions with 673 (58 %) and 145

(42 %) primer pairs being polymorphic in the BESs and

ESTs, respectively. With 818 novel polymorphic SSR

primer pairs reported in this study, the repertoire of

available SSRs in flax has more than doubled from the

combined total of 508 of all previous reports. Among

nucleotide motifs, trinucleotides were the most abundant

irrespective of the class, but dinucleotides were the most

polymorphic. SSR length was also positively correlated

with polymorphism. Two dinucleotide (AT/TA and AG/

GA) and two trinucleotide (AAT/ATA/TAA and GAA/

AGA/AAG) motifs and their iterations, different from

those reported in many other crops, accounted for more

than half of all the SSRs and were also more polymorphic

(63.4 %) than the rest of the markers (42.7 %). This

improved resource promises to be useful in genetic,

quantitative trait loci (QTL) and association mapping as

well as for anchoring the physical/genetic map with the

whole genome shotgun reference sequence of flax.

Introduction

Flax (Linum usitatissimum L.) has been cultivated for

several thousand years mainly for its seed oil and its high-

quality stem fibres. In North America, flax is grown pri-

marily as an oilseed crop used for food and feed as well as

in bio-product applications such as linoleum flooring, paint

and varnishes. Most oilseed flax varieties are rich in

omega-3 (alpha linolenic acid, 55–57 %) fatty acid which

has been functionally associated with numerous health

claims. ‘Solin’ varieties with loss of function mutations in

the fatty acid desaturase 3 (fad3) genes are low in omega-3

(2–3 %) and high in omega-6 (*70 %) fatty acids, char-

acteristics required for margarine processing. Flax oil

extraction generates a meal which is rich in protein and is

sought after as animal feed.
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Until recently, the stems of North American oilseed flax

were considered undesirable because the persistence of

straw in the field was problematic. However, in the last

decade, the fibre industry has placed substantial effort into

the development of high-value products from oilseed flax

stems with applications in the pulp, technical fibre and bio-

fuel industries. A shift from oilseed flax towards dual

purpose or total utilization flax is currently occurring. To

assist breeding efforts towards simultaneous improvements

of seed and stem traits, breeders need a good grasp of the

complexity of the genetic mechanisms underlying traits

such as oil content, fatty acid composition, stem fibre

content and fibre composition. Knowledge of the existing

genetic diversity for these traits in primary and secondary

gene pools is also essential to accelerate their introgression

in breeding programs. Quantitative trait loci (QTL) and

association mapping (AM) studies have the ability to pro-

vide some insights into genetic mechanisms of complex

traits and provide molecular markers to implement marker-

assisted breeding.

To date, only a limited number of useful markers have

been developed in flax and, as a consequence, genetic maps

and QTL studies remain limited (Cloutier et al. 2011; Oh

et al. 2000; Spielmeyer et al. 1998). While some isozyme,

RAPD and AFLP markers have been developed in flax

(Everaert et al. 2001; Fu 2006; Krulickova et al. 2002;

Spielmeyer et al. 1998), such marker systems are either

labour-intensive or suffer from low reproducibility.

Microsatellites or simple sequence repeats (SSRs) consist

of tandemly repeated short motifs of 2–6 nucleotides. SSR

markers are based on the amplification size polymorphism

generated when lines have variable numbers of these short

tandem repeats in a particular locus. The abundance, dis-

tribution, reproducibility and generally codominant nature

of SSR markers make them highly suitable for linkage

mapping and genetic diversity studies (Cloutier et al. 2009;

Soto-Cerda et al. 2011a; Wiesner et al. 2001). SSR markers

have been developed through SSR-enriched library

screening and, more recently, through the more economical

mining of EST or genomic sequence data. A total of 508

SSR markers have been reported as follows: 10 (Wiesner

et al. 2001), 23 (Roose-Amsaleg et al. 2006), 35 (Deng

et al. 2010), 60 (Soto-Cerda et al. 2011a), 38 (Deng et al.

2011), 9 (Kale et al. 2011), 20 (Rachinskaya et al. 2011),

42 (Bickel et al. 2011), 248 (Cloutier et al. 2009) and 23

(Soto-Cerda et al. 2011b). In addition, commercially

available inter simple sequence repeat (ISSR) primers from

the University of British Columbia (UBC) collection have

been used, mostly in genetic diversity studies of L. usita-

tissimum L. or its wild progenitor L. bienne Mill. (Chen

et al. 1998; Rajwade et al. 2010; Uysal et al. 2010;

Wiesnerova and Wiesner 2004).

