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Abstract The processes that control the number and shape of
the mitochondria (mitochondrial dynamics) and the removal
of damaged mitochondria (mitophagy) have been the subject
of intense research. Recent work indicates that these processes
may contribute to the pathology associated with cardiac dis-
eases. This review describes some of the key proteins that
regulate these processes and their potential as therapeutic tar-
gets for cardiac diseases.
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Introduction

Mitochondria-complex organelles

Mitochondria are central for cell fate. They are the major
source of energy (ATP) and reducing power (NADH and
NADPH). They are also a major cause for cell destruction
by producing reactive oxygen species (ROS) and triggering

several processes that lead to programmed cell death or apo-
ptosis. It is therefore not surprising that mitochondrial dys-
function contributes to many diseases, including cardiovascu-
lar [1], neurological [2], and metabolic diseases as well as
aging [3]. The first high-resolution micrograph of a mitochon-
drion in 1952 showed that this organelle has a double mem-
brane, with the inner membrane forming invaginations (called
cristae) into the mitochondrial matrix [4]. Mitochondria form
a highly dynamic network that varies in size and shape in
different cell types. The mitochondria in cardiac myocytes,
however, are quite uniformly sized and nested between the
contractile elements [1], whereas in other tissues (e.g., endo-
thelial cells), the mitochondria form a perinuclear network that
extends to the cell periphery [5]. Therefore, unique processes
may govern mitochondrial shape and elimination in cardiac
myocytes as compared with those in other cell types.

Proteins that mediate mitochondrial dynamics

Mitochondrial size and number are tightly regulated by fusion
and fission. These processes, which collectively are called
mitochondrial dynamics, are orchestrated by a family of large
GTPases and their respective adaptor proteins in the mito-
chondria. Mitochondrial fission is triggered by dynamin-
related protein 1 (Drp1) [6–8]. Studies from yeast to mamma-
lian cells have demonstrated that upon activation, Drp1 trans-
locates from the cytosol to the outer mitochondrial membrane
and binds to mitochondrial fission protein 1 (Fis1) [7, 9, 10].
Following activation, Drp1 oligomerizes and its GTPase ac-
tivity increases, which results in constriction of the mitochon-
dria at the scission sites and drives mitochondrial fission [7].
Excessive fission and mitochondrial fragmentation are in-
creased in cells overexpressing Fis1 resulting in cell apoptosis
[11]. In contrast, expression of a GTPase-defective dominant
negative mutant of Drp1, Drp1(K38A), leads to inhibition of
mitochondrial fission [12]. A number of other adaptor proteins
have been found to recruit Drp1 to the mitochondrial
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membrane in mammalian cells. These include mitochondrial
fission factor (MFF), which binds Drp1 independently of Fis1
[13] andMiD proteins (MiD49 andMiD51), which work with
Drp1 to promote fission independently of Fis1 and MFF [14].
Although there is conflicting evidence on the role of these
adaptor proteins in mitochondrial dynamics, it appears that
they work together to promote fission [14]. As discussed be-
low, our data suggest that Fis/Drp1 interaction mediates path-
ological fission whereas interaction between Drp1 and MFF
or MiD proteins may be involved in physiological fission. We
found that an inhibitor of Drp1 and Fis1 interaction had no
effect in healthy animals but reduced heart failure develop-
ment after myocardial infarction [15].

To maintain cell integrity, there needs to be a balance be-
tween mitochondrial fission and fusion. Fusion requires both
the outer and inner membranes of two mitochondria to fuse. At
the outer mitochondrial membrane, this process is directed by
two other members of the large GTPase dynamin family,
mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) [16]. In addition
to its role in fusion, Mfn2 links endoplasmic reticulum to mi-
tochondria [17]. Opa1, another member of the dynamin family
(named Opa for the mutation identified in dominant optic atro-
phy) [18], mediates inner membrane fusion as well as cristae
remodeling independently of mitochondrial fusion [19].

Together, Drp1, Mfn1, Mfn2, and Opa1 with their respec-
tive (known and unknown) adaptor/interacting proteins work
to maintain a proper balance between fission and fusion
(Table 1). Loss of mitochondrial fission-fusion balance is as-
sociated with a number of diseases, predominantly neurode-
generative diseases and cardiovascular diseases [1, 20]. Here,
we discuss a potential therapeutic approach to rescue the heart
frommitochondrial damage during ischemia-reperfusion inju-
ry and heart failure, focusing on compounds that regulate mi-
tochondrial dynamics and quality control.

