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A frictional contact problem with wear diffusion
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Abstract. This paper constructs and analyzes a model for the dynamic frictional contact between a viscoelastic body and a
moving foundation. The contact involves wear of the contacting surface and the diffusion of the wear debris. The relationships
between the stresses and displacements on the contact boundary are modeled by the normal compliance law and a version of
the Coulomb law of dry friction. The rate of wear of the contact surface is described by the differential form of the Archard
law. The effects of the diffusion of the wear particles that cannot leave the contact surface on the surface are taken into
account. The novelty of this work is that the contact surface is a manifold and, consequently, the diffusion of the debris takes
place on a curved surface. The interest in the model is related to the wear of mechanical joints and orthopedic biomechanics
where the wear debris are trapped, they diffuse and often cause the degradation of the properties of joint prosthesis and
various implants. The model is in the form of a differential inclusion for the mechanical contact and the diffusion equation
for the wear debris on the contacting surface. The existence of a weak solution is proved by using a truncation argument
and the Kakutani–Ky Fan–Glicksberg fixed point theorem.
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1. Introduction

This work studies a nonlinear dynamical model for the process of contact between a viscoelastic body
and a reactive foundation when wear debris is generated and diffuses on the contact surface. The model
includes subdifferential friction boundary condition, and considerably extends the model and the results
in [20], which were announced in [19] and further developed in [9,10]. Additional information and details
can be found in [21]. The research in [20] was motivated, in part, by biomechanical applications. Indeed,
such problems arise in artificial joints after arthroplasty (knee, hip, shoulder, elbow, etc.) where debris
is produced by articulating parts of the prosthesis and is transported to the bone-implant interface. The
debris causes the deterioration of the interface, and is believed to be an important factor leading to
prosthesis loosening (see, e.g., [17,18] and references therein). Thus, there is a considerable interest in
modeling such complex contact problems arising in implanted joints. This pertains to both cement-less
(the so-called “press-fit”) and cemented implants.

We present a mathematical model for the dynamics of such problems. The contact process is assumed
to include friction and wear between a viscoelastic body and a reactive foundation. Contact is described
with a generalized compliance condition and friction with a general subdifferential law. We assume that
the wear generation process takes place only on a part of the contact surface, and the wear rate is
described by a generalized differential Archard condition that allows for the diffusion of the debris on the
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whole of the contact surface. This is the main novelty in the model. Such phenomena of wear diffusion
can be found in many engineering settings, but in mathematical publications on contact and wear, it is
tacitly assumed that the wear debris is removed from the surface once they are formed, which is the case
some cases, such as car engines where the oil transports the debris away. The only mathematical works
(that we are aware of) in which the wear debris remains on the surface and its diffusion is taken into
account are [19,20], but there the contact surface was assumed to be planar. However, in most cases in
applications, and those in joint replacements, the surfaces are curved. Moreover, in [19,20] the authors
considered a quasistatic process and a moving foundation.

The novelty of this paper lies in that the process is assumed to be dynamic, the contact surface is
a manifold and so we use of surface gradients and the Laplace–Beltrami operator instead of the linear
diffusion equation. Also, we use a general nonmonotone subdifferential conditions to model friction, which
is an extension of the classical formulation as a variational inequality with a subdifferential in the sense
of convex analysis. In addition, the method of proof is new and very different from the usual one based
on the use of results for variational inclusions.

The model for the processes consists of two coupled equations: the first is the dynamic equation of
motion of a viscoelastic body and it contains a frictional multivalued term. The second one describes
the diffusion of the wear debris on the contact surface of the body. Our key result is the theorem on the
existence of a weak solution to the problem. In contrast to [9,10] (where the debris diffusion is modeled,
but the contact surface is assumed to be flat) we do not use the Banach fixed point argument, but we base
our approach on the Kakutani–Ky Fan–Glicksberg theorem that allows us to remove of the limitations
on the constants present in the model at the cost of getting only existence, and not the uniqueness of
a solution. In such a way we present a new way to obtain existence results for contact problems with
friction and wear diffusion.