The ability to detect QTL using genetic maps of a

segregating population or by linkage disequilibrium (LD)

in AM studies depends on the marker saturation, the dis-

tribution and the accuracy of the phenotypic characteriza-

tion of the traits. Single nucleotide polymorphism (SNP)

markers promise to provide the high level of saturation

(several thousands) that is paramount to QTL identification

by AM in low LD regions of the genome. Developing and

applying thousands of SSR markers would be compara-

tively costly due to the labour involved in their assessment.

However, SSRs remain an excellent marker system for the

construction of skeletal genetic maps onto which SNPs can

be added (Allen et al. 2011). The aim of this project was to

increase the number of publicly available SSR markers in

flax to over 1,000, on par with other major crops. To realize

that goal, we mined additional ESTs, sequenced more than

80,000 flax bacterial artificial chromosome (BAC) ends

and mined them for the presence of SSRs. Polymorphism

was assessed on a set of 16 flax genotypes and comparative

analyses of EST-SSRs and gDNA-SSRs was performed.

Materials and methods

Plant materials

A set of 16 flax accessions were grown in a growth cabinet.

The leaf and stem tissue of plantlets at the first branching

stage were collected and DNA was extracted using a

modified CTAB method (Cloutier et al. 2001). The DNA

was quantified using a fluorometer and diluted to a 10 ng/

lL working solution. The 16 genotypes represent oilseed

types with different fatty acid profiles as well as fibre types

(Table 1).

SSR design

A BAC library of cultivar CDC Bethune was constructed

(Table 2). A total of 43,776 clones were sequenced from

both ends by the BC Cancer Agency Genome Sciences

Centre (Vancouver, Canada) using universal primers,

Sanger’s dideoxy chain termination method with Big Dye

V3.1 chemistry and resolved on an ABI 3730xl (Applied

Biosystems, Foster City, USA). Trimmed high-quality

BAC-end sequences (BESs) totalling *56 Mb were mined

with the Perl script MISA (Thiel et al. 2003) for the

presence of putative SSRs using criteria of a minimum of

nine repeats for dinucleotide, six repeats for trinucleotide

and five repeats for tetra-, penta- and hexa-nucleotide

motifs. Primers were designed from BES containing puta-

tive SSR motifs as previously described (Cloutier et al.

2009).
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A total of 243,272 flax Expressed Sequence Tags (ESTs)

from flax generated by the NAPGEN consortium, the

TUFGEN project (Venglat et al. 2011) or publicly avail-

able in GenBank, were assembled into 34,156 unigenes

comprising 14,374 contigs and 19,782 singletons using

criteria previously described (Cloutier et al. 2009). A total

of 33,163 unigenes of high quality and sufficient length

were mined with the same criteria as described above for

the BES. Putative SSRs previously detected and assessed

from an original set of 146,611 assembled ESTs (Cloutier

et al. 2009) were ignored and only the putative SSRs from

novel contigs and/or singletons were retained for primer

design performed using Primer3 (Rozen and Skaletsky

2000).

Polymorphism assessment

Each primer pair was assessed using DNA from the

16-genotype panel as previously described (Cloutier et al.

2009). Most amplicons were resolved using the GeneScan

500 ROX size standard (ABI) but amplicons larger than

450 bp were resolved using MapMarker 1000 (BioVen-

tures Inc, Murfreesboro, USA) which gave improved sizing

accuracy for larger fragments. Allele sizes were recorded

for each genotype of the panel. Primer pairs were consid-

ered polymorphic if at least one of the 16 genotypes had a

different allele size; monomorphic when all lines amplified

the same size fragment; and failed when no consistent PCR

product was observed after two additional PCR attempts at

Table 1 Description of the 16

flax genotypes used to assess

polymorphism of the SSR

markers

Accession Country Type Fatty acid characteristics Reference

AC Emerson Canada Oilseed Conventional Kenaschuk et al. (1996)

CDC Bethune Canada Oilseed Conventional Rowland et al. (2002)

Lirina Latvia Oilseed Conventional

Macbeth Canada Oilseed Conventional Duguid et al. (2003)