Cardiovascular diseases

Cardiovascular diseases, including coronary artery disease,
hypertension, ventricular hypertrophy, myocardial infarction,

and heart failure are leading causes of death worldwide. The
establishment and progression of these diseases involve mul-
tiple processes including over-activation of the sympathetic
nervous system and the renin-angiotensin-aldosterone system,
as well as inflammation [21]. Mitochondria have been consid-
ered key sensors and effectors of cardiac pathophysiology. In
addition to their ability to produce energy, cardiac mitochon-
dria directly regulate several other intracellular processes such
as calcium homeostasis, apoptosis, nuclear gene expression,
ion gradients, redox potential of the cells, and contractility;
balanced mitochondrial fission/fusion are critical for these
functions [15, 22–25]. Therefore, regulating mitochondrial
fusion- and fission-related proteins has become an attractive
target for novel therapies for cardiac diseases.

Mitochondrial dynamics in cardiac diseases

Regulation of mitochondrial fission

Mitochondrial dysfunction plays a key role in ischemia and
reperfusion (IR) injury, cardiomyopathy, and heart failure [1,
26, 27]. Inhibition of Drp1/Fis1 interaction in cultured murine
cardiac myocytes and in whole rat heart models of IR reduced
excessive mitochondrial fission and heart damage [28]. Mito-
chondrial swelling and fragmentation were accompanied by
dephosphorylation of serine 637 of Drp1 by calcineurin. The
fission inhibitors, Mdivi-1, Drp1 siRNA, calcineurin inhibitor,
or therapeutic hypothermia all reversed these pathologies in
these IR models [28]. Treatment with Mdivi-1, a Drp1 inhib-
itor, prior to ischemia also reduced mitochondrial damage and
myocardial infarct size in mice subjected to transient coronary
artery occlusion [29]. Drp1 inhibition by the heptapeptide in-
hibitor, P110 [15, 30], inhibited IR-induced excessive mito-
chondrial fission, as shown by electron microscopy (Fig. 1)
and analysis of mitochondrial size by fluorescence-activated
cell sorting (FACS) [15]. We also demonstrated that a single
dose of P110 peptide at reperfusion after transient coronary
artery occlusion inhibited mitochondrial fragmentation, in-
creased ATP levels and mitochondrial size, and improved

Table 1 List of mitochondrial
dynamic proteins Proteins Location at

mitochondria
Function Interacting protein Properties

Opa1 Inner membrane Inner membrane fusion Not known GTPase activity

Fis1 Outer membrane Outer membrane fission Drp1 adaptor protein

Drp1 Outer membrane Outer membrane fission Fis1 GTPase activity

Mff Outer membrane Outer membrane fission Drp1 adaptor protein

MiD49/51 Outer membrane Outer membrane fission Drp1 adaptor protein

Mfn1 Outer membrane Outer membrane fusion Mfn2 GTPase activity

Mfn2 Outer membrane Outer membrane fusion; link
mitochondria to ER; autophagy

Parkin; Mfn1 GTPase activity

280 J Mol Med (2015) 93:279–287



cardiac functions when measured 3 weeks after the occlusion
[15]. Importantly, in contrast to Mdivi-1, P110 had no effect
on the basal activity of Drp1. This may be due to the selectiv-
ity of P110 for the Drp1-Fis1 interaction and the lack of any
effect on Drp1 binding to other adaptor proteins, such asMFF.
Since one single dose of P110 was sufficient to reduce heart
dysfunction even 3 weeks after myocardial infarction (MI),
inhibiting fragmentation at the onset of the injury was suffi-
cient for prolonged effect. Together, inhibition of Drp1, spe-
cifically targeting Drp1/Fis1 interaction, appears to have ther-
apeutic potential in preventing MI-induced cardiac injury and
subsequent heart failure development.