We remark here that we do not take into account adhesion effects in the model, and in many contact
problems, one should also take into account the process of adhesion that is coupled with friction and wear
diffusion. For instance, clinical practice shows that adhesion plays an important role at the bone-implant
interface, and for further details we refer to [17,18] and the references therein.

The main mathematical difficulties of this paper lie in the formulation of the wear diffusion not on a
subset of R2, but on a 2D manifold in R

3. Similar setup in context of modeling the chemical processes
of surfactant adsorption and desorption was considered in [8]. Also, due to the fact we do not impose
any smallness condition on the constants in the model, we cannot use the Banach fixed point argument
(such as it is done in [14]) that also asserts the solution uniqueness. In our approach, we do not need
any assumptions on the smallness of the data, but we obtain only the existence of a weak solution. Due
to the rather general assumptions on the nonlinearities appearing in the problem, we are forced to use a
truncation, and we first obtain the solutions to the truncated problem. We then obtain the necessary a
priori estimates and remove this restriction by passing to the limit with truncation parameter.

The paper is organized as follows. Section 2 describes the ‘classical model’ for the process. We also
describe shortly the equation for the wear diffusion on the contact manifold. Section 3 lists the assumptions
on the problem data and derives its variational formulation, Problem PV . It is a system coupling an
evolutionary differential inclusion for the displacements with a diffusion equation on the curved contact
surface for the wear. Our main result, Theorem 3.2, states that under certain reasonable assumptions on
the setting and problem data, there exists a solution of the variational problem, which is a weak solution
for the ‘classical’ model. The proof of the main existence result is done in Sect. 4, and is based on the
approach described above. Finally, Sect. 4 concludes with a short discussion and some open problems for
further study.
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2. The model

We consider a viscoelastic body that occupies a bounded domain Ω ⊆ R
d, d = 2, 3 that is acted upon

by volume forces and surface tractions. Although the case R
2 is of interest mathematically, in this case

the contact surface is a curve and there doesn’t seem to be applied interest in such a case, so we have
d = 3 in mind. As a result, the body may come in frictional contact with a foundation and, consequently,
a part of the contacting surface may undergo wear. The wear particles or debris produced in this process
remain on the contact surface and undergo diffusion. Thus, grooves and surface damage occur causing
changes in the shape and properties of the contacting surface. We construct a mathematical model for
the evolution of the mechanical state of the body during the time interval [0, T ], where 0 < T < +∞.
The unknowns in the problem are the displacements and the surface wear function. We refer to [20] for a
more thorough discussion and additional details of the process. The main novelty here is that the contact
surface is curved, while there and in [9,10] the contact surface was assumed to be flat, and moreover,
here the process is dynamic.

We let Γ denote the boundary of Ω that is assumed to be Lipschitz continuous. We assume that Γ
consists of three pairwise disjoint sets: ΓD where the body is held fixed and μd−1(ΓD) > 0; ΓN where
surface tractions act; and ΓC that is the potential contact surface, where friction and wear take place. The
set ΓC is assumed to be a C2 manifold with smooth boundary ∂ΓC . We note here that the assumption
μd−1(ΓD) > 0 is not essential, but it allows to avoid certain technical difficulties, such as the lack of the
Korn inequality. We use the notation ΩT = Ω × (0, T ), ΓT = Γ × (0, T ), and similarly for ΓDT ,ΓNT and
ΓCT .

The body is held clamped on ΓD and so the displacement field vanishes there. A volume force of
density f0 acts in ΩT and surface tractions of density fN are applied on ΓNT . An initial gap function
g can exist between the potential contact surface ΓC and the foundation and it is measured along the
outward normal ν.

We denote the displacement vector by u : Ω × [0, T ] → R
d, the velocity vector by v = u′, where the

prime represents the time derivative, the linearized strain tensor by

ε = ε(u) = (εij), εij =
1
2
(∇u + ∇uᵀ),

so that ε′(u) = ε(v), and the stress tensor by σ = (σij), all defined on ΩT .
We write the normal components and tangential vectors on the boundary ΓC as

uν = ν · u, uτ = u − uνν, vν = ν · v, vτ = v − vνν,

and the normal and tangential stresses as

σν = σijνiνj , στ = σ · ν − σνν.

