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ON THE ANALYTIC SYSTOLE OF RIEMANNIAN SURFACES
OF FINITE TYPE

Werner Ballmann · Henrik Matthiesen · Sugata Mondal

Abstract. In (J Differ Geom 103(1):1–13, 2016) we introduced, for a Riemannian
surface S, the quantity Λ(S) := infF λ0(F ), where λ0(F ) denotes the first Dirich-
let eigenvalue of F and the infimum is taken over all compact subsurfaces F of S
with smooth boundary and abelian fundamental group. A result of Brooks (J Reine
Angew Math 357:101–114, 1985) implies Λ(S) ≥ λ0(S̃), the bottom of the spectrum
of the universal cover S̃. In this paper, we discuss the strictness of the inequal-
ity. Moreover, in the case of curvature bounds, we relate Λ(S) with the systole,
improving the main result of (Enseign Math 60(2):1–23, 2014).

1 Introduction

Small eigenvalues of Riemannian surfaces, in particular of hyperbolic surfaces, have
been of interest in different mathematical fields for a long time. Buser and Schmutz
conjectured that a hyperbolic metric on the closed surface S = Sg of genus g ≥ 2
has at most 2g − 2 eigenvalues below 1/4 [Bus10,Sch91]. In [OR09], Otal and Rosas
proved a generalized version of this conjecture. They showed that a real analytic
Riemannian metric on Sg with negative curvature has at most 2g − 2 eigenvalues
≤ λ0(S̃), where S̃ denotes the universal covering surface of S, endowed with the
lifted Riemannian metric, and where λ0(S̃) denotes the bottom of the spectrum
of S̃. Recall here that, for a Riemannian surface F (possibly not complete) with
piecewise smooth boundary ∂F (possibly empty), the bottom of the spectrum of F
is defined to be

λ0 = λ0(F ) = inf R(ϕ), (1.1)

where ϕ runs over all non-vanishing smooth functions on F with compact support in
the interior F̊ = F \∂F of F and where R(ϕ) denotes the Rayleigh quotient of ϕ. It
is well known that the bottom of the spectrum of the Euclidean and hyperbolic plane
is 0 and 1/4, respectively. When F is closed, λ0(F ) = 0, when F is compact and
connected with non-empty boundary, λ0(F ) is the first Dirichlet eigenvalue of F . In
the latter case, λ0(F )-eigenfunctions of F do not have zeros in F̊ and, therefore, the
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multiplicity of λ0(F ) as an eigenvalue of F is one. We then call the corresponding
positive eigenfunction of F with L2-norm one the ground state of F .

For a Riemannian surface S, with or without boundary, we define the analytic
systole to be the quantity

Λ(S) = inf
F

λ0(F ), (1.2)

where the infimum is taken over all subsurfaces F in S̊ with smooth boundary which
are diffeomorphic to a closed disc, annulus, or cross cap. (A cross cap is frequently
also called a Möbius strip.) Note that the fundamental groups of disc, annulus, and
cross cap are cyclic, hence amenable. By the work of Brooks, we therefore have

Λ(S) ≥ λ0(S̃) (1.3)

for all complete and connected Riemannian surfaces S, see [Bro85, Theorem 1] and
also Theorem A.1 below. The strictness of this inequalilty and other estimates of
Λ(S) are the topics of this article.

To clarify our terminology, a surface is a smooth manifold of dimension two. A
Riemann surface is a surface together with a conformal structure. They are not the
topic of this article. We study Riemannian surfaces, that is, surfaces together with
a Riemannian metric.

We say that a surface S is of finite type if its Euler characteristic χ(S) is finite
and its boundary is compact (possibly empty). It is well known that a connected
surface S is of finite type if and only if S can be obtained from a closed surface by
deleting a finite number of pairwise disjoint points and open discs.

After first extensions of the results of Otal and Rosas in [Mat13] and [Mon14],
we showed in [BMM16] and [BMM17] that any complete Riemannian metric on a
connected surface S of finite type with χ(S) < 0 has at most −χ(S) eigenvalues
≤ Λ(S), where the eigenvalues are understood to be Dirichlet eigenvalues if ∂S �=
∅. This result explains the significance of the analytic systole and the interest in
establishing strictness in (1.3).

1.1 Statement of main results. In our first three results, we discuss the strict-
ness of (1.3).

Theorem 1.1. If S is a compact and connected Riemannian surface whose fun-
damental group is not cyclic, then Λ(S) > λ0(S̃).

Note that the compact and connected surfaces with cyclic fundamental group
are precisely sphere, projective plane, closed disc, closed annulus, and closed cross
cap. For these, we always have equality in (1.3) as we will see in Proposition 1.5.

Recall that the spectrum of S is discrete if S is compact. In general, the spectrum
of S is the disjoint union of its discrete and essential parts, where λ ∈ R belongs to
the essential spectrum of S if Δ − λ is not a Fredholm operator. The bottom of the
essential spectrum is given by

λess(S) = lim
K

λ0(S \ K), (1.4)
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where K runs over the compact subsets of S, ordered by inclusion, see Proposi-
tion 8.1. By domain monotonicity, the limit is monotone with respect to the ordering
of the compact subsets of S. If S is compact, then λess(S) = ∞. If S is a complete
and connected Riemannian surface of finite type, then

λess(S) ≥ Λ(S) (1.5)

since the the ends of S admit neighborhoods in S whose connected components are
diffeomorphic to open annuli. Such neighborhoods of the ends of S will be called
cylindrical.

Theorem 1.1 extends in the following way to surfaces of finite type, be they
compact or non-compact.

Theorem 1.2. If S is a complete and connected Riemannian surface of finite
type whose fundamental group is not cyclic, then Λ(S) > λ0(S̃) if and only if
λess(S) > λ0(S̃).

For complete and connected Riemannian surfaces of finite type, Λ(S) is always
between λ0(S̃) and λess(S), by (1.3) and (1.5). Hence the condition λess(S) > λ0(S̃)
in Theorem 1.2 is obviously necessary to have the strict inequality Λ(S) > λ0(S̃).
The hard part of the proof of Theorem 1.2 is to show that the condition is also
sufficient.

Remark 1.3. Another way of stating the condition λess(S) > λ0(S̃) in Theorem 1.2
is to require that there is a compact subset K of S such that λ0(S \ K) > λ0(S̃). By
domain monotonicity, this condition is then also satisfied for any compact subset K ′

of S containing K.

Example 1.4. Let S be a non-compact connected surface of finite type whose fun-
damental group is not cyclic. Using a decomposition of S into pairs of pants, it
becomes obvious that S carries complete hyperbolic metrics with (possibly empty)
geodesic boundary. For any such metric, we have

λess(S) = Λ(S) = λ0(S̃) = 1/4

since the ends of S are then hyperbolic cusps or funnels.
Tempted by this equality we investigate how generic this equality is among all

smooth complete metrics on a non-compact surface of finite type. Our next result is
that it is in fact rare. Some form of rigidity in the case of equality would of course
be very interesting; compare with Sect. 8.6.

Proposition 1.5. Let S be a connected surface of finite type.

1) If the fundamental group of S is cyclic, then Λ(S) = λ0(S̃) for any complete
Riemannian metric on S.
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2) If S is non-compact and the fundamental group of S is not cyclic, then S
carries complete Riemannian metrics such that λess(S) > Λ(S). Moreover, if
χ(S) < 0, then such metrics may be chosen to have curvature K ≤ −1 and
finite or infinite area.

3) If λ0(S̃, g̃) > 0 for some Riemannian metric g on S, then a generic complete
Riemannian metric g′ on S in any neighborhood of g in the uniform C∞

topology satisfies the strict inequality λess(S, g′) > Λ(S, g′).

By Theorem 1.2, λess(S) > Λ(S) implies Λ(S) > λ0(S̃).
In our next result, we generalize the main result of the third author in [Mon14],

which asserts that a hyperbolic metric on the closed surface Sg of genus g ≥ 2 has
at most 2g − 2 eigenvalues ≤ 1/4 + δ, where

δ = min{π/|S|, sys(S)2/|S|2}.

Here |S| denotes the area of S and sys(S), the systole of S, is defined to be the
minimal possible length of an essential closed curve in S.

Theorem 1.6. For a closed Riemannian surface S with curvature K ≤ κ ≤ 0, we
have

Λ(S) ≥ −κ

4
+

sys(S)2

|S|2 .

Remarks 1.7. 1) For closed Riemannian surfaces S with curvature K ≤ κ < 0,
we know in general only that λ0(S̃) ≥ −κ/4. Therefore Theorem 1.6 may
not imply the strict inequality Λ(S) > λ0(S̃) for such S. In fact, the relation
between λ0(S̃) and the right hand side in Theorem 1.6 is not clear. Our
method of proof, involving isoperimetric inequalities and Cheeger’s inequality,
does not seem to be sophisticated enough to capture the difference between
them.

2) The proof of Theorem 1.6 also applies to non-compact surfaces of finite type.
In this case one needs to define the systole as the infimum over all homotopi-
cally non-trivial curves, not only the essential (not homotopic to a boundary
component or a puncture) ones. For this reason, the corresponding statement
is not really interesting anymore. If |S| < ∞, then sys(S) = 0 (by a refinement
of the isosystolic inequality), and if |S| = ∞, then sys(S)/|S| = 0.

3) The difference Λ(S) − λ0(S̃) can not be estimated from below by a positive
constant, which only depends on the topology and the area of S. In fact,
given any ε > 0 and natural number n, if the metric on S is hyperbolic with
sufficiently small systole, then λn(S) < 1/4 + ε, by [Bus77, Satz 2] or the
proof of Theorem 8.1.2 in [Bus10].

One may view Theorem 1.6 also as an upper bound on the systole in terms of
a curvature bound and Λ(S). Together with our next result, this explains the name
analytic systole.
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For a closed Riemannian surface S, we say that a closed geodesic c of S is a systolic
geodesic if it is essential with length L(c) = sys(S). Clearly, systolic geodesics are
simple.

Theorem 1.8. If S is a closed Riemannian surface with χ(S) < 0 and curvature
K ≥ −1, then

Λ(S) ≤ 1
4

+
4π2

w2
,

where

w = w(sys(S)) =

{
arsinh(1/ sinh(sys(S)/2)))
arsinh(1/ sinh(sys(S)))

if S has a two-sided systolic geodesic or if all systolic geodesics of S are one-sided,
respectively.

Here we say that a simple closed curve in S is two-sided or one-sided if it has a
tubular neigborhood which is diffeomorphic to an annulus or a cross cap, respectively.

Combining Theorems 1.6 and 1.8, we get that, for hyperbolic metrics, Λ(S) is
squeezed between two functions of the systole.

Corollary 1.9. For closed hyperbolic surfaces, we have

1
4

+
sys(S)2

4π2χ(S)2
≤ Λ(S) ≤ 1

4
+

4π2

w2

with w = w(sys(S)) as in Theorem 1.8.