Drp1 undergoes modifications other than dephosphoryla-
tion, which can also induce fission. Recently, sumoylation/
desumoylation of Drp1 was also found to regulate mitochon-
drial function [31]. Sumoylation protected Drp1 from degra-
dation, and the subsequent increase in Drp1 activity may con-
tribute to cardiomyopathy and heart failure [32]. Overexpres-
sion of a SUMO isopeptidase led to increased mitochondrial
size as well as altered mitochondrial morphology and mito-
chondrial dysfunction in mouse hearts [32]. Furthermore,
hearts overexpressing adenovirus dominant-negative Drp1
(Drp1K38A) exhibited a lower oxygen consumption rate
and improved mitochondrial membrane potential accompa-
nied by increased mitochondrial fusion, which led to
cardioprotection after IR [29, 33]. Those elegant reports using
viral infection demonstrated that modulating Drp1 might be a
good therapeutic target for cardioprotection. However, viral
infection has limited therapeutic use in humans, and pharma-
cological agents targeting this process are still unavailable.

In addition, the antiapoptotic serine/threonine kinase Pim-1
mediated Drp1 phosphorylation and sequestration in the cyto-
sol. Overexpression of Pim-1 caused a reduction in Drp1
levels and preservation of the mitochondrial network [34,
35]. Therefore, inhibitors of some kinases (e.g., Pim-1) and
phosphatases (e.g., calcineurin) may improve mitochondrial
function and therefore protect the myocardium from both
acute and chronic insults. However, chronic use of kinase or
phosphatase inhibitors is probably impractical because of their

prominent role in signaling pathways other than those modu-
lating mitochondrial function.

Together, these studies demonstrate that inhibition of ex-
cessive mitochondrial fission improves cardiac health. How-
ever, because physiological fission is required to maintain
healthy mitochondria in tissue with high energy demand, such
as the heart, the inhibitors used need to be highly specific for
pathological fission.

Regulation of mitochondrial fusion and trans-organelle
linkage

Mfn1, Mfn2, and OPA1 are the main proteins involved in
mitochondrial fusion. Oxidative stress-mediated downregula-
tion of Mfn1 resulted in accumulation of fragmented mito-
chondria and apoptosis in neonatal rat cardiomyocytes [36].
Knockdown of Mfn1 aggravated the above damage, whereas
Mfn1 overexpression prevented these H2O2-related injuries
[36]. Unexpectedly, hearts from mice with cardiomyocyte-
specific deletion of Mfn1 accumulated fragmented mitochon-
dria that exhibited preserved function, resistance to oxidative
stress, and increased calcium-induced permeability [37].
However, there are no data on the susceptibility of these mice
to cardiomyopathy development upon stress. The explanation
for the differing effects of Mfn1 depletion in isolated neonatal
cardiomyocytes and adult hearts may reflect differences in
mitochondrial architecture; under basal conditions, mitochon-
drial fusion is spatially limited by the tight organization of the
contractile elements in adult cardiomyocytes, but not in neo-
natal cultured myocytes.

Mfn2 knockout mice exhibited increased mitochondrial
size, dissipation of mitochondrial inner membrane potential,
and increased ROS generation; cardiac hypertrophy and ven-
tricular dysfunction occurred in older Mfn2 knockout mice
[38–40]. The main role of Mfn2 in maintaining ventricular
function and morphology is likely related to its ability to tether
the sarcoplasmic reticulum to the mitochondria [17]. Ablation
of cardiac Mfn2, but not Mfn1, decreased the contact length
between sarcoplasmic reticulum (SR) and mitochondria,

control                                      P110

Fig. 1 Representative TEM micrograph of a rat heart subjected to
ischemia and reperfusion (IR) using an ex vivo model of myocardial
infarction. Treatment with the Drp1 inhibitory peptide, P110 (right),

blocked excessive mitochondrial fission observed in hearts subjected to
IR in the presence of control peptide. Bar=2 μm
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increased SR calcium content, and disrupted calcium handling
in isolated cardiac myocytes [41, 42]. In addition to its role in
regulating SR-mitochondrial tethering, Mfn2 plays a crucial
role in mitochondrial elimination through the recruitment of
PTEN-induced putative kinase 1 (PINK1)-Parkin to damaged
mitochondria [38], which complicates the interpretation of the
earlier studies regarding Mfns.