Double Low Unknown Oilseed

Prairie Grande Canada Oilseed Conventional CFIA Application no. 07-5916

SP2047 Canada Oilseed Low linolenic Dribnenki et al. (2003)

UGG5-5 Canada Oilseed High linolenic

Atlas Sweden Oilseed Åkerman et al. (1951)

Bolley Golden USA Oilseed USDA (1931) CN19160

E1747 Canada Oilseed Low linolenic Rowland (1991)

Hermes France Fibre

Linola 989 Canada Oilseed Low linolenic Dribnenki et al. (1996)

Shape Canada Oilseed Conventional CFIA certificate no. 3840

Tabor Czech Rep. Fibre

Viking USA Fibre USDA (1945)

Table 2 CDC Bethune flax

BAC library and BAC-end

sequences

a Based on estimated genome

size for CDC Bethune of

370 Mb (Ragupathy et al. 2011)

Genotype CDC Bethune

BAC vector pIndigoBAC-5

E. coli host DH10B

Enzymes HindIII BamHI Total

Number of clones 40,704 51,456 92,160

Average insert size (kb) 150 135 142

Genome coveragea 16.59 18.89 35.49

Number of BAC clones sequenced 20,352 23,424 43,776

Number of BESs 40,704 46,848 87,552

Number of failed sequences 1,313 2,807 4,120

Number of short sequences (\100 bp) 890 923 1,813

Number of high-quality sequences 38,501 43,118 81,619

Average sequence length (bp) of high-quality BESs 674 694 684

Total sequence length (bp) 25,979,571 29,944,023 55,923,594
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58 and 49 �C, respectively. Primer pairs that amplified

more than one polymorphic locus were scored indepen-

dently. The polymorphic information content (PIC) value

was estimated for each marker to determine their potential

usefulness in determining the genetic variability of other

Linum accessions (Botstein et al. 1980). To illustrate the

genetic relationship of the 16 flax accessions, we con-

structed a dendrogram using the neighbour-joining method

(Nei 1973) as implemented in PowerMarker (Liu and Muse

2005).

Results

A total of 1,660 BESs were identified to have at least one

putative SSR, from which 1,164 primer pairs were

designed. A total of 673 (57.8 %) primer pairs were

polymorphic and detected 720 loci with 43 primer pairs

detecting two polymorphic loci and two primer pairs

detecting three polymorphic loci (Supplementary Table

S1). The monomorphic BES-SSR markers totalled 478

(41.1 %) and only 13 (1.1 %) failed (did not work, DNW).

A total of 382 putative novel EST-SSRs were identified

from the EST assembly and 342 primer pairs were

designed. Roughly the same proportion of EST-SSR primer

pairs was polymorphic (145; 42.4 %; Supplementary Table

S2) and monomorphic (153; 44.7 %) while 44 failed

(12.9 %). The 145 polymorphic EST-SSRs detected 149

loci.

The number of alleles detected at a single polymorphic

locus ranged from 2 to 9 with an average of 2.76 in the

BES-SSRs and ranged from 2 to 6 with an average of 2.36

in the EST-SSRs (Supplementary Tables S1 and S2). The

mean polymorphism information content (PIC) value was

0.39 (0.12–0.85) and 0.34 (0.12–0.70) for the BES-SSRs

and EST-SSRs, respectively. Frequency distribution of PIC

values of SSR loci showed that nearly 25 % of the markers

had PIC values greater than 0.5 (Supplementary Figure S1).

The total number of SSR markers and their associated

polymorphism for each motif length is illustrated in Fig. 1.

Regardless of the source of SSRs trinucleotide SSRs were

the most abundant representing 54.6 and 68.7 % of the

BES-SSRs and EST-SSRs, respectively. These trinucleo-

tide motifs also displayed a higher proportion of mono-

morphic amplicons regardless of the source. Dinucleotide

motifs were only 30.6 and 16.8 % of the two SSR cate-

gories but they represented 40.6 and 24.8 % of the total

polymorphic SSRs. Compound SSRs represented sequen-

ces that had two SSR motifs within 100 bp. These motifs

were generally different from one another and compound

SSRs only represented 3.1 and 9.6 % of all BES-SSRs and

EST-SSRs, respectively. In total, 77 and 63 % of the

dinucleotide, 50 and 39 % of the trinucleotide and 39 and

43 % of the tetranucleotide motif SSRs were polymorphic

in the BES and EST datasets, respectively.