Recall that arsinhx = ln(x +
√

x2 + 1). In particular, we have

w(sys(S)) ∼ − ln(sys(S)) → ∞ as sys(S) → 0.

We conclude that the analytic systole of hyperbolic metrics on closed surfaces tends
to 1/4 if and only if their systole tends to 0.

1.2 Main problems and arguments. The only surfaces S in Theorems 1.1
and 1.2 with Euler characteristic χ(S) ≥ 0 are torus and Klein bottle. For these,
the proof of the inequality Λ(S) > λ0(S̃) is quite elementary. The proof of the hard
direction of Theorem 1.2, namely establishing the strict inequality Λ(S) > λ0(S̃)
under the condition λess(S) > λ0(S̃), is rather involved in the case χ(S) < 0.

The domain monotonicity of the first Dirichlet eigenvalue implies that Λ(S) can
not be realized by any compact subsurface F ⊆ S diffeomorphic to a disc, an annulus
or a cross cap. Keeping this in mind, our general strategy for the proof of Theorem 1.2
is to show that the equality Λ(S) = λ0(S̃) would imply the existence of a non-trivial
λ0(S̃)-eigenfunction ϕ̃ on S̃ or an appropriate cyclic quotient Ŝ of S̃ that vanishes
on an open set.

The condition λess(S) > λ0(S̃) forces a subsurface F with λ0(F ) close to λ0(S̃) to
stay almost completely in a large compact set in a weighted sense, the weight being
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the ground state. One then works essentially within a fixed compact subsurface of
S. Two main problems that we still have to overcome in establishing the existence
of ϕ̃ as above are

1) a priori non-existence of a fixed quotient of S̃ along a sequence of subsurfaces
approximating λ0(S̃) and

2) the absence of the compact Sobolev embedding H1 ↪→ L2 on these covering
spaces.

As for the first problem, the case of cross caps can be reduced to the case of
annuli by considering the two-sheeted orientation covering of the original surface.
The case of annuli is tackled by showing that only finitely many isotopy types of
annuli have the bottom of their spectrum close to λ0(S̃). A keystone of the argument
is Lemma 5.3 which relates the bottom of the spectrum of compact surfaces F with
the sum of the lengths of shortest curves in the free homotopy classes of the boundary
circles of F .

To tackle the second problem, we establish, in Lemma 6.4, an inradius estimate
for superlevel sets of suitably truncated ground states of a sequence of subsurfaces
Fn approximating λ0(S̃). The inradius estimate is proved by means of isoperimetric
inequalities, extending arguments from the proof of the Cheeger inequality.

1.3 Structure of the article. In Sect. 2, we collect the relevant facts about
isoperimetric inequalities on Riemannian surfaces. In Sect. 3, we extend Osserman’s
refined version of the Cheeger inequality [Oss77, Lemma 1] for plane domains to
compact Riemannian surfaces with boundary. We also recall Osserman’s elegant
proof since we will need consequences and extensions of his arguments. The isoperi-
metric inequalities from Corollary 2.2 and the Cheeger inequality are then used in
Sect. 4 to obtain a generalized version of Theorem 1.6. The arguments here are very
much in the spirit of Osserman [Oss77] and Croke [Cro81]. As an application of our
discussion, we obtain Theorem 1.2 for the case where S is a torus or a Klein bottle.
This section closes with the proof of Theorem 1.8, which involves methods which are
different from those of the rest of the article. Sections 5 and 6 are concerned with
properties of the ground states of compact Riemannian surfaces with boundary.
The main objectives are Lemma 5.3 on the relation of the bottom of the spectrum
to other geometric quantities and Lemma 6.4 on the inradius of superlevel sets of
ground states. In Sect. 7, we complete the proof of Theorem 1.2. Section 8 contains
the proof of Proposition 1.5 and some remarks and questions. In particular, we draw
attention to problems in optimal design which are related to optimal estimates of
the analytic systol. In “Appendix A”, we discuss an extension of the result of Brooks
quoted in connection with (1.3).

2 Isoperimetric Inequalities

The content of the present section is related to and extends Lemma 1 of [Oss77] in
the way we will need it.
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Let F be a compact and connected surface with piecewise smooth boundary
∂F �= ∅ and interior F̊ = F \ ∂F . The components of ∂F are piecewise smooth
circles. Denote by χ = χ(F ) the Euler characteristic of F.

Assume that F is endowed with a Riemannian metric and denote by K the Gauss
curvature of F . Let |F | and |∂F | be the area of F and the length of ∂F , respectively,
and

ρ = ρF = max{d(x, ∂F ) | x ∈ F} (2.1)

be the inradius of F .
For a function f : F → R, write f+ = max(f, 0) for its positive part. We recall

the following isoperimetric inequalities.

Theorem 2.1. For any F as above and κ ∈ R, we have

|∂F |2 ≥ −κ|F |2 + 2
(

2πχ −
∫

F
(K − κ)+dx

)
|F |. (1)

If κ ≤ 0, then

|∂F | ≥ |F | ctκ ρ +
(

2πχ −
∫

F
(K − κ)+dx

)
tnκ

ρ

2
. (2)

If F is not a disc and κ < 0, then

(|∂F |2 − �2)1/2 ≥ √−κ|F | +
1√−κ

(
2πχ −

∫
F
(K − κ)+dx

)
, (3)

where � denotes the sum of the lengths of the shortest loops in the free homotopy
classes (in F ) of the boundary circles of F .

In the second inequality, tnκ = snκ / csκ and ctκ = csκ / snκ, where snκ and
csκ are the solutions of the differential equation ü + κu = 0 with respective initial
conditions

snκ(0) = 0, sn′
κ(0) = 1 and csκ(0) = 1, cs′

κ(0) = 0.

The first inequality of Theorem 2.1 corresponds to [BZ88, Theorem 2.2.1], the third
to the (outer) inequality in (20) of [BZ88, p. 15]. We added “in F” in parentheses
in the statement since we will use Theorem 2.1 in the case where F is a domain in
a surface S. Then the length of a shortest loop in the free homotopy class in S of
a boundary circle c of F might be smaller than the length of a shortest loop in the
free homotopy class of c in F .

Proof of Theorem 2.1 (2). We apply [BZ88, Theorem 2.4.2] in the case t = ρ. The
function f = f(t) of [BZ88] measures the area of the collar of width t about ∂F and,
therefore, we have f(ρ) = |F | by the definition of ρ. The function a = a(t) of [BZ88]
satisfies

a(ρ) = κ|F | − 2πχ +
∫

F
(K − κ)+dx.
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In our notation, the function ψ of [BZ88] is given by

ψ(t) = a(t)
1 − csκ t

κ
+ |∂F | snκ t,

where we set (1 − csκ t)/κ = t2/2 for κ = 0. Now Theorem 2.4.2 of [BZ88], in the
case κ ≤ 0 and t = ρ, asserts that f(ρ) ≤ ψ(ρ), that is, that

|F | ≤ |F |(1 − csκ ρ) −
(

2πχ −
∫

F
(K − κ)+dx

)
1 − csκ ρ

κ
+ |∂F | snκ ρ.

Therefore we get

|∂F | snκ ρ ≥ |F | csκ ρ +
(

2πχ −
∫

F
(K − κ)+dx

)
1 − csκ ρ

κ
.

This implies (2) since (1 − csκ t)/κ snκ t = tnκ(t/2). �
Corollary 2.2. If K ≤ κ, then we have:

1) If F is a disc, then |∂F |2 ≥ −κ|F |2 + 4π|F |.
2) If χ ≥ 0 and κ ≤ 0, then |∂F | ≥ |F | ctκ ρ.
3) If χ = 0 and κ ≤ 0, then |∂F |2 ≥ −κ|F |2 + �2.

Note that we always have |∂F |2 ≥ �2, by the definition of �.

3 Cheeger Inequality Revisited

In Lemma 2 of [Oss77], Osserman discusses a refinement of the Cheeger inequality
for compact planar domains, endowed with Riemannian metrics. We will need an
extension of Osserman’s Lemma 2.

As above, we let F be a compact and connected Riemannian surface F with
piecewise smooth boundary ∂F �= ∅. The Cheeger constant of F is defined to be the
number

h = h(F ) = inf |∂F ′|/|F ′|,
where the infimum is taken over all compact subsurfaces F ′ of F̊ with smooth bound-
ary. Note that closed surfaces cannot occur as subsurfaces F ′ of F since F is con-
nected with non-empty boundary.

Lemma 3.1. The Cheeger constant is given by

h = inf |∂F ′|/|F ′|,
where the infimum is taken over all compact and connected subsurfaces F ′ of F̊ with
smooth boundary such that the boundary of each component of F \ F ′ has at least
one boundary circle in F̊ and contains at least one boundary circle of F .
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Proof. Let F ′ be a compact subsurface of F̊ with smooth boundary and denote by
F ′

1, . . . , F
′
k the components of F ′. Then

|F ′| = |F ′
1| + · · · + |F ′

k| and |∂F ′| = |∂F ′
1| + · · · + |∂F ′

k|
and hence

inf
|∂F ′

i |
|F ′

i |
≤ |∂F ′

1| + · · · + |∂F ′
k|

|F ′
1| + · · · + |F ′

k|
=

|∂F ′|
|F ′| .

This shows that the infimum h can be taken over compact and connected subsurfaces
F ′ of F̊ with smooth boundary.

Let now C be a component of F \ F ′. Suppose first that the boundary of C does
not contain a boundary circle of F . Then F ′′ = F ′ ∪ C is a compact and connected
subsurface of F̊ with area |F ′′| > |F ′| and length of boundary |∂F ′′| < |∂F ′|. It
follows that the infimum h is attained by compact and connected subsurfaces F ′

of F̊ with smooth boundary such that the boundary of each component of F \ F ′

contains a boundary circle of F .
If the boundary of C would not have a boundary circle in F̊ , then C would have to

coincide with F since F is connected. But then F ′ would be empty, a contradiction.
�

By a slight variation of the standard terminology, we say that a subsurface S
of a surface T is incompressible in T if the induced maps of fundamental groups
are injective, for all connected component C of S. In particular, embedded discs are
always incompressible.

Proposition 3.2. The Cheeger constant is given by

h = inf |∂F ′|/|F ′|,
where the infimum is taken over all incompressible compact and connected subsur-
faces F ′ of F̊ with smooth boundary such that no component of F \F ′ is a disc or a
cross cap. Any such F ′ satisfies χ(F ′) ≥ χ(F ) with equality if and only if F \F ′ is a
collared neighborhood of ∂F , consisting of annuli about the boundary circles of F .

For example, if F is an annulus, then we only need to consider discs and incom-
pressible annuli F ′ in F ; if F is a cross cap, then only discs and incompressible
annuli and cross caps F ′.

