Skip to main content
Log in

Impfungen im höheren Lebensalter

Vaccination in advanced age

  • Arzneimitteltherapie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Infektionskrankheiten sind auch in den entwickelten Ländern für bis zu 5 % der Todesfälle verantwortlich. Hinzu kommt eine zunehmende Infektanfälligkeit alter Menschen aufgrund der physiologischen Alterung des Immunsystems. Das Prinzip der Impfung beruht auf einer zielgerichteten Aktivierung des menschlichen Immunsystems. Prinzipiell wird zwischen einer passiven Immunisierung, also der Applikation spezifischer Antikörper gegen einen Erreger, und der aktiven Immunisierung unterschieden. Bei der aktiven Immunisierung, also der Impfung, werden abgeschwächte (attenuierte) bzw. abgetötete Erreger oder Erregerbestandteile (Antigene) verabreicht. Nach einer von der Impfung abhängigen Latenzzeit wird der volle Impfschutz erreicht; für eine gewisse Zeit bleibt die Immunität dann bestehen. Im Gegensatz zu Totimpfstoffen besteht bei der Impfung mit Lebendimpfstoffen grundsätzlich das Risiko einer Infektion mit dem applizierten Impfstamm. Bei der passiven Immunisierung werden Antikörper appliziert. In der Regel erfolgt die passive Immunisierung bei Personen, die Kontakt mit einem infektiösen Patienten hatten und bei denen keine oder keine sichere Immunität gegen die entsprechende Krankheit besteht.

Abstract

Infectious diseases are responsible for up to 5% of fatalities even in developed countries. In addition, there is an increasing susceptibility for infections in elderly people due to physiological aging of the immune system. The principles of vaccination are based on a targeted activation of the human immune system. Principally, a distinction is made between passive immunization, i.e. the application of specific antibodies against a pathogen and active immunization. In active immunization, i.e. vaccination, weakened (attenuated) or dead pathogens or components of pathogens (antigens) are administered. After a latency period that depends on the vaccine, complete immune protection is achieved and immunity is maintained for a certain period of time. In contrast to dead vaccines, by the use of live vaccines there is always a risk for infection with the administered vaccine. In passive immunization antibodies are administered. As a rule passive immunization is carried out in persons who have had contact with an infected person and in whom no or uncertain immunity against the corresponding disease is present. Based on the recommendations of the Standing Committee on Vaccination (STIKO), influenza, pneumococcal, herpes zoster, early summer meningoencephalitis (FSME) and travel vaccines are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Westerink MA, Schroeder HW Jr., Nahm MH (2012) Immune responses to pneumococcal vaccines in children and adults: rationale for age-specific vaccination. Aging Dis 3:51–67

    PubMed  Google Scholar 

  2. Hamza SA, Mousa SM, Taha SE et al (2012) Immune response of 23-valent pneumococcal polysaccharide vaccinated elderly and its relation to frailty indices, nutritional status, and serum zinc levels. Geriatr Gerontol Int 12:223–229

    Article  PubMed  Google Scholar 

  3. Weinberger B, Herndler-Brandstetter D, Schwanninger A, Weiskopf D, Grubeck-Loebenstein B (2008) Biology of immune responses to vaccines in elderly persons. Clin Infect Dis 46:1078–1084

    Article  PubMed  Google Scholar 

  4. Aspinall R, Pitts D, Lapenna A, Mitchell W (2010) Immunity in the elderly: the role of the thymus. J Comp Pathol 142(Suppl 1):S111–S115

    Article  CAS  PubMed  Google Scholar 

  5. Falcone M, Blasi F, Menichetti F et al (2012) Pneumonia in frail older patients: an up to date. Intern Emerg Med 7:415–424

    Article  PubMed  Google Scholar 

  6. Wu DB et al (2014) A retrospective study to assess the epidemiological and economic burden of pneumococcal diseases in adults aged 50 years and older in Taiwan. J Med Econ 17:312–319