BES-SSRs tended to have a higher number of repeats

per locus with 41.1 % having 9 or more repeats as com-

pared to 26.9 % for EST-SSRs (Fig. 2a). SSRs with higher

numbers of repeats tended to be more polymorphic. 41.1 %

of the BES-SSRs with 9–25 repeats accounted for 56.1 %

of the polymorphic BES-SSRs while 26.9 % of the EST-

SSRs with nine or more repeats accounted for 38.3 % of

the polymorphic EST-SSRs. SSR length is a measurement

of the motif length and the number of repeats. Long SSRs

(25–54 bp) represented a higher proportion of the total

SSRs detected in BES (24.1 %) as compared to ESTs

(15.9 %) and were more polymorphic than shorter SSR loci

(Fig. 2b).

Of the eight possible dinucleotide motifs, four, namely

AT/AT, AG/CT, GA/TC and TA/TA, accounted for 99.4

and 98 % of the dinucleotide motifs from BES-SSRs and

EST-SSRs, respectively (Fig. 3). The motifs AC/GT and

GA/TC were represented by only four SSRs in total in both

datasets and CG/CG and GC/GC were completely absent.

Approximately twice as many GA/TC motifs were

observed in EST-SSRs (28.8 %) as compared to BES-SSRs

(15.6 %) while the opposite trend was true for the TA/TA

motif. Of the 30 possible trinucleotide motifs, AAG/CTT,

AGA/TCT and GAA/TTC were most frequent representing

36 and 38.7 % of the BES- and EST-SSRs, respectively

(Fig. 3). Some motifs were represented by one or two SSRs

only and motif ACG/CGT was not detected at all in either

type of sequence. The proportion of SSRs originating from

each motif was similar between the two datasets with a few

exceptions such as AAT/ATT, TAA/TTA and TCA/TGA

that were proportionately higher in BES-SSRs as compared

to EST-SSRs. Frequency distributions for tetra-, penta- and

hexa-nucleotide motif SSRs are more difficult to discern
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because they represent only a small proportion of the total

SSRs detected. Nevertheless, there seem to be some biases,

i.e., some motifs were present more frequently than

expected by random distribution such as AAAG/CTTT and

ATTA/TAAT which appeared ten and eight times in the

BES-SSRs, respectively.

Polymorphism rates varied greatly among motifs.

However, this type of data is only valid for high-frequency

motifs because percent polymorphism associated with a

rare motif does not provide an accurate estimate. Consid-

ering only motifs represented by at least 15 SSRs, a scatter

plot of the total number of SSRs by motif against the

percentage of polymorphic SSR per motif for 23 different

motifs (including 4 dinucleotide and 19 trinucleotide

motifs) showed that 2 dinucleotide (AT/TA and AG/GA)

and 2 trinucleotide (AAT/ATA/TAA and GAA/AGA/

AAG) motifs and their iterations contributed the majority

(536) of the polymorphic SSRs (Fig. 4).

Using all 869 SSR markers, a dendrogram of the 16

accessions was constructed (Supplementary Figure S2).

Fibre and oilseed flax belonged to separate clades. Also,

within the oilseed group, the low linolenic accessions

clustered together.

Discussion

Here, we described the development and analysis of 818

novel polymorphic SSR primer pairs in flax detecting 869

loci, of which 145 primer pairs were derived from ESTs

and 673 from BESs, more than doubling the combined

previously available flax SSR collections of 508 (Table 3).

N
u

m
b

er
 o

f 
S

S
R

s

0

50

100

150

200

250

300

350

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Number of Repeats

N
u

m
b

er
 o

f 
S

S
R

s

0
50

100
150
200
250
300
350
400
450

18 20 21 22 24 25 26 27 28 30 32 33 34 35 36 38 39 40 42 44 45 46 48 50 51 54

SSR Length (bp)