Proof of Proposition 3.2. By Lemma 3.1, the Cheeger constant h is realized by com-
pact and connected subsurfaces F ′ of F̊ with smooth boundary such that each com-
ponent of F \ F ′ has at least two boundary circles. This excludes discs and cross
caps as components of F \ F ′. We have

χ(F ) = χ(F ′) + χ(F \ F̊ ′) ≤ χ(F ′)

since the intersection of F ′ with F \ F̊ ′ consists of circles and since no component
of F \ F̊ ′ is a disc. Furthermore, equality can only occur if χ(F \ F̊ ′) = 0. By what
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we already know, this can only happen if the components of F \ F̊ ′ are annuli. By
Lemma 3.1 and since F ′ ⊆ F̊ , they constitute a collared neighborhood of ∂F .

It remains to show the incompressibility of F ′. If this would not hold, F ′ would
contain a Jordan loop c which is not contractible in F ′, but is contractible in F̊ .
Then c would be the boundary of an embedded disc D in F̊ which is not contained
in F ′. Since ∂D ⊆ F ′, D \F ′ would consist of components of F \F ′. Their boundary
would be in D ⊆ F̊ in contradiction to Lemma 3.1. �

Recall the classical Cheeger inequality.

Theorem 3.3 (Cheeger inequality). We have λ0(F ) ≥ h2/4.

In the proofs of Lemmas 5.3 and 6.4, we will need arguments and consequences
of the proof of Theorem 3.3 and, therefore, recall the elegant arguments from the
proof of the corresponding Lemma 2 in [Oss77].

Recalling the proof of the Cheeger inequality. Since F is compact with piecewise
smooth boundary, λ0 = λ0(F ) is the first Dirichlet eigenvalue of F . Let ϕ be the
corresponding ground state and set ψ = ϕ2. By the Schwarz inequality, we have∫

F
|∇ψ| =

∫
F

2|ϕ||∇ϕ| ≤ 2
(∫

F
|∇ϕ|2

)1/2 (∫
F

ϕ2

)1/2

= 2
√

λ0

∫
F

ϕ2 = 2
√

λ0

∫
F

ψ.

(3.1)

This implies √
λ0 ≥ 1

2

∫
F |∇ψ|∫

F ψ
. (3.2)

For regular values t > 0 of ψ, let Ft = {ψ ≥ t} and denote by A(t) and L(t) the area
and the length of Ft and ∂Ft = {ψ = t}, respectively. For the null set of singular
values of ψ, set A(t) = L(t) = 0. The coarea formula gives∫

F
|∇ψ| =

∫ ∞

0
L(t)dt. (3.3)

On the other hand, since
∫
F ψ computes the volume of the domain

{(x, y) ∈ F × R | 0 ≤ y ≤ ψ(x)},

Cavalieri’s principle gives ∫
F

ψ =
∫ ∞

0
A(t)dt. (3.4)

By the definition of h = h(F ), we have∫
F

|∇ψ| =
∫ ∞

0
L(t)dt ≥ h

∫ ∞

0
A(t)dt = h

∫
F

ψ. (3.5)

Combining (3.2) and (3.5), we get λ0 ≥ h2/4 as asserted. �
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4 Quantitative Estimates of Λ(S)

We start with a version of Theorem 1.6 for surfaces with (possibly empty) boundary.

Theorem 4.1. Let S be a compact and connected Riemannian surface, with or
without boundary, with infinite fundamental group and curvature K ≤ κ, where κ
is a constant. Then we have:

1) If κ ≤ 0, then

Λ(S) ≥ −κ

4
+

1
|S| min

{
π,

sys(S)2

|S|
}

.

2) If κ > 0 and S is orientable, then

Λ(S) ≥ min
{

π

|S| − κ

4
,
sys(S)2

|S|2
}

.

3) If κ > 0 and S is non-orientable, then

Λ(S) ≥ min
{

π

|S| − κ

4
,
sys(S)2

4|S|2
}

.

Proof. For a closed disc D in S, Corollary 2.3.1 implies that

|∂D|2
|D|2 ≥ −κ +

4π

|D| ≥ −κ +
4

|S|π. (4.1)

Suppose now that A is a closed annulus in S. Suppose first that the boundary circles
of A are null-homotopic in S. Then by the Schoenflies theorem (see also [BMM16,
Appendix A]) there is a disc D in S \ Å such that F ′ = A ∪ D is a disc. Then
|∂F ′| ≤ |∂A| and |F ′| ≥ |A|. Using Corollary 2.3.1 again, we get that (4.1) also
holds for A in place of D.

Assume now that the boundary circles of A are not null-homotopic in S. By
Corollary 2.3.3 and the statement after it, we have

|∂A|2 ≥ − min(κ, 0)|A|2 + 4l(A)2,

where l(A) denotes the length of a shortest curve in the free homotopy class in A of
the two boundary circles of A. Since the boundary circles of A are not homotopic to
zero in S, we have l(A) ≥ sys(S). Hence

|∂A|2
|A|2 ≥ − min(κ, 0) + 4

sys(S)2

|A|2 ≥ − min(κ, 0) +
4

|S|
sys(S)2

|S| . (4.2)

If C is a cross cap in S, then S is not orientable. Now the soul of C is not homotopic
to zero in S and the fundamental group of S is torsion free. Since the boundary
circle ∂C of C is freely homotopic to the soul of C, run twice, we get that ∂C is
not homotopic to zero in S. In particular, we always have |∂C| ≥ sys(S). If κ ≤ 0,
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then a shortest curve in S in the free homotopy class of the soul of C, run twice, is
a shortest curve in S in the free homotopy class of the boundary circle of C. Hence
|∂C| ≥ 2 sys(S) if κ ≤ 0. We conclude that (4.2) also holds for C in place of A if
κ ≤ 0. In the general case, |∂C| ≥ sys(S) implies a modified version of (4.2) with C
in place of A, where the factor 4 on the right hand side is replaced by 1.

Now the assertions of Theorem 4.1 follows from the Cheeger inequality (Theo-
rem 3.3) in combination with Proposition 3.2, (4.1), and (4.2) or the modified version
of (4.2), respectively. �
Proof of Theorem 1.6. It remains to show that sys(S)2/|S| ≤ π if S is closed with
curvature K ≤ 0. In fact, in that case, the injectivity radius of S is sys(S)/2. Then
the exponential map expp at any point p ∈ S is a diffeomorphism from the disc of
radius sys(S)/2 in TpS to its image, the metric ball B = B(p, sys(S)/2) about p in
S. By comparison with the flat case, we get |B| ≥ π sys(S)2/4 and therefore

sys(S)2/|S| < sys(S)2/|B| ≤ 4/π. �
Remarks 4.2. 1) If S is a compact and connected surface with non-empty

boundary, then S contains a finite graph G in its interior which is a defor-
mation retract of S. Given a Riemannian metric on S, a sufficiently small
tubular neighborhood T of G in S is a Riemannian surface diffeomorphic to
S with sys(T ) ≥ sys(S) and with arbitrarily small area. Moreover, any upper
bound on the curvature persists. In other words, we cannot expect to remove
the minimum on the right hand side of the estimates in Theorem 4.1.
Note also that the right hand side of the inequalities in 2) and 3) of The-
orem 4.1 is positive if and only if |S| < 4π/κ, that is, if and only if |S| is
smaller than the area of the sphere of constant curvature κ > 0.

2) In [Gro83, Corollary 5.2.B], Gromov shows that sys(S)2/|S|2 ≤ 4/3 for any
closed Riemannian surface. The point is, of course, that his estimate is cur-
vature free. His work in [Gro83] also implies that

sys(Sg)2/|Sg|2 ≤ Cg(ln g)2/g

with lim supCg ≤ 1/π as g → ∞; see Sect. 11.3 in [Kat07].

Proof of Theorem 1.2 in the case χ(S) ≥ 0. In view of Proposition 1.5, it remains
to show that Λ(S) > λ0(S̃) in the case where S is a torus or a Klein bottle. Then
S admits a flat background metric h which is conformal to the given metric g of S.
Theorem 1.6 applies to h and shows that

Λ(S, h) ≥ sys(S, h)2/|(S, h)|2, (4.3)

where (S, h) denotes S, endowed with the metric h. Furthermore, since we are in
the case of surfaces, the Dirichlet integral of smooth functions is invariant under
conformal changes; that is, we have
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|∇ϕ|2 da =

∫
|∇ϕ|2h dah. (4.4)

Since S is compact, there is a constant α ≥ 1 such that

α−1|v| ≤ |v|h ≤ α|v|
for all tangent vectors v of S. Using (4.3) and (4.4), we obtain

Λ(S) ≥ α−2Λ(S, h) ≥ α−8 sys(S)2/|S|2 > 0.

On the other hand, the fundamental group of S is amenable and hence λ0(S̃) = λ0(S)
by [Bro85, Theorem 1]. Now S is a torus or a Klein bottle, hence λ0(S̃) = 0. �
Proof of Theorem 1.8. Suppose first that S is orientable, that is, that S = Sg for
some g ≥ 2, and let c be a systolic geodesic on S. Then by [Bus10, Theorem 4.3.2],
the tubular neighborhood T of c of width

w2 = arsinh(1/ sinh(sys(S)/2)))

is an open annulus. Since c is essential, T is incompressible. Note also that T can be
exhausted by incompressible compact annuli with smooth boundary. In particular,
for any r < w2, the closed metric ball B̄(p, r) of radius r about a point p on c is
contained in an incompressible compact annulus Ar ⊆ T with smooth boundary.
Since B(p, r) ⊆ Ar, we may use Theorem 1.1 and the first displayed formula on page
294 of [Che75] to conclude that

λ0(Ar) ≤ λ0(B̄(p, r)) ≤ −κ

4
+

4π2

r2
.

By the definition of Λ(S), we have Λ(S) ≤ λ0(Ar) for any r as above. Hence the
claim of Theorem 1.8 follows in the case S = Sg.

Suppose now that S is not orientable. Let Or(S) → S be the orientation covering
of S and c be a systolic geodesic on S. There are two cases:

1) If c is one-sided, then the lift c̃ of c to Or(S) is simple of length 2L and is
invariant under the non-trivial covering transformation f of Or(S). Again by
[Bus10, Theorem 4.3.2], the tubular neighborhood T of c̃ of width

w1 = arsinh(1/ sinh(sys(S)))

is an open annulus. Since f leaves c̃ invariant, it also leaves T invariant and
T/f is an open cross cap with soul c and width w1 about c. Hence for any
r < w1, the closed metric ball B̄(p, r) of radius r about a point p on c is
contained in a compact cross cap Cr ⊆ T/f with smooth boundary.