    Article  CAS  PubMed  Google Scholar 

  7. Jain S, Self WH, Wunderink RG et al (2015) Community-acquired pneumonia requiring hospitalization among U.S. adults. N Engl J Med 373:415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Inghammar M, Engström G, Kahlmeter G et al (2013) Invasive pneumococcal disease in patients with an underlying pulmonary disorder. Clin Microbiol Infect 19:1148–1154

    Article  CAS  PubMed  Google Scholar 

  9. Seminog OO, Goldacre MJ (2013) Risk of pneumonia and pneumococcal disease in people hospitalized with diabetes mellitus: English record-linkage studies. Diabet Med 30:1412–1419

    Article  CAS  PubMed  Google Scholar 

  10. Covinsky KE, Palmer RM, Fortinsky RH et al (2003) Loss of independence in activities of daily living in older adults hospitalized with medical illnesses: increased vulnerability with age. J Am Geriatr Soc 51:451–458

    Article  PubMed  Google Scholar 

  11. Davydow DS, Hough CL, Levine DA et al (2013) Functional disability, cognitive impairment, and depression after hospitalization for pneumonia. Am J Med 126:615–624

    Article  PubMed  PubMed Central  Google Scholar 

  12. Martin-Salvador A, Torres-Sánchez I, Sáez-Roca G et al (2015) Age group analysis of psychological, physical and functional deterioration in patients hospitalized for pneumonia. Arch Bronconeumol 51:496–501

    Article  PubMed  Google Scholar 

  13. Bonten MJ, Huits SM, Bolkenbaas M et al (2015) Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med 372:1114–1125

    Article  CAS  PubMed  Google Scholar 

  14. Clutterbuck EA, Lazarus R, Yu LM et al (2012) Pneumococcal conjugate and plain polysaccharide vaccines have divergent effects on antigen-specific B cells. J Infect Dis 205:1408–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Roux A, Schmöle-Thoma B, Siber GR et al (2008) Comparison of pneumococcal conjugate polysaccharide and free polysaccharide vaccines in elderly adults: conjugate vaccine elicits improved antibacterial immune responses and immunological memory. Clin Infect Dis 46:1015–1023

    Article  PubMed  Google Scholar 

  16. Pletz MW (2014) Prävention durch Impfungen – Pneumokokken und Influenza. Drug Res 64(Suppl1):S28

    Google Scholar 

  17. Andrews NJ, Waight PA, George RC et al (2012) Impact and effectiveness of 23-valent pneumococcal polysaccharide vaccine against invasive pneumococcal disease in the elderly in England and Wales. Vaccine 30:6802–6808

    Article  PubMed  Google Scholar 

  18. Vila-Corcoles A, Ochoa-Gondar O, Guzman JA et al (2010) Effectiveness of the 23-valent polysaccharide pneumococcal vaccine against invasive pneumococcal disease in people 60 years or older. BMC Infect Dis 10:73

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rightmier E, Stevens V, Brown J (2011) Streptococcus pneumoniae vaccination in older adults. Am J Geriatr Pharmacother 9:392–404

    Article  PubMed  Google Scholar 

  20. Dominguez A, Izquierdo C, Salleras L et al (2010) Effectiveness of the pneumococcal polysaccharide vaccine in preventing pneumonia in the elderly. Eur Respir J 36:608–614

    Article  CAS  PubMed  Google Scholar 

  21. Mahamat A, Daures JP, de Wzieres B (2013) Additive preventive effect of influenza and pneumococcal vaccines in the elderly: results of a large cohort study. Hum Vaccin Immunother 9:128–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wutzler P (2009) Virologische Grundlagen. In: Zepp, Ruf BR (Hrsg) H1N1 Update2009-Kompendium Influenza. Ärztezeitung Verlags-GmbH, Berlin, Heidelberg, New York, S 2–16