We assume that the material is viscoelastic with linear constitutive relation

σ(t) = A(ε(v(t))) + B(ε(u(t))), (2.1)

where,

A = (aijkl), B = (bijkl),

are the viscosity and elasticity tensors, respectively. Thus,

σij = aijklε
′
kl + bijklεkl,

and summation over repeated indices is implied. The viscosity and elasticity tensors satisfy the following
assumptions.
(H1) aijkl, bijkl ∈ L∞(Ω),
(H2) aijkl = ajikl = aklij , bijkl = bjikl = bklij for i, j, k, l = 1, . . . , d,
(H3) aijklξijξkl ≥ α|ξ|2, bijklξijξkl ≥ 0 for α > 0 and all symmetric matrices (ξij)d

i,j=1.
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We remark that the presence of the viscosity tensor A that is coercive is crucial in the proof of our
main result. Some problems with hyperbolic inclusions have been recently studied in, e.g., [16,22], yet
in our case they are not applicable and it remains an open problem to remove the viscosity term and
consider a purely elastic material.

The displacement u satisfies the momentum law

u′′ − Div σ = f0, (2.2)

where f0 : Ω × [0, T ] → R describes a volume force. The body is clamped on ΓD, hence,

u = 0 on ΓD. (2.3)

and the traction f2 ise applied on ΓN ,
σν = f2 on ΓN . (2.4)

We turn to describe the wear process and note that in [10,19,20] the contact surface ΓC was divided
into two subdomains Dd and Dw and the wear took place only on the part Dw, while the diffusion of
particles took place on the whole of ΓC . In this work we assume that wear is generated and diffuses on
ΓC , however, we note that it is straightforward to restrict wear generation to a part of ΓC by introducing
the appropriate characteristic function, as was done in the articles above.

Before we continue, since we are interested in the diffusion of the wear debris on the surface, we need
to introduce the concepts and notation related to diffusion on curved surfaces. We follow [8] (see also the
references therein) and in particular, we refer the reader to [12, p. 388], for the definition of hypersurfaces
in R

n and surface gradients on them. Let S be a smooth surface in R
d, if G is a smooth function defined

in a neighborhood of S, the surface or tangent gradient on S is defined as

∇SG = ∇G − Gνν

where Gν = ν · ∇G is the normal derivative of G on S, recalling that ν denotes the unit outer normal
vector to S. Thus, the surface gradient at x ∈ S is the projection of the gradient at x onto the tangent
plane to S at x. Note, that for the above definition of ∇SG to make sense, we need to extend G from S
to an open neighborhood in R

d, however, such an extension always exists for smooth S and the value of
∇SG does not depend on the choice of the extension (see, e.g., [6]). If we denote the components of the
surface gradient by

∇SG = (DiG) i = 1, . . . , d

then the Laplace–Beltrami operator, which describes the spatial part of diffusion on the surface, is defined
by the surface divergence of the surface gradient, i.e.,

ΔSG = ∇S · ∇SG = DkDkG,

where k = 1, . . . , d, and summation is implied. Next, we assume that the manifold S has a smooth
boundary ΓS = ∂S and denote by νS the unit outer normal to S on ΓS . Then, Green’s formula on S is
given by (see, e.g., [7]) ∫

S

(ψΔSϕ + ∇Sψ · ∇Sϕ) dS =
∫

ΓS

ψνS · ∇Sϕ dΓ,

and holds for each pair (ϕ,ψ) of smooth functions defined in a neighborhood of S. In our setting, S = ΓC

and ΓS = ∂ΓC . For the sake of somewhat simplified notation we use ∇Γ for the gradient and ΔΓ for
the Laplace–Beltrami operator on ΓC . We use the notion of the Sobolev space H1(S) of functions on the
manifold S, i.e., functions in L2(S) that have their surface gradients belongs to L2(S)d, see [2] for the
definition and properties of these functions on manifolds without boundary and [1] for manifolds with
smooth boundary, which is the case here.
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To describe the wear process and its diffusion, we introduce the wear function θ that is defined on the
contact surface ΓC × [0, T ], and its evolution is governed by a parabolic differential equation, and a zero
flux boundary condition on ∂ΓC ,