2) If c is two-sided, then c has two lifts c1 and c2 to Or(S) and both are simple of
length L. Moreover, by [Bus10, Theorem 4.3.2], the tubular neighborhoods
T1 of c1 and T2 of c2 of width w2 are open annuli and do not intersect.
Now f permutes c1 and c2, therefore also T1 and T2, and hence the tubular
neighborhood T of c of width w2 is an open annulus.
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In both cases, 1) and 2), we can now conclude the proof of the claim of Theo-
rem 1.8 as in the case S = Sg. �
Remark 4.3. The arguments in the proof of Theorem 1.8 also show that diamS ≥ w
with w = w2 and w = w1, respectively. Hence we get

λ−χ(S) ≤ −κ

4
+ χ(S)2

16π2

w2

from Corollary 2.3 of [Che75]. In view of Λ(S) < λ−χ(S), this gives another, but
weaker upper bound for Λ(S).

5 On the Ground State

Throughout this section, we let F be a compact Riemannian surface with smooth
boundary ∂F �= ∅ and ϕ be the ground state of F . We also set ψ = ϕ2 and let
Ft = {ψ ≥ t}. Note that

∫
ψ = 1.

By the Hopf boundary lemma [GT83, Lemma 3.4], ϕ does not have critical points
on ∂F . Moreover, since ϕ > 0 in the interior F̊ of F , a point in F̊ is critical for ψ if
and only if it is critical for ϕ. All points of ∂F are critical for ψ.

In our first result, we elaborate on the argument from the middle of page 549 in
[Oss77].

Lemma 5.1. Let 0 < t < max ψ be a regular value of ψ. Then Ft is a compact
subsurface of F̊ such that the boundary of each component of F \ Ft has at least
one boundary circle in F̊ and contains at least one boundary circle of F .

Proof. Since t is a regular value of ψ with 0 < t < max ψ, Ft is a compact subsurface
of F̊ with smooth boundary. If the boundary of a component C of F \ Ft would not
contain a boundary circle of F , then ϕ would be a non-constant superharmonic
function on C which attains its maximum

√
t along ∂Ft, a contradiction. Clearly,

the boundary of C must have at least one boundary circle in ∂Ft ⊆ F̊ . �
Proposition 5.2. Let 0 < t < max ψ be a regular value of ψ. Then any connected
component C of Ft is incompressible in F and no component of F \ C is a disc or a
cross cap. Furthermore, χ(C) ≥ χ(F ) with equality if and only if F \ C is a collared
neighborhood of ∂F , consisting of annuli about the boundary circles of F .

Proof. Suppose that a component D of F \ C would be a disc or a cross cap. Then
D \ Ft would consist of components of F \ Ft with boundary in F̊ , a contradiction
to Lemma 5.1. Substituting C for F ′, the rest of the proof of Proposition 5.2 is now
more or less the same as that of Proposition 3.2. �

As in Theorem 2.1, we denote by � the sum of the lengths of the shortest loops
in the free homotopy classes (in F ) of the boundary circles of F . Furthermore, we
let Λ′(F ) = inf λ0(F ′), where the infimum is taken over all incompressible compact
and connected subsurfaces F ′ of F̊ with smooth boundary and Euler characteristic
χ(F ′) > χ(F ).
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Lemma 5.3. If χ(F ) ≤ 0, then

λ0(F ) ≥ {
1 − δ + 2

(
1 − 1

δ

) |F |
�

√
λ0(F )

}
Λ′(F )

for all 0 < δ < 1/2.

Proof. Since the quantities involved in the lemma vary continuously with respect
to variations of the metric (in the C0-topology), we may assume, by Theorem 8
in [Uhl76], that ϕ is a Morse function. Then the critical points of ψ in F̊ are non-
degenerate. Moreover, since ϕ does not have critical points on ∂F , F \Ft is a collared
neighborhood of ∂F , consisting of annuli about the boundary circles of F , for all
sufficiently small t > 0. On the other hand, for t < max ψ suffciently close to max ψ,
Ft is a union of embedded discs, one for each maximum point of ψ. Hence the
topology of Ft undergoes changes as t increases from 0 to max ψ.

Since ϕ is a Morse function, ψ has only finitely many critical points in F̊ . By
Lemma 5.1, ψ does not have local minima in F̊ . Hence critical points of ψ in F̊ are
saddle points and local maxima.

Let 0 = β0 < · · · < βm = max ψ be the finite sequence of critical values of ψ and
choose ε > 0 with ε < min{βi+1 − βi}. In a first step, we select now a critical value
β = βi according to specific requirements.

By Proposition 5.2, each component C of Fβ1+ε has Euler characteristic χ(C) ≥
χ(F ). Therefore there are two cases. Either each component C of Fβ1+ε has Euler
characteristic χ(C) > χ(F ). Then we set β = β1. Or else there is a component C
with χ(C) = χ(F ). Then F \C is a collared neighborhood of ∂F , consisting of annuli
about the boundary circles of F , by Proposition 5.2. In that case, by Lemma 5.1,
the other components of Fβ1+ε are discs contained in these annuli.

We assume that we are in the second case and consider the second critical value
β2. By Proposition 5.2, there are again two cases. Either each component C of
Fβ2+ε has Euler characteristic χ(C) > χ(F ); then we set β = β2. Or else there is a
component C of Fβ2+ε with χ(C) = χ(F ). Then F \C is a collared neighborhood of
∂F consisting of annuli about the boundary circles of F . In the latter case, we pass
on to the next critical value β3. Since χ(F ) ≤ 0, we will eventually arrive at a first
critical value β = βi with the property that the complement of a component of Fβ−ε

is a collared neighborhood of ∂F consisting of annuli about the boundary circles of
F and such that each component C of Fβ+ε has Euler characteristic χ(C) > χ(F ).
Note that this property then holds for all sufficiently small ε > 0 since β is the only
critical value of ϕ in (βi−1, βi+1). It follows that for any regular value 0 < t < β of ψ,
Ft has a component C such that F \ C is a collared neighborhood of ∂F consisting
of annuli about the boundary circles of F . In particular, |∂Ft| ≥ � for all such t.
Using (3.2) and (3.3), we obtain

β� ≤
∫ ∞

0
L(t)dt ≤ 2

√
λ0(F ), (5.1)

where L(t) denotes the length of ∂Ft.
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For ε > 0 as above, the smooth function ϕε = ϕ − √
β + ε is smooth on Fβ+ε,

vanishes on ∂Fβ+ε and satisfies∫
Fβ+ε

ϕ2
ε =

∫
Fβ+ε

(
ϕ −

√
β + ε

)2

=
∫

Fβ+ε

ϕ2 − 2
√

β + ε

∫
Fβ+ε

ϕ + (β + ε)|Fβ+ε|.
(5.2)

Now the first term on the right hand side of (5.2) satisfies∫
Fβ+ε

ϕ2 ≥
∫

F
ϕ2 − (β + ε)(|F | − |Fβ+ε|) (5.3)

since ϕ2 ≤ β + ε on F \ Fβ+ε. For the second term on the right hand side of (5.2),
we have

2
√

β + ε

∫
Fβ+ε

ϕ ≤ 2
√

β + ε|Fβ+ε|1/2
( ∫

Fβ+ε

ϕ2
)1/2

≤ 1
δ
(β + ε)|Fβ+ε| + δ

∫
Fβ+ε

ϕ2

≤ 1
δ
(β + ε)|Fβ+ε| + δ

∫
F

ϕ2 (5.4)

by the Schwarz inequality and the Peter and Paul principle. Combining (5.2), (5.3),
and (5.4) and using that the L2-norm of ϕ is one and that 2 − 1/δ < 0, we obtain∫

Fβ+ε

ϕ2
ε ≥ (1 − δ)

∫
F

ϕ2 − (β + ε)|F | +
(
2 − 1

δ

)
(β + ε)|Fβ+ε|

≥ 1 − δ +
(
1 − 1

δ

)
(β + ε)|F |.

For the Rayleigh quotient of ϕε, we get

R(ϕε)(1 − δ +
(
1 − 1

δ

)
(β + ε)|F |) ≤ R(ϕε)

∫
Fβ+ε

ϕ2
ε

=
∫

Fβ+ε

|∇ϕε|2 =
∫

Fβ+ε

|∇ϕ|2 ≤
∫

F
|∇ϕ|2 = λ0(F ).

Since Fβ+ε is a disjoint union of incompressible compact and connected subsurfaces
F ′ with smooth boundary and χ(F ′) > χ(F ), we also have R(ϕε) ≥ inf Λ′(F ).
Letting ε tend to 0, we finally obtain

Λ′(F )(1 − δ +
(
1 − 1

δ

)
β|F |) ≤ λ0(F ). (5.5)

Combining (5.1) and (5.5), we arrive at Lemma 5.3. �
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6 On the Ground State (Continued)

Let S be a complete and connected Riemannian surface of finite type with χ(S) < 0
and λ0(S̃) < λess(S).

Since χ(S) < 0, S carries complete hyperbolic metrics. Using a decomposition of
S into a finite number of pairs of pants, it is clear that we may choose such a metric
h such that the connected components of a neighborhood of the ends of S is a finite
union of hyperbolic funnels, that is, cylinders of the form (−1, ∞)×R/Z with metric

dr2 + cosh(r)2dϑ2.

Then the curves r = 0 are closed h-geodesics of length 1. The original metric of S
will be denoted by g.

We fix a smooth and proper function from S to [0, ∞), which agrees outside a
compact set with the coordinates r in each of the ends. By abuse of notation, we
denote this function by r. Choose an increasing sequence 0 < r0 < r1 < r2 < · · · →
∞. Then the subsurfaces

Ki = {r ≤ ri} (6.1)

of S are compact with smooth boundary ∂Ki = {r = ri} such that S \ Ki is a
cylindrical neighbourhood of infinity. Furthermore,

K0 ⊆ K1 ⊆ K2 ⊆ . . . (6.2)

is an exhaustion of S. By choosing the sequence of ri suitably, we may assume that

a) there exist cutoff functions ηi : S → [0, 1] with ηi = 1 on Ki, ηi = 0 outside
Ki+1, and |∇ηi|2 ≤ 1/i,

b) λ0(S̃) < λ0(S \ K0),

where we note that λ0(S \ Ki) < λ0(S \ Ki+1) · · · → λess(S).
In the case where S is compact, we have Ki = S for all i and part of the following

discussion becomes trivial.
We now let F be a compact subsurface of S with smooth boundary ∂F �= ∅. As

in Sect. 5, we denote by ϕ the ground state of F and let Ft = {ϕ2 ≥ t}.

Lemma 6.1. For a subset R ⊆ (0, max ϕ2) of full measure, Ft is a smooth subsurface
of F̊ such that ∂Ft = {ϕ = t} and ∂Ki intersect transversally for all i.