A

B

Polymorphic BES-SSR
Monomorphic BES-SSR
DNW BES-SSR

Polymorphic EST-SSR
Monomorphic EST-SSR
DNW EST-SSR

Fig. 2 Number of SSRs and

associated polymorphism based

on a the number of repeats and

b the SSR length (bp). SSRs are

also classified as per their

source (BES or EST). DNW (did

not work) represents primer

pairs that failed to amplify

reproducible amplicons

0

5

10

15

20

25

30

35

A
C

/G
T

AT
/A

T
A

G
/C

T
C

A
/T

G
C

G
/C

G
G

A
/T

C
G

C
/G

C
TA

/T
A

A
A

C
/G

TT
A

A
G

/C
TT

A
AT

/A
TT

A
C

A
/T

G
T

A
C

C
/G

G
T

A
C

G
/C

G
T

A
C

T/
A

G
T

A
G

A
/T

C
T

A
G

C
/G

C
T

A
G

G
/C

C
T

AT
A

/T
AT

AT
C

/G
AT

AT
G

/C
AT

C
A

A
/T

TG
C

A
C

/G
TG

C
A

G
/C

TG
C

C
A

/T
G

G
C

C
G

/C
G

G
C

G
A

/T
C

G
C

G
C

/G
C

G
C

TA
/T

AG
C

TC
/G

A
G

G
A

A
/T

TC
G

A
C

/G
TC

G
C

A
/T

G
C

G
C

C
/G

G
C

G
G

A
/T

C
C

G
TA

/T
AC

TA
A

/T
TA

TC
A

/T
G

A

P
er

ce
n

t 
by

 T
yp

e 

SSR Motif

BES-SSR EST-SSR

Fig. 3 Percentage of dinucleotide and trinucleotide SSRs classified based on their source (BES or EST) and their motif

Theor Appl Genet (2012) 125:685–694 689

123



With a total of 1,326 SSR markers now publicly available,

flax compares favourably to other major crops (Varshney

et al. 2006b, 2010). Taken together, these resources should

prove valuable in genetic, QTL and association mapping,

for anchoring the physical map and integration of the

whole genome shotgun sequence assembly.

Traditionally, SSRs were developed from SSR-enriched

libraries which represented a major bottleneck (Kalia et al.

2011). However, with technological advances in generating

large-scale sequence data (EST, exome, genomic surveys,

BES, whole genome sequence, etc.) and their availability

in public domain, in silico approaches to the identification

of putative SSRs have become practical (Tang et al. 2008).

Here, we capitalized on the availability of ESTs (Cloutier

et al. 2009; Venglat et al. 2011) and BESs (Ragupathy et al.

2011) to develop the largest collection of flax SSRs to date.

The number of SSRs assessed herein is sufficiently large

to provide general conclusions regarding source (EST vs.

genomic DNA), motif type, length, sequence and evolution

of SSR loci. Overall, no major difference existed between

EST-SSRs and BES-SSRs with the exception of the failure

rate that was higher in EST-SSRs, probably as a result of

poor primer binding due to their design over a splice site,

mismatches caused by poor sequence quality or the pres-

ence of a large intron hindering amplification (Tang et al.

2008).

Trinucleotide SSRs were the most abundant in Arabid-

opsis (Mun et al. 2006; Tian et al. 2004), Medicago (Mun

et al. 2006), soybean (Hisano et al. 2007; Mun et al. 2006;

Tian et al. 2004), rice (Mun et al. 2006), pea (Gong et al.

2010), sugarcane (Cordeiro et al. 2001; Parida et al.

2009a), chickpea (Choudhary et al. 2009), wheat (Peng and

Lapitan 2005; Yu et al. 2004), barley (Thiel et al. 2003;

Varshney et al. 2006a), pepper (Yi et al. 2006), Lotus

japonicus (Mun et al. 2006) and citrus (Chen et al. 2006).

These estimates could be construed as biased because in

the majority of the above studies, SSRs were mined from

ESTs which are known to display a prevalence of trinu-

cleotides (Cavagnaro et al. 2010; Li et al. 2004; Morgante

et al. 2002; Tian et al. 2004). Of the 12 published plant

genomes analyzed by Ragupathy et al. (2011), only Brac-

hypodium had a higher percentage of trinucleotide SSRs. In

flax, trinucleotide SSRs were also the most abundant but

dinucleotide SSRs were the most polymorphic, as reported

for several other crops (Blair et al. 2009; Cavagnaro et al.
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Table 3 Simple sequence repeats (SSRs) currently available for flax including reference, source, number of genotypes tested and SSR statistics

Reference SSR

sourcea
Genotypes

tested

Polymorphic

primer pairs

Loci

detected

Loci per

primer pair

Alleles per

locusb
PICb,c

Wiesner et al. (2001) Genomic 8 10 – – 3.7 (2–8) 0.60 (0.25–1.00)