∂θ

∂νγ
= 0 on ∂ΓC , (2.5)

since the debris cannot leave ΓC . We note that the rate form of the usual Archard’s law of wear (see,
e.g., [21]) states that the rate of surface wear is proportional to the frictional traction, and the relative
velocity, i.e., the power of the friction resistance force, and is given by

hw = ημpν(uν − g)|vτ (t)|,
where η is the wear rate constant, μ is the friction coefficient, the function pν describes the normal stress,
and more details are below, and vτ (t) is the tangential velocity. As was done in [10,19,20], we extend the
Archard law and allow diffusion of the wear debris on the surface, i.e., we generalize hw to a function
satisfying
(H4) hw : Rd × R

d → R is continuous and for some Cw > 0, and for every u, v ∈ R
d, θ ∈ R, |hw(u, v)| �

Cw(1 + |u|2 + |v|2).
It is straightforward to see that when the function pν has at most linear growth, the wear source function
satisfies this assumption. Then, the extended version of the Archard law for a pointwise wear process of
growth and diffusion on ΓC is given by

θ′ − κΔΓθ = hw(u, v), (2.6)

where κ is the wear diffusion constant. We note that the debris source hw depends on the wear and the
surface speed, since the wear changes the surface geometry, the debris changes the friction resistance, and
the friction coefficient is known to depend on the speed.

We turn to the contact conditions on ΓC . We describe the contact process on ΓC by a general condition
of the form

− σν = hν(u). (2.7)

We impose the following hypotheses on hν :
(H5) hν : Rd → R is continuous and |hν(u)| � Cν(1 + |u|) for every u, v ∈ R

d, θ ∈ R, for some Cν > 0.
An example of a law satisfying this conditions is the normal compliance condition (see, e.g., [21] and

the references therein),

σν = pν(uν − g),

where pν is the normal compliance function that vanishes for negative arguments, since then there is
no contact between the body and the foundation at the point of ΓC . In the literature it was typically
assumed to be of the form

pν(uν − g) = λνc(uν − g)m
+ ,

where (·)+ was the positive part, λνc was assumed to be a large number and m ≥ 1 was the normal
compliance exponent (see also [21]).

We describe friction with a general subdifferential law

− στ ∈ hτ (u, v, θ)∂j(vτ ), (2.8)

where j is a locally Lipschitz function and ∂j stands for its Clarke subdifferential (see Sect. 3 for details).
We suppose that hτ and jτ satisfy
(H6) hτ : Rd ×R

d ×R → R+ is a continuous function and |hτ (u, v, θ)| � Cτ (1 + |u| + |v| + |θ|) for every
u, v ∈ R

d, θ ∈ R, for some Cτ > 0 and



96 Page 6 of 17 P. Kalita, P. Szafraniec and M. Shillor ZAMP

(H7) jτ : ΓC ×R
d −→ R is a function such that jτ (·, ξ) is measurable on ΓC for every ξ ∈ R

d, jτ (x, ·) is
locally Lipschitz on R

d for a.e. x ∈ ΓC and moreover ζ · ξ � 0 for ζ ∈ ∂jτ (x, ξ) for all ξ ∈ R
n a.e

x ∈ ΓC .
(H8) there exist c1τ > 0 such that ‖∂jτ (x, ξ)‖ � c1τ for every ξ ∈ R

d and a.e. x ∈ ΓC .
As an example of such a friction law, one may use a version of the Coulomb law,

|στ | � μpν(uν − g),

where μ is the coefficient of friction and μpν is the friction bound, and

if vτ 	= 0 then στ = −μpν(uν − g)
vτ

|vτ | .

That is, frictional resistance takes place only when there is relative motion and then it opposes it. We
can write the condition in a condensed form as an inclusion

στ ∈ −μpν(uν − g)∂|vτ |,
where ∂|r| is the convex subdifferential of |r|, i.e.,

∂|r| =

⎧⎪⎨
⎪⎩

1 r > 0,

[ − 1, 1] r = 0,

− 1 r < 0.