Proof. Since ϕ is smooth up to the boundary of F and has no critical points on ∂F ,
there is a smooth extension ϕ̃ of ϕ to S such that ϕ̃ is strictly negative on S \F . The
restriction ϕ̃0 of ϕ̃ to the union of the curves {r = ri} is then smooth, and hence
there is a set R0 ⊆ R of full measure such that any t ∈ R0 is a regular value of ϕ̃0.
Note that ∇ϕ̃ is not perpendicular to the curve {r = ri} at points p ∈ {r = ri} with
ϕ̃(p) ∈ R0. On the other hand, ∇ϕ̃ is perpendicular to ∂Ft for any regular value t of
ϕ2 in (0, max ϕ2). Therefore the intersection R of R0 with the set of regular values
of ϕ2 in (0, max ϕ2) satisfies the required assertions. �
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Lemma 6.2. For any t ∈ R, the intersection Ft ∩Ki is a subsurface of F with piece-
wise smooth boundary and any connected component C of Ft ∩Ki is incompressible
in F . In particular, we have χ(C) ≥ χ(F ).

Proof. For any t ∈ R, ∂Ft = {ϕ = t} and ∂Ki intersect transversally for all i, and
then Ft ∩ Ki is a subsurface of F with piecewise smooth boundary. Since S \ Ki is
a cylindrical neighborhood of the ends of S, a disc in S has to be contained in Ki

if its boundary is in Ki. Hence the components of Ft ∩ Ki are incompressible in Ft.
By Proposition 5.2, Ft is incompressible in F . Therefore Ft ∩ Ki is incompressible
in F . �
Lemma 6.3. Assume that λ0(F ) ≤ θλ0(S \ K0) for some 0 < θ < 1, and let ε > 0.
Then there is an integer i0 = i0(θ, ε) ≥ 0 such that∫

F∩Ki

ϕ2 ≥ 1 − ε for all i ≥ i0.

Proof. Since (1 − ηi)ϕ has support in F \ Ki ⊆ S \ K0, we have

λ0(S \ K0)
∫

F
(1 − ηi)2ϕ2 ≤

∫
F

|∇((1 − ηi)ϕ)|2

=
∫

F
∇((1 − ηi)2ϕ) · ∇ϕ +

∫
F

ϕ2|∇(1 − ηi)|2

=
∫

F
((1 − ηi)2ϕ) · Δϕ +

∫
F

ϕ2|∇(1 − ηi)|2

≤ λ0(F )
∫

F
(1 − ηi)2ϕ2 +

1
i

∫
F

ϕ2

≤ θλ0(S \ K0)
∫

F
(1 − ηi)2ϕ2 +

1
i
.

Since 0 < θ < 1, we conclude that∫
F
(1 − ηi)2ϕ2 ≤ 1

(1 − θ)λ0(S \ K0)i
.

Now for i0 sufficiently large, the right hand side is smaller than ε for all i ≥ i0 − 1.
For any i ≥ i0, we then have∫

F∩Ki

ϕ2 = 1 −
∫

F\Ki

ϕ2

= 1 −
∫

F\Ki

(1 − ηi−1)2ϕ2

≥ 1 −
∫

F
(1 − ηi−1)2ϕ2

≥ 1 − ε. �
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There is a sequence of constants 1 ≤ α0 ≤ α1 ≤ · · · such that

α−1
i |v| ≤ |v|h ≤ αi|v| (6.3)

for all tangent vectors v of S with foot point in Ki, where no index and index
h indicate measurement with respect to g and h, respectively. Over Ki, the area
elements da of g and dah of h are then estimated by

α−2
i da ≤ dah ≤ α2

i da (6.4)

with corresponding inequalities for the areas of measurable subsets and for integrals
of non-negative measurable functions.

Let now again ϕ be the ground state of F , t ∈ R, and Ft = {ϕ2 ≥ t}. In our
next result, we estimate the inradius of Ft ∩ Ki for sufficiently large i.

Lemma 6.4. Let F be a disc, an annulus, or a cross cap. Assume that λ0(F ) ≤
θλ0(S \ K0) for some 0 < θ < 1 and let δ > 0. Then there is an integer i1 =
i1(θ, δ) ≥ 0 such that the inradius ρ(t) of Ft ∩ Ki satifies

coth(αi+1ρ(t)) ≤ 2α3
i+1

√
λ0(F ) + δ

1 − δ − t|F ∩ Ki|

for all 0 ≤ t < (1 − δ)/|F ∩ Ki| and i ≥ i1.

Proof. In a first step, we estimate the Rayleigh quotient of ηiϕ. Computing as in
the proof of Lemma 6.3, we have∫

F
|∇(ηiϕ)|2 =

∫
F

∇(η2
i ϕ)∇ϕ +

∫
F

|∇ηi|2ϕ2

=
∫

F
η2

i ϕΔϕ +
∫

F
|∇ηi|2ϕ2

≤ λ0(F )
∫

F
η2

i ϕ
2 + 1/i.

Since ηi = 1 on Ki, we get R(ηiϕ) ≤ λ0(F ) + 2/i for all i ≥ i0(θ, 1/2), where i0 is
taken from Lemma 6.3. Therefore

R(ηiϕ) ≤ λ0(F ) + δ for all i ≥ i1(θ, δ), (6.5)

where we may assume that i1(θ, δ) ≥ i0(θ, δ). In a second step, we follow the proof
of Cheeger’s inequality, Theorem 3.3. Computing as in (3.1), we get∫

F
|∇(η2

i ϕ
2)| ≤ 2

√
R(ηiϕ)

∫
F

η2
i ϕ

2 ≤ 2
√

R(ηiϕ).
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By the coarea formula and (6.3) and since supp ηi ⊆ Ki+1 and ηi = 1 on Ki, we
have

αi+1

∫
F

|∇(η2
i ϕ

2)| = αi+1

∫ ∞

0
|{η2

i ϕ
2 = s}| ds

≥
∫ ∞

t
|{η2

i ϕ
2 = s}|h ds

=
∫ ∞

t
|{ϕ2 = s} ∩ Ki|h ds

+
∫ ∞

t
|{η2

i ϕ
2 = s} ∩ (F \ Ki)|h ds. (6.6)

Here we note that, for the integration, it suffices to consider s ∈ R which are also
regular for η2

i ϕ
2. Then {ϕ2 = s} meets ∂Ki transversally and, therefore, {η2

i ϕ
2 =

s}∩ (F \Ki) consists of arcs aj connecting their corresponding end points on {ϕ2 =
s} ∩ ∂Ki. Replacing the aj by the corresponding segments bj on ∂Ki, we obtain the
boundary of the subsurface Fs∩Ki. Now |bj |h ≤ |aj |h by the choice of the hyperbolic
metric h on S and since the numbers ri defining the Ki are positive. Hence we have

|{ϕ2 = s} ∩ Ki|h + |{η2
i ϕ

2 = s} ∩ (F \ Ki)|h
= |{ϕ2 = s} ∩ Ki|h +

∑
|aj |h

≥ |{ϕ2 = s} ∩ Ki|h +
∑

|bj |h
= |∂({ϕ2 ≥ s} ∩ Ki)|h, (6.7)

for any s ∈ R. This implies∫ ∞

t
|{ϕ2 = s} ∩ Ki|h ds +

∫ ∞

t
|{η2

i ϕ
2 = s} ∩ (F \ Ki)|h ds

≥
∫ ∞

t
|∂({ϕ2 ≥ s} ∩ Ki)|h ds. (6.8)

Furthermore, by Lemma 6.2, the connected components of Fs ∩ Ki are subsurfaces
of F with piecewise smooth boundary and have non-negative Euler characteristic
for any s ∈ R. Therefore we get∫ ∞

t
|∂({ϕ2 ≥ s} ∩ Ki)|h ds

≥
∫ ∞

t
|{ϕ2 ≥ s} ∩ Ki|h coth(ρh(s)) ds

≥ coth(ρh(t))
∫ ∞

t
|{ϕ2 ≥ s} ∩ Ki|h ds

≥ α−2
i coth(αiρ(t))

∫ ∞

t
|{ϕ2 ≥ s} ∩ Ki| ds, (6.9)
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by Corollary 2.3.2, (6.3), and (6.4). Finally, since i1(θ, δ) ≥ i0(θ, δ),∫ ∞

t
|{ϕ2 ≥ s} ∩ Ki| ds ≥

∫ ∞

0
|{ϕ2 ≥ s} ∩ Ki| ds − t|F ∩ Ki|

=
∫

F∩Ki

ϕ2 − t|F ∩ Ki| ≥ 1 − δ − t|F ∩ Ki|. (6.10)

Lemma 6.4 follows now from combining (6.5) – (6.10). �

Lemmas 5.3 and 6.4 will lead to the apriori estimates in Lemma 7.1 and in the
proof of Lemma 7.4, which are essential in the proof of Theorem 1.1.

7 Qualititative Estimates of Λ(S)

In this section, we prove Theorem 1.2 in the case χ(S) < 0. Throughout, we let S
be a complete and connected Riemannian surface of finite type and set

ΛD(S) = inf
D

λ0(D), ΛA(S) = inf
D

λ0(A), ΛC(S) = inf
D

λ0(C), (7.1)

where the infimum is taken over all embedded closed discs D, incompressible annuli
A, and cross caps C in S̊ with smooth boundary, respectively. As we will explain in
Sect. 8.1, we have

ΛD(S) ≥ ΛA(S) and Λ(S) = inf{ΛA(S), ΛC(S)}

if the fundamental group of S is infinite. Nevertheless, since the case of discs reveals
an essential idea of the proof and since we will need the estimate anyway, we include
the discussion of ΛD(S).

We fix a hyperbolic metric h on S as in Sect. 6 and denote by g the original
Riemannian metric of S. If not otherwise mentioned, statements refer to g and not
to h.

We will use the setup and notation from the previous section. The following
assertion is an immediate consequence of Lemma 6.4.

Lemma 7.1. Let F be a closed disc, annulus, or cross cap in S and ϕ be the ground
state of F . Assume that λ0(F ) ≤ θλ0(S \ K0) for some 0 < θ < 1. Then the
inradius ρ(ε) of {ϕ2 ≥ ε} ∩ Ki satisfies ρ(ε) ≥ ρ > 0 for all 0 < ε < 1/4|Ki1 | and
i ≥ i1 = i1(θ, 1/2).

We now discuss the cases of discs and annuli separately.