    Google Scholar 

  23. Darvishian M, van den Heuvel ER, Bissielo A et al (2017) Effectiveness of seasonal influenza vaccination in community-dwelling elderly people: an individual participant data meta-analysis of test-negative design case-control studies. Lancet Respir Med 5:200–211

    Article  PubMed  Google Scholar 

  24. Moa AM, Chughtai AA, Muscatello DJ et al (2016) Immunogenicity and safety of inactivated quadrivalent influenza vaccine in adults: a systematic review and meta-analysis of randomised controlled trials. Vaccine 34:4092–4102

    Article  CAS  PubMed  Google Scholar 

  25. Ständige Impfkommission STIKO (2017) Mitteilungen der Ständigen Impfkommission am Robert-Koch-Institut (RKI) Empfehlungen der Ständigen Impfkommission (STIKO) am Robert-Koch-Institut. Epidemiol Bull 34:342

    Google Scholar 

  26. Ehrlich HJ, Singer J, Berezuk G et al (2012) A cell culture-derived influenza vaccine provides consistent protection against infection and reduces the duration and severity of disease in infected individuals. Clin Infect Dis 54:946–954

    Article  PubMed  PubMed Central  Google Scholar 

  27. Jansen AG, Sanders EA, Nichol KL et al (2008) Decline in influenza-associated mortality among Dutch elderly following the introduction of a nationwide vaccination program. Vaccine 26:5567–5574

    Article  PubMed  Google Scholar 

  28. Nichol KL (2003) The efficacy, effectiveness and cost-effectiveness of inactivated influenza virus vaccines. Vaccine 21:1769–1775

    Article  PubMed  Google Scholar 

  29. Siegmund-Schultze N (2017) Infektionsschutz für Neugeborene: Impfen in der Schwangerschaft. Dtsch Arztebl 114:A1186

    Google Scholar 

  30. Yao X, Hamilton RG, Weng NP et al (2011) Frailty is associated with impairment of vaccine-induced antibody response and increase in post-vaccination influenza infection in community-dwelling older adults. Vaccine 29:5015–5021

    Article  PubMed  PubMed Central  Google Scholar 

  31. Beyer WE, Nauta JJ, Palache AM et al (2011) Immunogenicity and safety of inactivated influenza vaccines in primed populations: a systematic literature review and meta-analysis. Vaccine 29:5785–5792

    Article  CAS  PubMed  Google Scholar 

  32. Rothberg MB, Haessler SD, Brown RB (2008) Complications of viral influenza. Am J Med 121:258–264

    Article  PubMed  Google Scholar 

  33. Mannino S, Villa M, Apolone G et al (2012) Effectiveness of adjuvanted influenza vaccination in elderly subjects in northern Italy. Am J Epidemiol 176:527–533

    Article  PubMed  PubMed Central  Google Scholar 

  34. Van Buynder PG, Konrad S, Kersteins F et al (2015) Healthcare worker influenza immunization vaccinate or mask policy: strategies for cost effective implementation and subsequent reductions in staff absenteeism due to illness. Vaccine 33:1625–1628

    Article  PubMed  Google Scholar 

  35. Parodi V, De Florentiis D, Martini M, Ansaldi F (2011) Inactivated influenza vaccines: recent progress and implications for the elderly. Drugs Aging 28:93–106

    Article  CAS  PubMed  Google Scholar 

  36. DiazGranados CA, Dunning AJ, Kimmel M et al (2014) Efficacy of high-dose versus standard-dose influenza vaccine in older adults. N Engl J Med 371:635–645

    Article  PubMed  Google Scholar 

  37. Poethko-Muller C, Schmitz R (2013) Vaccination coverage in German adults: results of the German health interview and examination survey for adults (DEGS1). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 56:845–857

    Article  CAS  PubMed  Google Scholar 

  38. Ständige Impfkommission STIKO (2015) Mitteilungen der Ständigen Impfkommission am Robert-Koch-Insitut (RKI) Empfehlungen der Ständigen Impfkommission (STIKO) am Robert-Koch-Institut. Epidemiol Bull 34:329