We use the formalism of Clarke subdifferentials in the friction law to account for possible nonmonotonicity
in the relation between the tangential velocity and the friction force density. This represents the fact that
kinetic friction can be less than static friction, i.e., a drop of the friction force can occur when motion
starts.

Finally, the initial conditions for the displacement, velocity and wear functions are,

u(0) = u0, u′(0) = v0, θ(0) = θ0. (2.9)

3. Variational formulation

We turn to the variational formulation of problem (2.1)–(2.9). To that end, we first introduce the concepts
that are needed below, and then the variational formulation. In what follows, i, j = 1, . . . , d everywhere,
the summation convention over repeated indices is used, and an index following a comma indicates a
partial derivative.

For a reflexive Banach space E, we denote by 〈·, ·〉E∗×E the duality pairing between the dual space
E∗ and E. If E is a Hilbert space, then the scalar product in E is denoted by (·, ·)E . Throughout this
paper, we denote by C a generic positive constant that depends on the problem data and may change its
value form line to line. By | · | we denote the Euclidean norm in R

d or S
d, the space of symmetric d × d

matrices.
To obtain a variational formulation of the model in Sect. 2, we need the following functional spaces:

H = L2(Ω)d, V = {v ∈ H1(Ω)d | v = 0 on ΓD}.

We know that for δ ∈ (0, 1
2 ) the embedding i : V → H1−δ(Ω)d is compact, and if γ1 : H1−δ(Ω)d → L2(Γ)d,

denotes the trace operator, which is continuous (see, e.g., [14, Theorem 2.21]), then the trace operator
γ = γ1i : V → L2(Γ)d is compact. To simplify slightly the notation, we use v instead of γv.

For a fixed and finite T > 0 we define the following standard time-dependent spaces:

W = {v ∈ L2(0, T ;V ) | v′ ∈ L2(0, T ;V ∗)},

WΓ = {θ ∈ L2(0, T ;H1(ΓC)) | θ′ ∈ L2(0, T ;H1(ΓC)∗)}.
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The Clarke subdifferential of a locally Lipschitz functional ϕ : Rd → R is given by (see [4])

∂ϕ(x) = conv{ lim
n→∞ ∇ϕ(xn) | xn → x,∇ϕ(xn) converges, and xn /∈ N ∪ Nϕ}

where Nϕ is a set of measure zero, outside of which ϕ is differentiable, and N is any set of measure zero. It
is possible to generalize the notion of the Clarke subdifferential to functionals defined on Banach spaces,
cf., [4,5,14], but for our purposed it is sufficient to consider this definition on R

d.
Now, we define the operators A,G : V → V ∗ by

〈Au,w〉V ∗×V =
∫

Ω

aijkl
∂uk

∂xl

∂wi

∂xj
dx, u, w ∈ E,

〈Gu, η〉V ∗×V =
∫

Ω

bijkl
∂uk

∂xl

∂wi

∂xj
dx, u, w ∈ E.

We assume that f0(t) ∈ L2(Ω)d and f2(t) ∈ L2(ΓC)d and this allows us to define f : (0, T ) → V ∗ as

〈f(t), η〉V ∗×V =
∫

Ω

f0(t)w dx +
∫

ΓN

f2(t)w dΓ, w ∈ E.

Applying the Green formula and the usual manipulations, we are able to derive the following weak
formulation of the problem governed by (2.1)–(2.9).

Problem 3.1. Find u ∈ L2(0, T ;V ) with v ∈ W and θ ∈ WΓ such that

〈v′(t), w〉V ∗×V + 〈Av(t), w〉V ∗×V + 〈Gu(t), w〉V ∗×V

+
∫

ΓC

hν(u(t))wν dΓ +
∫

ΓC

hτ (u(t), v(t), θ(t))ξ(t)wτ dΓ

= 〈f(t), w〉V ∗×V , for every w ∈ V, a.e. t ∈ (0, T ), (3.1)

ξ(t) ∈ S2
∂jτ

(vτ (t)) a.e. t ∈ (0, T ), (3.2)

〈θ′(t), η〉H1(ΓC)∗×H1(ΓC) + κ(∇Γθ(t),∇Γη)L2(ΓC)d

=
∫

ΓC

hw(u(t), v(t))η dΓ, for every η ∈ H1(Ω), a.e. t ∈ (0, T ), (3.3)

u(0) = u0, u′(0) = v0, θ(0) = θ0. (3.4)

Here, we used, the notation v = u′, i.e.,

u(t) = u0 +

t∫

0

v(s) ds, t ∈ (0, T ). (3.5)

By ξ(t) ∈ S2
∂jτ

(vτ (t)) we understand a L2-measurable selection out of the subdifferential ∂j at vτ . We
also write, for the sake of simplicity, H(h) as a collection of the hypotheses H(hw),H(hν) and H(hτ ).