Theorem 7.2. If S is a complete and connected Riemannian surface of finite type
with χ(S) < 0 and λess(S) > λ0(S̃), then ΛD(S) > λ0(S̃).
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Proof. Suppose that there is a sequence of discs Dn in S with smooth boundary
such that λ0(Dn) → λ0(S̃). Let ϕn : Dn → R be the positive λ0(Dn)-Dirichlet
eigenfunction with ||ϕn||2 = 1. By passing to a subsequence if necessary, we may
assume that λ0(Dn) ≤ θλ0(S \ K0) for some 0 < θ < 1. By Lemma 7.1 and up to
passing to a subsequence, there are positive constants ε0 and ρ0 and a point x0 ∈ S
such that B(x0, 2ρ0) is contained in {ϕ2

n ≥ ε0} ∩ K for all n, where K = Ki1(θ,1/2).
Fix a point x̃0 ∈ S̃ above x0. Then there is a unique lift D̃n of Dn to S̃ containing

x̃0 such that D̃n → Dn is a diffeomorphism (including the boundary). Thus we may
also lift ϕn to ϕ̃n on D̃n and extend ϕ̃n to a function ϕ̃n on S̃n by setting ϕ̃n = 0
on S̃ \ D̃n. Since the boundary of D̃n is smooth and ϕ̃n is smooth on D̃n, it follows
that ϕ̃n ∈ H1

0 (S̃) with H1-norm

||ϕ̃n||H1 = ||ϕn||2H1 = λ0(Dn) + 1,

where we use Green’s formula for the second equality. In particular, up to extracting
a subsequence, we have weak convergence

ϕ̃n ⇀ ϕ̃ ∈ H1
0 (S̃) with ||ϕ̃||H1 ≤ lim inf ||ϕn||H1 .

Up to extracting a further subsequence, the sequence of ϕ̃n converges uniformly in
any Ck-norm in B(x̃0, ρ0), by Theorem 8.10 in [GT83]. In particular ϕ̃2 ≥ ε0 on
B(x̃0, ρ0).

By Theorem 1 of [AFLR07], we may approximate the distance function d0 to x̃0

in S̃ by a smooth function u on S̃ such that |u − d0| ≤ 1 and |∇u| ≤ 2. Then the
sublevels B(r) = {u ≤ r} form an exhaustion of S̃ by compact subsets. Clearly,

R(ϕ̃) = lim
r→∞ R(ϕ̃|B(r)).

Furthermore, up to passing to a subsequence, we have weak convergence

ϕ̃n|B(r) ⇀ ϕ̃|B(r) in H1(B(r))

and strong convergence

ϕ̃n|B(r) → ϕ̃|B(r) in L2(B(r)).

Hence

R(ϕ̃|B(r)) ≤ lim inf R(ϕ̃n|B(r)).

For any regular value r of u such that ∂B(r) intersects ∂D̃n transversally we have∫
B(r)

|∇ϕ̃n|2 = λ0(Dn)
∫

B(r)
|ϕ̃n|2 +

∫
∂B(r)

ϕ̃n〈∇ϕ̃n, ν〉,

where ν = ∇u/|∇u| is the outward unit vector field along ∂B(r). Clearly, the second
term on the right satisfies∫

∂B(r)
ϕ̃n〈∇ϕ̃n, ν〉 ≤

∫
∂B(r)

(|ϕ̃n|2 + |∇ϕ̃n|2).
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Let now ε > 0 be given. Then there is a sequence of integers km → ∞ such that, for
each m, there is a subsequence of n → ∞ with∫

K(km)
(|ϕ̃n|2 + |∇ϕ̃n|2) < ε, (7.2)

where K(r) = B(r) \ B(r − 1). If this would not be the case, there would be some
ε > 0 and a positive integer m such that for all integers k ≥ m there is an integer l
such that, for all integers n ≥ l,∫

K(k)
(|ϕ̃n|2 + |∇ϕ̃n|2) ≥ ε. (7.3)

We thus find, for any fixed M , an index N such that (7.3) holds for k = m, . . . , m+M
and n ≥ N. If we choose M such that Mε > λ0(S̃) + 1, we get a contradiction.

By the coarea formula, we have∫
K(km)

(|ϕ̃n|2 + |∇ϕ̃n|2)|∇u| =
∫ km

km−1

∫
∂B(r)

(|ϕ̃n|2 + |∇ϕ̃n|2).

Since |∇u| ≤ 2, we then get, for n as in (7.2), that there is a regular value rn ∈
(km − 1, km) of u such that∫

∂B(rn)
(|ϕ̃n|2 + |∇ϕ̃n|2) < 2ε,

where we may also assume that ∂B(rn) intersects ∂D̃n transversally. We obtain

R(ϕ̃n|B(km)) ≤
∫
B(rn) |∇ϕ̃n|2∫
B(km) |ϕ̃n|2 +

∫
K(km) |∇ϕ̃n|2∫
B(km) |ϕ̃n|2

≤
∫
B(rn) |∇ϕ̃n|2∫
B(rn) |ϕ̃n|2 +

ε∫
B(km) |ϕ̃n|2

≤ λ0(Dn) +

∫
∂B(rn) ϕ̃n〈∇ϕ̃n, ν〉∫

B(rn) |ϕ̃n|2 +
ε∫

B(km) |ϕ̃n|2

≤ λ0(Dn) +
2ε∫

B(rn) |ϕ̃n|2 +
ε∫

B(km) |ϕ̃n|2 .

It follows that

R(ϕ̃|B(km)) ≤ λ0(S̃) +
3ε∫

B(x̃0,ρ0)
|ϕ̃|2

for all sufficiently large m. In conclusion,

R(ϕ̃) ≤ λ0(S̃).
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Since ϕ̃ ∈ H1
0 (S̃), this implies that ϕ̃ is an eigenfunction of the Laplacian with

eigenvalue λ0(S̃).
Now ϕ̃ is non-zero on B(x̃0, ρ0). On the other hand, by the definition of the

lifts ϕ̃n, ϕ̃ vanishes on any other preimages B(x̃, ρ0) of B(x0, ρ0) under the covering
projection S̃ → S. Now the fundamental group of S is not trivial, hence there are
such preimages x̃ ∈ S̃. Thus we arrive at a contradiction to the unique continuation
property for eigenfunctions of Laplacians [Aro57]. �

Theorem 7.3. If S is a complete and connected Riemannian surface of finite type
with χ(S) < 0 and λess(S) > λ0(S̃), then ΛA(S) > λ0(S̃).

To prove Theorem 7.3, we assume the contrary and let (An) be a sequence of
incompressible annuli in S with smooth boundary such that λ0(An) → λ0(S̃). We
may assume that

λ0(An) + 4δ < min(ΛD(S), θλ0(S \ K0)) (7.4)

for all n and some fixed constants δ, θ ∈ (0, 1), by invoking Theorem 7.2 and that
λ0(S̃) < λ0(S \ K0) by the choice of K0 in (6.2). By deforming the An (slightly), we
may also assume that

∂An and ∂Ki intersect transversally (7.5)

for all n and i. Then the intersections An ∩ Ki and An ∩ (S \ K̊i) are incompressible
subsurfaces of S with piecewise smooth boundary.

Recall the constant i1(θ, δ) from Lemma 6.4.

Lemma 7.4. By passing to a subsequence, we may assume that

1) all An are isotopic in S and, for each i > i1 = i1(θ, δ), exactly one component
A′

n of An ∩ Ki is an annulus (topologically) isotopic to An;
2) there is a constant �0 > 0 such that the free homotopy classes of the boundary

curves of An in An contain curves of length at most �0 with respect to g and
h;

3) there are x0 ∈ S and ρ, ε > 0 such that B(x0, ρ) ⊆ An and such that the
ground states ϕn of An satisfy ϕn ≥ ε on B(x0, ρ).

Proof. The connected components of An ∩ ∂Ki consist of embedded segments con-
necting two boundary points of An and of embedded circles in the interior of An.
By the Schoenflies theorem and the topology of S, there are the following two pos-
sibilities:

a) All connected components of An ∩ Ki are discs.
b) The connected components of An ∩ Ki consist of one annulus A′

n (topologi-
cally) isotopic to An and discs.
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Now let i > i1 = i1(θ, δ). Then ηi−1ϕn is a non-zero smooth function on An with
compact support in An ∩ Ki and Rayleigh quotient

R(ηi−1ϕn) < λ0(An) + δ < ΛD(S),

by (6.5) and (7.4). Hence, if all the connected components of An ∩ Ki were discs,
we would have R(ηi−1ϕn) ≥ ΛD(S). Therefore only case b) can occur. Then the
Rayleigh quotients of ηi−1ϕn on the discs of An ∩ Ki (on which ηi−1ϕn does not
vanish) must be at least ΛD(S). Hence the Rayleigh quotient of ηi−1ϕn on A′

n must
be less than λ0(An) + δ. In particular, λ0(A′

n) ≤ λ0(An) + δ.
Note that one of the boundary circles of A′

n may only be piecewise smooth.
Therefore A′

n may only be topologically isotopic to An.
Now we let i = i1+1. Since A′

n ⊆ Ki, we have the uniform area bound |A′
n| ≤ |Ki|.

This together with the above estimate on λ0(A′
n) and Lemma 5.3 implies that the

length of shortest curves in A′
n, which are freely homotopic to the boundary circles

of A′
n in A′

n, is uniformly bounded with respect to g. Then their length is also
uniformly bounded with respect to h, by (6.3). In particular, there are only finitely
many isotopy types of A′

n and, therefore also, of An. Therefore we may pass to a
subsequence so that all of them are isotopic.

By Lemma 7.1 and since Ki is compact, we may pass to a further subsequence
so that all An ∩Ki, and hence also all An, contain a geodesic ball B(x0, ρ) such that
ϕn ≥ ε on B(x0, ρ) as claimed. �

Proof of Theorem 7.3. By passing to a subsequence, we may assume that the
sequence of An satisfies all the properties from (7.4), (7.5), and Lemma 7.4.

Choose a shortest (with respect to h) closed h-geodesic c in the free homotopy
class in S of a generator of the fundamental group of An. This is possible since the
ends of S are hyperbolic funnels with respect to h. Note that c does not depend
on n since all An are isotopic. We let Ŝ be the cyclic subcover of S̃ to which c lifts
as a closed ĥ-geodesic ĉ, where ĥ denotes the lift of h to Ŝ. Note that all annuli
An are isotopic to a small tubular neighbourhood of c. Lifting the corresponding
isotopies, we get lifts Ân ⊆ Ŝ of the annuli An. Note that Ân is the unique compact
component of π−1(An) and that π : Ân → An is a diffeomorphism which is isometric
with respect to g and h and their respective lifts ĝ and ĥ.

Denote by x̂n the lift of x0 which is contained in Ân. If x̂n stays at bounded
distance to ĉ, the arguments for the case of discs in the proof of Theorem 7.2 apply
again and lead to a contradiction since the fundamental group of S is not cyclic and
λ0(Ŝ) = λ0(S̃).

Suppose now that x̂n → ∞ in Ŝ. Let (r, θ) : Ŝ → R×(R/�Z) be Fermi coordinates
about ĉ, where � denotes the h-length of c and ĉ, such that ĉ = {r = 0}. Then we
have

ĥ = dr2 + cosh2(r)dθ2.
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Since the h-length of shortest curves, cn, in the free homotopy class of the boundary
curves of An in An is bounded by �0, there is a constant r0 > 0 such that the lifts
ĉn of cn to Ân are contained in the region {|r| ≤ r0} of Ŝ.