Roose-Amsaleg et al. (2006) Genomic 93 23 28 1.22 3.3 (2–10) 0.33 (0.02–0.73)

Cloutier et al. (2009) ESTs 23 248 275 1.11 2.3 (2–7) 0.35 (0.08–0.82)

Soto-Cerda et al. (2011a) Genomic 60 60 66 1.10 3.0 (2–8) 0.39 (0.06–0.87)

Deng et al. (2010) Genomic 8 35 37 1.06 3.5 (2–6) 0.60 (0.23–0.84)

Soto-Cerda et al. (2011b) ESTs 61 23 23 1.00 2.3 (2–4) 0.38 (0.08–0.55)

Deng et al. (2011) Genomic 8 38 38 1.00 3.4 (2–12) 0.43 (0.20–0.88)

Kale et al. (2011) Genomic 27 9 – – – –

Bickel et al. (2011) Genomic 19 42 42 1.00 3.3 (2–8) 0.47 (0.10–0.86)

Rachinskaya et al. (2011) Genomic 15 20 22 1.10 3.0 (2–7) 0.42 (0.03–0.77)

Cloutier et al. (this publication) ESTs 16 145 149 1.03 2.4 (2–6) 0.34 (0.12–0.70)

Cloutier et al. (this publication) BESs 16 673 720 1.07 2.8 (2–9) 0.39 (0.12–0.85)

Total 1,326 1,400 1.07

a Genomic library or published genomic sequences; expressed sequence tags (ESTs); BAC-end sequences (BESs)
b Average value followed by range in brackets
c Polymorphism information content
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2010; Hisano et al. 2007; Mun et al. 2006). The above SSR

motif results are not always consistent and readily com-

parable because the thresholds of parameters used for

identification of the SSR loci, especially the number of

repeats per motif, are not uniform across species and even

across research reports of the same species. Mononucleo-

tide repeats, often not accounted for, were reported to be

the most abundant in Brachypodium, rice, sorghum, Ara-

bidopsis, Medicago and Populus (Cardle et al. 2000; Gupta

and Prasad 2009; Mun et al. 2006; Sonah et al. 2011).

In flax, trinucleotides were more numerous in ESTs

(68.7 %) compared to BESs (54.6 %) likely because of the

suppression of non-trimeric SSRs in coding regions which

could result in changes in reading frames (Kalia et al.

2011). Polymorphism was also positively correlated with

the number of repeats per locus and the overall locus

length. Among sources, BES-SSRs (58 %, average PIC

0.39) displayed a significantly higher level of polymor-

phism than EST-SSRs (42 %, average PIC 0.34) as previ-

ously reported (Eujayl et al. 2002; Kalia et al. 2011). Even

with only *40 % of EST-SSRs being polymorphic, flax

has a higher polymorphism than wheat, barley, soybean

and cotton (Eujayl et al. 2002; Han et al. 2004; Hisano

et al. 2007; Thiel et al. 2003; Varshney et al. 2006a).

However, the polymorphism level can vary significantly

across studies because it is also a reflection of the number

of lines surveyed in the panel and its genetic diversity.

Here, we used 16 flax oilseed and fibre accessions pro-

viding a good genetic diversity of the breeding material but

not necessarily of Linum usitatissimum because all acces-

sions investigated were varieties or advanced breeding

lines.

A distinct bias towards certain motifs was evident: two

dinucleotide and two trinucleotide motifs and their itera-

tions accounted for 65.5 % (536/818) of all polymorphic

motifs (Fig. 4). Of the 1,506 target sequences from which

primers were designed, these motifs represented more than

half (845) and their polymorphism level greatly exceeded

that of all the other motifs taken together (63.4 vs. 42.7 %).

At the opposite end of the spectrum, motif ACG/CGT and

its iterations (CGA/TCG and GAC/GTC) represented only

14 of the 1,506 SSRs (\1 %) with only four being poly-

morphic while dinucleotide CG/GC was not detected in

either flax ESTs or BESs (Supplementary Table 2). The

biases observed were both in relative abundance and

polymorphism level. Motif abundance seems to be species

specific due to factors such as genome content and com-

position, variation in rate of mutation across genome

including rate of slippage and codon usage (Buschiazzo

and Gemmell 2006; Sonah et al. 2011). The trinucleotide

motif AGC/GCA/CAG was the most abundant trinucleo-

tide motif in 8 crops and AGG/GGA/GAG in 4 while AG/

GA was the most abundant dinucleotide in 14 crops and

AC/CA in 4 (Yu et al. 2009). In flax, GAA/AAG/AGA

with 320 and AT/TA with 228 were the most abundant

trinucleotide and dinucleotide motifs, respectively, indic-

ative of its unique SSR genome composition as compared

to other crops.