CombinedMfn1 and Mfn2 ablation in mouse hearts result-
ed in accumulation of dysfunctional and fragmented mito-
chondria and led to lethal heart failure at approximately
8 weeks after Mfn1/Mfn2 ablation [41]. Furthermore, cardio-
myocyte expression of human Mfn1 or Mfn2 rescued the car-
diomyopathy observed in Drosophila with no expression of
mitochondrial assembly regulatory factor (MARF), a
Drosophila ortholog of mammalian Mfns [43]. These results
demonstrated that proper fusion/fission balance is essential for
maintaining cardiac functions [17]. Clearly, Mfn1 and 2 have
distinct roles: a single Mfn1 allele and no Mfn2 expression in
mice did not affect baseline cardiac function, whereas mice
with a single cardiac Mfn2 allele and no Mfn1 expression
developed cardiomyopathy at 8 weeks of age [17].

Finally, Opa1, the third large GTPase that is involved in
mitochondrial fusion, also plays a key role in cardiac physiol-
ogy. Posttranslational proteolytic processing of Opa1, gener-
ating long Opa1 isoforms (anchored to the inner mitochondri-
al membrane) and short isoforms (found in the intermembrane
space), is important in controlling both the fusion of the inner
mitochondrial membrane and organization of the cristae struc-
ture. Loss of Opa1 led to mitochondrial fragmentation and
aberration in cristae structure [19]. Heterozygotic Opa1+/−

mice accumulated fragmented and dysfunctional mitochon-
dria and exhibited loss of mitochondrial DNA stability and
increased ROS generation in the heart. The corresponding
cardiomyocytes displayed reduced calcium transients, im-
paired contractility, and increased susceptibility to IR-
induced injury [44]. Therefore, along with Drp1, at least two
other enzymes that control mitochondrial dynamics, Mfn1 and
Opa1, are essential for maintaining mitochondrial integrity
and cardiac functions; pharmacological agents that activate
Mfn1 and Opa1may also have cardioprotective effects as long
as they will selectively affect pathological fusion.

Obesity and diabetes are independent risk factors for car-
diovascular disease development. Ventricular dysfunction and
hypoxic insult as well as reduced cardiomyocyte contractile
properties are closely related tomitochondrial dysfunction and
increased oxidative stress in diabetic cardiomyopathy and
obesity in humans [45, 46]. These metabolic disorders are
associated with the disruption of cardiac mitochondrial
fusion-fission balance. Worsening of myocardial contractile
properties during transition from obesity to diabetes was re-
ported in humans to correlate with reduced cardiac Mfn1
levels, accumulation of fragmented mitochondria, and meta-
bolic disruption [47]. Of interest, decreased cardiac Atg5

protein levels (a protein required for autophagy; see below)
were also observed in diabetic patients but not in obese pa-
tients, suggesting a role of mitochondrial fusion-fission bal-
ance (mitochondrial dynamics) and clearance in diabetic car-
diomyopathy. An imbalance in mitochondrial dynamics might
contribute to the establishment and/or progression of obesity-
and diabetes-related cardiomyopathy.

Accumulation of fragmented dysfunctional mitochondria
has been reported in myocardial infarction-induced heart fail-
ure model in animals [48, 49]. Furthermore, failing human
hearts have decreased Opa1 levels and increased levels of
Mfn1 and Mfn2 to likely compensate for the reduction in
Opa1 [49]. Accumulation of nonfunctional Mfn may be a
consequence of impaired proteasomal activity observed in
failing human hearts [50]. The role of mitochondrial dynamic
imbalance in heart failure development and progression in
humans remains to be elucidated. However, it appears from
the works cited above that controlling mitochondrial dynam-
ics should improve cardiac health.

Mitophagy in the heart

To limit the damage induced by dysfunctional mitochondria
following IR injury, the heart activates a protective mechanism
by which damaged mitochondria (containing damaged/
oxidized proteins and damaged mitochondrial DNA) are elim-
inated through a process of mitochondrial autophagy and
mitophagy. Autophagy is an essential catabolic process involv-
ing degradation of unnecessary or dysfunctional cellular com-
ponents (including mitochondria) by lysosomes. Under normal
conditions, autophagy is kept at a basal level to maintain cellu-
lar homeostasis and preserve cell integrity by eliminating long-
lived, overproduced, and aggregation-prone proteins or dys-
functional organelles such as damaged mitochondria. Much
has been written about the role of autophagy induced by star-
vation, but this aspect of autophagy appears to be less relevant
to the heart. Cardiac autophagy that is triggered by stress, such
as by IR, promotes cell survival [51]. Particularly, proper elim-
ination of damaged mitochondria under such conditions is im-
portant to protect cells against the release of proapoptotic pro-
teins, such as Bcl-2, and the production of excessive mitochon-
drial ROS [52–54]. Therefore, autophagy contributes to the
maintenance of quantity and quality of cardiac mitochondria.