Let ϕ̂n be the lift of ϕn to Ân. Then ϕ̂n is the ground state of Ân with respect
to ĝ and we have ∫

B(x̂n,ρ)
ϕ̂2

n =
∫

B(x0,ρ)
ϕ2

n ≥ ε2 vol B(x0, ρ), (7.6)

by Lemma 7.11.3. Choose j > i1 = i1(θ, δ) such that

|∇ηj |2 < δε2 vol B(x0, ρ). (7.7)

Since supp ηj ⊆ Kj+1, the h-area of supp ηj is bounded by the h-area |Kj+1|h of
Kj+1. Now choose an r1 > r0 such that the ĥ-area of either of the regions −r1 ≤ r ≤
−r0 and r0 ≤ r ≤ r1 in Ŝ is larger than |Kj+1|h. Finally, choose a cut off function χ

on Ŝ such that χ = 0 on {|r| ≤ r1}, χ = 1 on {|r| ≥ r2} for some r2 > r1, and such
that

|∇χ|2 < δε2 vol B(x0, ρ). (7.8)

Computing as in the proofs of Lemmas 6.3 and 6.4 and with η = ηj ◦ π, we get∫
Ân

|∇(χηϕ̂n)|2 =
∫

Ân

∇(χ2η2ϕ̂n)∇ϕ̂n +
∫

Ân

ϕ̂2
n|∇(χη)|2

= λ0(An)
∫

Ân

χ2η2ϕ̂2
n +

∫
Ân

ϕ̂2
n|∇(χη)|2

≤ λ0(An)
∫

Ân

χ2η2ϕ̂2
n + 4δε2 vol B(x0, ρ), (7.9)
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where we use (7.7) and (7.8) for the passage to the last line.
Since x̂n → ∞ and B(x0, ρ) ⊆ Kj by the choice of j, χ = η = 1 on B(x̂n, ρ) for

all sufficiently large n. Combining (7.6) and (7.9), we then get

R(χηϕ̂n) ≤ λ0(An) + 4δ < ΛD(S). (7.10)

On the other hand, supp(χηϕ̂n) is contained in the lift Bn of An ∩ Kj+1 to Ân,
intersected with {|r| ≥ r1}. Now the h-area of Bn is bounded by |Kj+1|h and Bn

contains cn. Hence Bn does not contain loops freely homotopic to cn in the region
{|r| ≥ r1} of Ŝ since otherwise, by the uinqueness of A′

n, it would contain one of the
regions −r1 ≤ r ≤ −r0 or r0 ≤ r ≤ r1. Hence Bn ∩{|r| ≥ r1} is a union of discs and,
therefore, the Rayleigh quotient of χηϕ̂n has to be at least ΛD(S), a contradiction
to (7.10). It follows that the sequence of x̂n is bounded. �
Proof of Theorem 1.2 in the case χ(S) < 0. By Theorems 7.2 and 7.3, we have

min
(
ΛD(S), ΛA(S)

)
> λ0(S̃)

for any complete and connected Riemannian surface of finite type with χ(S) < 0.
This implies the assertion of Theorem 1.2 in the case where S is orientable since
then S does not contain cross caps.

Assume now that S is not orientable and let Or(S) be the orientation covering
space of S. Let C be a cross cap in S. Then the lift of C to Or(S) is an annulus A
in Or(S) with

λ0(C) ≥ λ0(A) ≥ ΛA(Or(S)).

We conclude that ΛC(S) ≥ ΛA(Or(S)) > λ0(S̃) as asserted. �

8 Remarks, Examples, and Questions

In this section, we collect some loose ends. We start with a comment which gives
another argument for calling Λ the analytic systole.

8.1 On the definition of Λ. For complete and connected surfaces S with
infinite fundamental group, an equivalent definition of the analytic systole is Λ(S) =
infF λ0(F ), where the infimum is taken over incompressible annuli and cross caps F
with smooth boundary in S:

a) For any disc D with smooth boundary and any free homotopy class [c] of
closed curves in S, there is an annulus A with smooth boundary in S contain-
ing D whose soul belongs to [c]. If [c] is non-trivial, then A is incompressible.
Moreover, λ0(A) ≤ λ0(D) by the domain monotonicity of λ0.

b) For any compressible annulus A in S with smooth boundary, there is a disc
D in S whose boundary ∂D is one of the boundary circles of A such that
A ∪ D is a disc in S with smooth boundary, by the Schoenflies theorem, and
then a) applies.
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c) Cross caps only occur in the case where S is not orientable. The soul of a
cross cap C in S is not homotopic to zero in S. Since the fundamental group
of S is torsion free, we get that C is incompressible.

However, in view of our previous articles [BMM16,BMM17], it is more natural to
include discs into the definition. Moreover, it is important in our analysis to handle
the case of discs separately.

8.2 On the essential spectrum. The following result, Proposition 3.6 from
[BMM17] formulated for surfaces, is probably folklore. It shows that the essential
spectrum of the Laplacian only depends on the geometry of the underlying surface S
at infinity and that the essential spectrum of the Laplacian is empty if S is compact.

Proposition 8.1. For a complete Riemannian surface S with compact boundary
(possibly empty), λ ∈ R belongs to the essential spectrum of Δ if and only if there is
a Weyl sequence for λ, that is, a sequence ϕn of smooth functions on S with compact
support such that

1) for any compact K ⊆ S, supp ϕn ∩ K = ∅ for all sufficiently large n;
2) lim supn→∞ ‖ϕn‖2 > 0 and limn→∞ ‖Δϕn − λϕn‖2 = 0.

In work of Arne Persson and of Richard Froese and Peter Hislop, the bottom
of the essential spectrum of Laplacians and more general operators has been char-
acterized in the sense of Proposition 8.1 or, more specifically, in the sense of (1.4);
compare with [HS96, Section 14.4].

Corollary 8.2. For a complete Riemannian surface S, we have

λess(S) = lim
K

λ0(S \ K),

where K runs over the compact subsets of S, ordered by inclusion.

Corollary 8.3. If S is a compact Riemannian surface, then the spectrum of S is
discrete; that is, λess(S) = ∞.

8.3 Surfaces with cyclic fundamental group. In the (unnumbered) lemma
on page 551 of [Oss77], Osserman establishes the following result in the special case
of domains in the Euclidean plane.

Lemma 8.4. Let S be a complete Riemannian surface with boundary (possibly
empty) and p be a point in the interior of S. For sufficiently small ε > 0, let
Sε(p) = S \ Bε(p). Then

λ0(Sε(p)) → λ0(S) as ε → 0.

The arguments in [Oss77] also apply to the more general situation of Lemma 8.4
and therefore we skip its proof.
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Proposition 8.5. If S is a complete Riemannian surface diffeomorphic to sphere
or projective plane, then Λ(S) = 0.

Proof. For p ∈ S and ε > 0, Sε(p) = S \ Bε(p) is a closed disc or cross cap,
respectively, and hence

0 ≤ Λ(S) ≤ inf
p,ε

λ0(Sε(p)) = λ0(S) = 0,

where we use Lemma 8.4 for the penultimate equality. �
Proposition 8.6. If S is a complete Riemannian surface diffeomorphic to disc (open
or closed), annulus (open, half-open, or closed), or cross cap (open or closed), then
λ0(S) = Λ(S).

Proof. In each case, there exists an increasing sequence of closed discs, annuli, or
cross caps Fn, respectively, which exhausts the interior S̊ of S. Hence

Λ(S) = limλ0(Fn) = λ0(S),

by domain monotonicity and the definitions of Λ(S) and λ0(S). �
8.4 Examples. It follows from the constructions in [BMM17, Example 3.7] that
any non-compact and connected surface S of finite type carries complete Riemannian
metrics of finite or infinite area with discrete spectrum, that is, with λess(S) = ∞. If
the fundamental group of S is not cyclic, then Λ(S) > λ0(S̃) for any such metric, by
Theorem 1.2. In the following, we extend some constructions from [BMM17] slightly.

Let F = {(x, y) | x ≥ 0, y ∈ R/LZ} be a funnel with the expanding hyperbolic
metric dx2 + cosh(x)2dy2. Let κ : R → R be a monotonic smooth function with
κ(x) = −1 for x ≤ 1 and κ(x) → κ∞ ∈ [−1, −∞] as x → ∞. Let j : R → R solve
j′′ + κj = 0 with initial condition j(0) = 1 and j′(0) = 0. Then j(x) ≥ cosh x.
The funnel F with Riemannian metric g = dx2 + j(x)2dy2 has curvature K(x, y) =
κ(x) ≤ −1 and infinite area. By comparison, the Rayleigh quotient with respect to
g of any smooth function ϕ with compact support in the part {x ≥ x0} of the funnel
is at least −κ(x0)/4.

Let S be a non-compact surface of finite type. Endow S with a hyperbolic metric
which is expanding along its funnels as above. Replace the hyperbolic metric on the
funnels by the above Riemannian metric g. Then the new Riemannian metric on S
is complete with curvature K ≤ −1 and infinite area. By Proposition 8.1 and by
what we said above about the Rayleigh quotients, the essential spectrum of the new
Riemannian metric is contained in [κ∞, ∞). Choosing κ such that κ∞ is larger than
the first Dirichlet eigenvalue λ0(D) of some smooth closed disc D inside the surface
yields the estimate

λess(S) > λ0(D) > λ0(S̃).

As a variation, let j solve j′′ + κj = 0 with initial condition j(0) = 1 and j(∞) = 0.
Then j′(0) ≤ −1 and j(x) ≤ exp(−x). The funnel F with Riemannian metric g =
dx2 + j(x)2dy2 has curvature K(x, y) = κ(x) and finite area. Again by comparison,
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the Rayleigh quotient with respect to g of any smooth function ϕ with compact
support in the part {x ≥ x0} of the funnel is at least −κ(x0)/4.

Let S be a non-compact surface of finite type, and choose r > 0 such that
coth(r) = −j′(0). Now S minus the parts {x ≥ r} of its funnels carries hyperbolic
metrics which are equal to dx2 + j0(x)2dy2 along the parts {x < r} of its funnels,
where j0(x) = sinh(r − x)/ sinh(r). Then j0(x) = j(x) for x < min{1, r}. Hence
any such hyperbolic metric, restricted to S minus the parts {x ≥ min{1, r}} of its
funnels, when combined with g along the funnels, defines a smooth and complete
Riemannian metric on S which has curvature K ≤ −1 and finite area. Choosing κ
and D as in the first case, we again have λess(S) > λ0(S̃).

8.5 Generic metrics. In view of Sects. 8.3 and 8.4 we are now prepared for
the proof of Proposition 1.5.

Proof of Proposition 1.5. For the first part observe that for any complete Rieman-
nian surface S of finite type, we have

λ0(S) ≤ λ0(S̃) ≤ Λ(S),

by (A.1) and (1.3), respectively. We conclude that

λ0(S) = λ0(S̃) = Λ(S)

for the surfaces considered in Propositions 8.5 and 8.6. These surfaces are precisely
the ones with cyclic fundamental group.