Repeat numbers of EST-SSRs tended to be lower than

gDNA-SSRs (Morgante et al. 2002). This was particularly

true in flax where 5–7 repeat SSRs represented 64.7 % of

all EST-SSRs but only 51.6 % of the BES-SSRs. These

short SSRs were less polymorphic than the longer ones

regardless of the source as previously reported (Wierdl

et al. 1997; Ellegren 2004; Cavagnaro et al. 2010; Blair

et al. 2009) and somewhat in disagreement with Tang et al.

(2008). However, in this latter case, they considered SSRs

with as few as 4 or 5 repeats even for dinucleotides which

was not the case in this study because the SSR identifica-

tion was performed using ESTs and BES from a single

genotype (CDC Bethune) while Tang et al. (2008) used

multiple genotypes. Surprisingly, these short SSRs were

more polymorphic than long SSRs, possibly because in this

case, they were derived exclusively from ESTs where long

SSRs can be deleterious (Sureshkumar et al. 2009; Tang

et al. 2008).

Predominant distribution of long alleles of SSR loci in

genomic regions containing both coding [*26.8 % in flax,

Ragupathy et al. (2011)] and non-coding sequences com-

pared to EST-SSRs in this study could be associated with

factors contributing to SSR origin and evolution per se. For

instance, a dinucleotide motif arrayed 3 or 4 times in a

locus may originate from cryptically simple sequences by

both substitutions and indel mutations (Buschiazzo and

Gemmell 2006). These substrate sequences further expand

to an array of repeating units in a given locus, mainly

through two mechanisms: slippage during DNA replication

in a repeat domain (stabilized with an inefficient DNA

mismatch repair-MMR system of the host) and unequal

crossing over (Ellegren 2004). Studies of SSR evolution in

the human genome suggested a mutational bias leading to

an increase in SSR length at an individual locus (expan-

sion) rather than a decrease in repeat number (contraction)

on the evolutionary timescale (Ellegren 2004). Also, neu-

trality of mutations in the SSR loci present in non-coding

regions of the genome favour an increase in repeat length,

however, in coding sequences selective constraints against

frame shift mutations weed out expansion or contraction of

motifs except for triplets (Li et al. 2004). Although repeats

containing proteins are well characterized (Faux et al.

2007), expansion of amino acid homopolymer domains

beyond a threshold length impacts protein functionality

(Kashi and King 2006). Also, conserved regulatory roles

associated with some genic SSR sites favoured by selective

forces curtail expansion in EST-SSRs despite the potential

adaptive advantage (Li et al. 2004; Parida et al. 2009b).
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The SSR markers described herein promise to be useful

to characterize the genetic variability of other Linum

accessions. The number of alleles and their relative fre-

quencies are both indicators of a marker’s usefulness

(Shete et al. 2000) and are taken into account in the PIC

value estimates. More than 200 of the markers described

have PIC values greater than 0.5 (Supplementary Figure

S1) which should make them particularly useful in char-

acterizing Linum collections as illustrated by the relation-

ship observed in the dendrogram of the 16 accessions

(Supplementary Figure S2). Indeed, accessions of similar

lineage clustered together as predicted by the type (fibre vs.

oilseed) and end-use quality (conventional vs. low or high

linolenic acid content).

Conclusion

Here, we described the development of the largest collec-

tion of SSRs in flax to date bringing the overall number to

over 1,300, comparable to many other major crops. A

comprehensive comparative analysis of the composition

and polymorphism of SSRs developed from ESTs and BES

was performed showing some important differences

between flax and other crops. The SSR resource described

herein will be useful in genetic, QTL and association

mapping. Map-based cloning, physical anchoring of the

WGS reference genome and other downstream applications

in breeding such as marker-assisted selection are likely to

benefit from this important resource, paving the way for

genetic improvement of flax.
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