We are now able to state the main theorem of this paper.

Theorem 3.2. Assume that u0 ∈ V, v0 ∈ H, θ0 ∈ L2(ΓC), f0 ∈ L2(0, T ;V ∗), f2 ∈ L2(0, T ;L2(ΓN )d), and
κ > 0. Under hypotheses (H1)–(H8) there exists a solution to Problem 3.1.

We conclude that the model (2.1)–(2.9) has a weak or variational solution. The uniqueness of the
solution remains an unresolved question.
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4. Proof of Theorem 3.2

In this section, we prove the existence theorem. The idea of the proof is as follows. First, we decouple
the coupled Problem 3.1 by replacing the coupling terms with given functions and introduce truncation
operators. We obtain the existence of solutions for the decoupled and truncated problems independently.
Then, we apply the Kakutani–Ky Fan–Glicksberg fixed point theorem to show the existence result for
the original problem. Finally, we pass to the limit with the truncation parameter. In the proof we always
assume (H1)–(H8), and that u0 ∈ V, v0 ∈ H, θ0 ∈ L2(ΓC), f0 ∈ L2(0, T ;V ∗), f2 ∈ L2(0, T ;L2(ΓN )d),
and κ > 0, so we do not repeat these assumptions in the auxiliary lemmas below.

We start by recalling the fixed point theorem.

Theorem 4.1. (Kakutani–Ky Fan–Glicksberg) Let S ⊂ E be a nonempty, compact, and convex set, where
E is a locally convex Hausdorff topological vector space. Let the set-valued function ϕ : S → 2S have
nonempty, convex values, and let Gr(ϕ) = {(x, y) ∈ S | y ∈ ϕ(x)} be a closed set in the product topology
of E × E. Then, the set {x ∈ S | x ∈ ϕ(x)} of fixed points of ϕ is nonempty and compact.

Next, for l > 0, we define truncation operators Nl : Rd → R
d and Ml : R → R by

Nl(x) =

{
x, |x| � l,
x

|x| l, |x| > l.
Ml(x) =

{
x, |x| � l,
x

|x| l, |x| > l.

The following lemma is straightforward to show, and we present the proof for the sake of completeness.

Lemma 4.2. Truncation operators Nl and Ml are Lipschitz continuous with a constant 1.

Proof. We present the proof only for Nl. Let x, y ∈ R
d and we consider the three cases: |x|, |y| � l,

|x| > l, |y| � l, and |x|, |y| > l. In the fist case, we immediately obtain the result. In the second case, we
calculate the inner products in R

d,

(Nl(x) − Nl(y), Nl(x) − Nl(y)) =
(

l
x

|x| − y, l
x

|x| − y

)
= l2 − 2l(x, y)

|x| + |y|2

� l2 − |x|2 + 2(x, y)
|x| − l

|x| + |x − y|2 � |x − y|2.

In the last case,

(Nl(x) − Nl(y), Nl(x) − Nl(y)) =
(

l
x

|x| − l
y

|y| , l
x

|x| − l
y

|y|
)

= 2l2 − 2(x, y)
l2

|x||y| � |x − y|2.

�

Now we fix l > 0 (large), choose the functions v ∈ W, ξ ∈ L2(0, T ;L2(ΓC)d) and θ ∈ WΓ, and let u
given by (3.5) using v. Consider now the following two auxiliary problems.