The second part follows immediately from Sect. 8.4, so we are only left with the
proof of the third part.

Let S be a non-compact surface of finite type and g be a complete Riemannian
metric on S with

λ0(S̃, g̃) = λess(S, g).

By Theorem 1.1 we then have

λ0(S̃, g̃) = Λ(S, g) = λess(S, g).

Now assume that λess(S, g) > 0. For n ≥ 1, let Fn ⊆ S be a smooth closed disc,
annulus or cross cap with

λ0(Fn, g) < e1/n+1Λ(S, g) = e1/n+1λess(S, g).

Choose exhaustions of S by compact subsets Kn and Ln and smooth functions hn

such that, for all n ≥ 1,
Fn ⊆ K̊n ⊆ Kn ⊆ L̊n

and
e−1/n ≤ hn ≤ 1, hn = 1 on Kn, hn = e−1/n on S \ Ln.

There exists a smooth function f = ft = f(t, x) on (0, 1] × S with f1/n = hn such
that, for all 0 < t ≤ 1/n,

ft = 1 on Kn and ft = e−t on S \ Ln
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and such that f is monotonically decreasing in t. Since ft = 1 on Kn for t ≤ 1/n
and the Kn exhaust S, f can be smoothly extended to [0, 1] × S by setting f0 = 1.

Let gt = ftg. Then gt is a smooth family of conformal metrics on S and is a
continuous curve of metrics with respect to the uniform distance. For t ≤ 1/n, we
have

Λ(S, gt) ≤ λ0(Fn, gt) = λ0(Fn, g) < e1/n+1λess(S, g).

Since the Dirichlet integral is invariant under conformal change in dimension two,
we obtain, for 1/n + 1 ≤ t ≤ 1/n,

Λ(S, gt) < e1/n+1λess(S, g) ≤ etλess(S, g) = λess(S, gt).

Invoking Theorem 1.1 we conclude that for all t > 0 one has the inequality:

λ0(S̃, g̃t) < Λ(S, gt) < λess(S, gt).

It remains to show that the set of metrics g on S that satisfy the strict inequality

Λ(S, g) > λ0(S̃, g̃)

is an open set in the uniform C∞ topology. This follows from the fact that two
metrics that are close to each other in the uniform C∞ topology are quasi-isometric
by a quasi-isometry with quasi-isometry constant close to 1. �

Remarks 8.7. 1) Any two complete Riemannian metrics g0, g1 on S of finite uniform
distance are quasi-isometric. This implies, that there is a constant C > 0 depending
on the distance of g0 to g1 such that

C−1λess(S, g0) ≤ λess(S, g1) ≤ Cλess(S, g0).

In particular, we have that

(i) λess(S, g0) is finite iff λess(S, g1) is finite,
(ii) λess(S, g0) = 0 iff λess(S, g1) = 0.

2) The above construction can be extended to get metrics with

λess(S, gt) = etλess(S, g)

for all t ≥ 0.
3) If S is non-compact, any complete hyperbolic metric on S satisfies λ0(S̃, g̃) =
λess(S, g) = 1/4.
4) If S is non-compact, any complete Riemannian metric on S, which is in zeroth
order asymptotic to a flat cylinder R/LZ × [0, ∞), has λ0(S̃, g) = λess(S, g) = 0.
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8.6 Problems and questions. We collect some questions naturally arising in
view of our results. Let S be a compact and connected Riemannian surface with
negative Euler characteristic.

1) (Optimal design) For a given compact subsurface T of S̊ with smooth
boundary ∂T �= ∅, we may consider the constant

ΛT (S) = inf
F

λ0(F ),

where F runs over all subsurfaces of S isotopic to T . The analytic systole is an
infimum over such constants. It is interesting to ask for estimates of ΛT (S).
The infimum is probably achieved by degenerate F , where ∂F is mapped onto
a graph Γ in S such that S \ Γ is diffeomorphic to the interior of T . In fact,
for any F isotopic to T , there is a graph Γ in S such that F ⊆ S \Γ and such
that S \ Γ is isotopic to the interior of F . Hence, by domain monotonicity,
ΛT (S) is the infimum over all λ0(S \ Γ), where Γ runs through such graphs.
What are the optimal graphs? This circle of problems is related to the work
of Helffer, Hoffman-Ostenhof, and Terracini [HHT09].

2) (Rigidity) The inequality λ−χ(S)(S) > Λ(S), mentioned in the introduc-
tion, raises the question whether there is another natural geometric constant
Λ′(S) > Λ(S), where we only have the weak inequality λ−χ(S) ≥ Λ′(S) and
where equality occurs only for a distinguished class of Riemannian metrics.

3) (Another rigidity) The last part of Proposition 1.5 suggests that hyper-
bolic metrics on non-compact surfaces of finite type are among a small col-
lection of metrics that satisfy

Λ(S) = λ0(S̃) = λess(S).

It would be interesting to see what other implications this equality has on the
metric. If we rescale the metric by a function f : S → (0, 1] which is 1 outside
a compact set, then λ0(S̃) can only increase, while λess(S) remains unaffected.
Using our main theorem we can see that the new metric also satisfy the above
equality. Hence one can not have a rigidity among all smooth metrics. Also,
observe that points 1) and 4) of Remarks 8.7 imply that there is no such
rigidity for metrics with λess(S) = 0.

4) (Higher dimensions) All our definitions extend in a natural way to higher
dimensional manifolds. For instance, we may define the analytic systole of
an n-dimensional manifold M by Λ(M) = infΩ λ0(Ω), where Ω runs over all
tubular neighborhoods about essential simple loops in M . By (A.1), we have
Λ(M) ≥ λ0(M̃). One may ask whether the strict inequality holds true under
reasonable assumptions on M . Our methods seem to be too weak to adress
this question.
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Appendix A. On λ0 under coverings

In [Bro85], Brooks states that, for a Riemannian covering π : M̂ → M of complete Rieman-
nian manifolds without boundary, the bottom of the spectrum remains unchanged provided
the covering is normal with amenable covering group and that M has finite topological type,
that is, that M is the union of finitely many simplices. We use the corresponding result in the
case where the covering is normal with cyclic fundamental group, but where the boundaries
of M̂ and M may not be empty. In fact, in [BMM17] we also claim that the results there
remain true for Schrödinger operators Δ + V with non-negative potential V .

By the proof of [Sul87, Theorem (2.1)] or [CY75, Theorem 7], the bottom λ0(M,V ) of
the spectrum of a Schrödinger operator Δ + V on a complete and connected Riemannian
manifold M with boundary (possibly empty) with non-negative potential V is the top of
the positive spectrum of Δ + V . Now for a Riemannian covering π : M̂ → M of complete
and connected Riemannian manifolds with boundary (possibly empty) and non-negative
potentials V and V̂ = V ◦ π, the lift of a positive λ-eigenfunction of Δ + V on M to M̂ is a
positive λ-eigenfunction of Δ + V̂ . Therefore

λ0(M,V ) ≤ λ0(M̂, V̂ ) (A.1)

in this situation. Since the lift of a square integrable function on M to M̂ is square integrable
if the covering is finite, the reverse inequality holds for such coverings, but does not hold in
general.

Theorem A.1. Let π : M̂ → M be a normal Riemannian covering of complete and con-
nected Riemannian manifolds with boundary (possibly empty) with infinite cyclic cover-
ing group. Let V : M → R be a smooth non-negative function and set V̂ = V ◦ π. Then
λ0(M,V ) = λ0(M̂, V̂ ).

The case of the standard Laplacian corresponds to the case V = 0. Note that we do not
need to assume that M has finite topological type in the sense of Brooks.

Proof of Theorem A.1. By (A.1), we have λ0(M,V ) ≤ λ0(M̂, V̂ ). To show the reverse
inequality, let ε > 0 and ϕ be a smooth function on M with compact support in the interior
of M and Rayleigh quotient

R(ϕ) =
∫

M

{|∇ϕ|2 + V ϕ2}/ ∫
M

ϕ2 < λ0(M,V ) + ε.

http://creativecommons.org/licenses/by/4.0/
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The strategy is now to cut off the lift ϕ̂ = ϕ◦π of ϕ to M̂ conveniently so that the Rayleigh
quotient of the new function is bounded by R(ϕ) + ε.

We note first that the covering π0 : R → R/Z is universal. Hence the covering π is the
pull back of π0 by a smooth map f : M → R/Z. Without loss of generality, we may assume
that [0] ∈ R/Z is a regular value of f . Then f−1([0]) is a smooth hypersurface of M .

Up to covering transformation, there is a unique lift f̂ : M̂ → R of f . Then
π−1(f−1([0])) ⊆ M̂ is the union of the smooth hypersurfaces f̂−1(k), k ∈ Z. Moreover,
f̂−1([k, k + 1]) is a smooth fundamental domain for the action of Z on M̂ , for all k ∈ Z, and
supp ϕ̂ ∩ f̂−1([a, b]) is compact, for all a ≤ b.

Let η0 be a non-negative smooth function on M̂ which is positive on f̂−1([0, 1]) and
which has support in f̂−1([−1, 2]). Set ηk = η0 ◦λk, where λk denotes the action of k ∈ Z on
M̂ , and ζk = ηk/

∑
j∈Z

ηj . Note that the sum in the denominator on the right is well defined
since it is locally finite. Then (ζk) is a partition of unity on M̂ such that ζk = ζ0 ◦ λk. In
particular, since ζ0 has support in f̂−1([−1, 2]) and supp ϕ̂ ∩ f̂−1([−1, 2]) is compact, there
is a uniform bound |∇ζk| ≤ C on supp ϕ̂. Therefore

χk =
∑

−1≤j≤k+1

ζj

is a smooth cut-off function on M̂ with values in [0, 1] which is equal to 1 on f−1([0, k]), has
support in f−1([−2, k + 2]), and gradient bounded by 3C on supp ϕ̂. We conclude that∫

M̂

(χkϕ̂)2 ≥ k

∫
M

ϕ2,

∫
M̂

V̂ (χkϕ̂)2 ≤ (k + 4)
∫

M

V ϕ2,

and, using Young’s inequality,∫
M̂

|∇(χkϕ̂)|2 ≤ (1 + δ)
∫

M̂

|∇ϕ|2 +
(

1 +
1
δ

) ∫
supp∇χk

|∇χk|2ϕ̂2

≤ (1 + δ)(k + 4)
∫

M

|∇ϕ|2 +
(

1 +
1
δ

)
36C2

∫
M

ϕ2,

since supp ∇χk ⊆ f̂−1([−2, 0] ∪ [k, k + 2]). Choosing δ small enough, we hence find that
χkϕ̂ is a smooth function on M̂ with compact support such that R(χkϕ̂) < R(ϕ) + ε for all
sufficiently large k. �
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