    Google Scholar 

  39. Weston WM, Friedland LR, Wu X et al (2012) Vaccination of adults 65 years of age and older with tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccine (Boostrix(R)): results of two randomized trials. Vaccine 30:1721–1728

    Article  CAS  PubMed  Google Scholar 

  40. Jelenik Z, Keller M, Briggs B et al (2010) Tick-borne encephalitis and golden agers: position paper of the International Scientific Working Group on Tick-borne encephalitis (ISW-TBE). Wien Med Wochenschr 160:247–251

    Article  PubMed  Google Scholar 

  41. Stuhdal M, Petzold M, Cassel T (2013) Disease burden of herpes zoster in Sweden predominance in the elderly and in women – a register based study. BMC Infect Dis 13:586

    Article  Google Scholar 

  42. Ultsch B, Siedler A, Rieck T et al (2011) Herpes zoster in Germany: quantifying the burden of disease. BMC Infect Dis 11:173

    Article  PubMed  PubMed Central  Google Scholar 

  43. Oxman MN, Levin MJ, Johnson GR et al (2005) A vaccine to prevent herpes zoster and postherpetic neuralgia in older adults. N Engl J Med 352:2271–2284

    Article  CAS  PubMed  Google Scholar 

  44. Tseng HF, Smith N, Harpaz R et al (2011) Herpes zoster vaccine in older adults and the risk of subsequent herpes zoster disease. JAMA 305:160–166

    Article  CAS  PubMed  Google Scholar 

  45. Leischker AH (2017) STIKO-Empfehlungen 2017/2018 – Die Neuerungen im Überblick. Allgemeinarzt 18:4–6

    Google Scholar 

  46. Mutsch M, Tavernini M, Marx A et al (2005) Influenza virus infection in travelers to tropical and subtropical countries. Clin Infect Dis 40:1282–1287

    Article  PubMed  Google Scholar 

  47. Committee to Advise on Tropical Medicine and Travel (CATMAT), National Advisory Committee on Immunization (NACI) (2005) Statement on travel, in¡uenza, and prevention. Can Commun Dis Rep 31(ACS-2):1–8

    Google Scholar 

  48. Ständige Impfkommission STIKO (2015) Wissenschaftliche Begründung zur Änderung der Gelbfieber-Impfempfehlung aufgrund der Änderungen in den Regelungen der Internationalen Gesundheitsvorschriften zu Gelbfieber. Epidemiol Bull 35:369–373

    Google Scholar 

  49. Martin M, Weld LH, Tsai TF et al (2001) Advanced age a risk factor for illness temporally associated with yellow fever vaccination. Emerging Infect Dis 7:945–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Heppner MHBA.

Ethics declarations

Interessenkonflikt

H.J. Heppner erhielt Vortragshonorare der Firmen Pfizer Pharma GmbH, Bayer Health Care, Novartis Pharma und Astellas Pharma. A. Leischker erhielt Vortragshonorare der Firmen Pfizer Pharma GmbH und Sanofi. A. Kwetkat erhält ein Forschungsstipendium des Forschungskollegs Geriatrie der Robert Bosch Stiftung, Stuttgart, und eine Forschungsförderung als „unrestricted grant“ der Firma Pfizer. Sie ist Mitglied im PCV-13-Adult Advisory Board der Firma Pfizer Pharma GmbH und erhielt Vortragshonorare von den Firmen Pfizer, MSD und Novartis. P. Wutzler gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Wehling, Mannheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heppner, H.J., Leischker, A., Wutzler, P. et al. Impfungen im höheren Lebensalter. Internist 59, 205–212 (2018). https://doi.org/10.1007/s00108-017-0358-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-017-0358-1

Schlüsselwörter

Keywords

Navigation