Depending on how mitochondria are delivered to lyso-
somes, mitochondrial elimination occurs by two pathways—
macromitophagy and micromitophagy (Figs. 2 and 3).
Macromitophagy is characterized by sequestration of mito-
chondria into double-membrane structures, called
autophagosomes, which are sequentially fused with lysosomes
where the mitochondria are degraded. A number of molecular
pathways regulate macromitophagy. PTEN-induced putative
kinase 1 (PINK1) accumulates at the outer mitochondrial
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membrane of damaged mitochondria and recruits the ubiquitin
ligase E3-associated protein, Parkin. Parkin induces
ubiquitination of mitochondrial proteins and degradation of
damaged mitochondria in lysosomes. This process is further
regulated by voltage-dependent anion channels (VDACs),
BECN1-regulated autophagy protein 1 (AMBRA1), or p62/
SQSTM1 (sequestosome 1) complexes [55–58]. In addition,
the serine threonine kinase, Ulk1, and FUN14 domain-
containing 1 (FUNDC1) induce Pink1/Parkin-independent
macromitophagy in mouse embryonic fibroblast (MEF) cells
exposed to hypoxia [59]. Furthermore, NIP1-like protein X,
Nix (also called BNip3L), and BNip3, which might have mul-
tiple effects on mitochondria, have also been found to induce
tethering of damagedmitochondria to lysosomes for autophagy
and thus to be cardiac protective [60].

Micromitophagy, where mitochondria are directly engulfed
by lysosomes also occurs following cell stress [61, 62]. Re-
cently, our group showed that micromitophagy is independent
of the macromitophagy pathway [63]. Using cell cultures and
whole heart, we found that IR-induced injury stimulated the
association of inactivated glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) with mitochondria, which induced direct
fusion of damaged mitochondria into lysosomal-like (likely
early endosomes) structures for removal [63]. As oxidative
injury increased, protein kinase C delta (PKCδ) inhibited
GAPDH-induced micromitophagy by phosphorylating
GAPDH at Thr246. PKCδ-induced GAPDH phosphorylation
promoted the accumulation of damagedmitochondria, leading
to mitochondrial-induced cell death by apoptosis [63]. Inhibi-
tion of the macroautophagy machinery did not affect this
GAPDH-dependent elimination of damaged mitochondria
by micromitophagy [63].

How are mitochondrial fission and mitophagy linked?
Mitochondrial fission appears to be required for mitophagy
under basal growth condition and during nutrient starvation
in MEF cells [61, 62]. The synergistic role of Drp1 and
Parkin in mitochondrial homeostasis in cardiomyocytes
supports a link between mitochondrial fission and
mitophagy [64]. In a mouse model of heart failure, inhibi-
tion of excessive mitochondrial fission during IR inhibited
mitophagy, indicating coordination between these two
mechanisms [65]. Furthermore, mild oxidative stress in-
duced both mitochondrial fragmentation and mitophagy in
non-cardiac cells [66]. Together, the interplay between mi-
tochondrial fission and mitophagy seems to depend on the
conditions in which the mitochondria become damaged and
the amount (or degree) of stress. In addition to fission, as
described earlier, mitofusin 2 plays an essential role in
mitophagic mitochondrial quality control, anchoring Parkin
to damaged cardiomyocytes mitochondria [38, 67]. A recent
review described the crosstalk between the quality control
machineries for cardioprotection [67], suggesting a link be-
tween mitochondrial regeneration by fusion and mitophagy.
Regardless of whether mitophagy depends on mitochondri-
al fission and fusion, drugs that increase the selective re-
moval of damagedmitochondria by mitophagy are expected
to be cardioprotective by decreasing oxidative stress and
apoptosis induced by dysfunctional mitochondria.

Mitophagy in cardiac diseases

Basal levels of mitophagy or macroautophagy under mild
stress were found to be important; they preserve myocardial

HL-1 cardiomyocyte cell line Ex vivo model rat heart Fig. 2 Representative TEM
micrograph. HL-1 cardiomyocyte
cell subjected to ischemia and re-
perfusion (IR) (left). Shown are
mitochondria undergoing
macroautophagy and
micromitophagy. Mitochondria
directly fused with the lysosomal
membrane for degradation repre-
sent an example of
microautophagy. A mitochondri-
on inside a lysosome is also seen
on the right, providing an exam-
ple of mitophagy in an ex vivo
model of rat myocardial infarc-
tion. Left panel, bar=1 μm; right
panel, bar=0.5 μm
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(or cellular) homeostasis and thus maintain normal cardiac
functions. Cardiac-specific Atg5-deficient mice exhibited
cardiac dysfunction 1 week after subjecting the heart to
pressure overload [68], whereas overexpression of autoph-
agic genes ameliorated cardiomyopathy [69]. Parkin-
deficient mice showed decreased survival with increased
vulnerability to myocardial infarction [70, 71]. The disrup-
tion of PINK1/Parkin interaction further impaired mito-
chondrial function and mitophagy in aged hearts, leading
to cardiac dysfunction [72]. Beclin, a mammalian ortholog
of the yeast autophagy-related gene Atg6, regulates autoph-
agy. Beclin1 knockdown by RNAi reduced autophagic flux
following 2 h ischemia and 5 h reperfusion-induced injury
in cardiomyocytes. The authors demonstrated a significant-
ly increased apoptosis mediated by an increase in Bax ac-
tivation, a member of the BCL2 gene family [73]. Together,
these studies support protective and adaptive functions of

mitophagy (by micro- or macro-autophagy) to promote
survival.

However, in response to more severe oxidative stress,
such as that induced by prolonged hypoxia followed by
reperfusion, cells are not rescued by mitophagy. Apoptosis
is increased either because the mechanisms involved in
mitophagy are impaired (e.g., because of ATP shortage
due to a high number of impaired mitochondria) or because
the process of mitophagy cannot keep up with the number
of damaged mitochondria, thus, leading to insufficient ly-
sosomal elimination of the damaged mitochondria [74]. In
addition, upregulated mitophagy machinery may promote
cell death by clearing healthy mitochondria [75]. Unlike
the results in primary cardiomyocytes as described earlier
[73], in Beclin 1+/− mice subjected to IR, the number of
autophagosomes and the size of myocardial infarction were
significantly reduced, suggesting that induction or activa-
tion of autophagy can be detrimental [76]. Another study
showed that IR-induced upregulation of Beclin 1 was ac-
companied by a rapid decline in LAMP2, a protein impor-
tant for the fusion of macroautophagosomes with lyso-
somes, provoking cardiomyocyte death [77]. Furthermore,
inhibition of autophagy by downregulating Beclin 1 or the
use of 3-methyladenine (a macroautophagy inhibitor) was
protective when neonatal cardiomyocytes were exposed to
simulated IR or to H2O2-induced injury [76, 78]. Taken
together, these results suggest that the protective effect of
autophagy remains controversial. Therefore, pharmacolog-
ical upregulation of autophagy (e.g., with rapamycin,
chloramphenicol succinate, or SAHA, an HDAC inhibitor)
or GAPDH-driven mitophagy (e.g., inhibiting PKCδ trans-
location to mitochondria) may enhance the clearance of
damaged mitochondria and thus prevent the onset of cell
death following IR-induced injury [63, 73, 79, 80]. An
understanding of the balance between cardioprotective
mitophagy and cell death will provide useful insights into
developing new therapeutic strategies for cardiovascular
diseases. However, until the role of macroautophagy and
micromitophagy in stressed mycardium is determined, the
use of inhibitors or activators of these processes in humans
may be premature.

Conclusion

The central role of mitochondria in the health of the myocar-
dium has been recently recognized. As discussed above, the
machineries regulating mitochondrial fusion and fission and
removal of damaged mitochondria by autophagy are potential
novel therapeutic targets for cardiovascular disease. However,
further research into the critical molecular events that should
be regulated is needed to develop the optimal pharmacological
strategy to treat these diseases.

Fig. 3 Representative TEM micrograph of intact HL-1 cardiomyocyte
cell following IR-induced injury. An example of macroautophagy: mito-
chondr ia are encapsula ted in double-membrane vesic les
(autophagosomes; arrows), which are ultimately targeted to lysosomes
for degradation. Bar=0.5 μm
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