Problem 4.3. Find the velocity field v ∈ W such that

〈v′(t), w〉V ∗×V + 〈Av(t), w〉V ∗×V + 〈Gu(t), w〉V ∗×V

+
∫

ΓC

hν(Nlu(t))wν dΓ +
∫

ΓC

hτ (Nlu(t), Nlv(t),Mlθ(t))ξ(t)wτ dΓ

= 〈f(t), w〉V ∗×V for every w ∈ V a.e. t ∈ (0, T ),

v(0) = v0 (4.1)
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Problem 4.4. Find the wear function θ ∈ WΓ such that

〈θ′(t), η〉H1(ΓC)∗×H1(ΓC) + κ(∇Γθ(t),∇Γη)L2(ΓC)d

=
∫

ΓC

hw(Nlu(t), Nlv(t))η dΓ for every η ∈ H1(ΓC) a.e. t ∈ (0, T ),

θ(0) = θ0. (4.2)

We note that by using the given functions and the truncations, the two problems are uncoupled.

Lemma 4.5. There exists a unique solution to Problem 4.3

Proof. For the proof of Lemma we refer to [14]. �

Lemma 4.6. There exists a unique solution to Problem 4.4.

Proof. For the proof, we refer to classical results on parabolic problems, see, e.g., [13]. �

In the next step, we introduce the following coupled, but still truncated problem.

Problem 4.7. Find v ∈ W with ξ ∈ L2(0, T ;L2(ΓC)d) and θ ∈ WΓ, such that

〈v′(t), w〉V ∗×V + 〈Av(t), w〉V ∗×V + 〈Gu(t), w〉V ∗×V

+
∫

ΓC

hν(Nlu(t))wν dΓ +
∫

ΓC

hτ (Nlu(t), Nlv(t),Mlθ(t))ξ(t)wτ dΓ

= 〈f(t), w〉V ∗×V for every w ∈ V, a.e. t ∈ (0, T ), (4.3)

ξ(t) ∈ S2
∂jτ

(vτ (t)) a.e. t ∈ (0, T ), (4.4)

〈θ′(t), η〉Y ∗×Y + κ〈∇Γθ(t),∇Γη〉L2(ΓC);Rd

=
∫

ΓC

hw(Nlu(t), Nlv(t))η dΓ for every η ∈ Y, a.e. t ∈ (0, T ), (4.5)

v(0) = v0, θ(0) = θ0. (4.6)

We now show the existence of a solution to Problem 4.7 by using Lemmas 4.5 and 4.6 and the fixed
point theorem, Theorem 4.1.

In what follows, we check all the assumption of Theorem 4.1, and summarize the steps in the lemmas.
First, we derive the necessary a-priori estimates.

Lemma 4.8. Let v and θ be the solutions of Problems 4.3 and 4.4, respectively. Then, the following esti-
mates hold:

‖v‖2
W � C1

(
1 + ‖u0‖2

V + ‖v0‖2
H + ‖ξ‖2

L2(0,T ;L2(ΓC)d

)
, (4.7)

‖θ‖2
WΓ

� C
(
1 + ‖θ0‖2

L2(ΓC)

)
. (4.8)

Moreover, there exists ξ ∈ L2(0, T ;L2(ΓC)d) that satisfies

ξ(t) ∈ S2
∂jτ

(vτ (t)) a.e. t ∈ (0, T ),

and the bound
‖ξ‖2

L2(0,T ;L2(ΓC)d) � C3. (4.9)

The constants C1, C2, C3 > 0, depend only Ω, T , f , the constants present in (H1)–(H8), and l.
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Proof. We choose w = v(t) in (4.1) and then it follows from (H3), (H5), (H6) and the Cauchy inequality
with ε > 0 that for t ∈ (0, T ),

1
2

d
dt

‖v(t)‖2
H + α‖v(t)‖2

V +
1
2

d
dt

〈Gu(t), u(t)〉V ∗×V

� C
(
1 + ε‖v(t)‖2

V + C(ε)‖v(t)‖2
V ∗ + C(ε)‖ξ(t)‖2

L2(ΓC)d

)
.

Integrating (4.10) over (0, t) for t ∈ (0, T ) and choosing appropriate value of ε yields

‖v‖2
L∞(0,T ;H) + α‖v(t)‖2

L2(0,T ;V )

� C
(
1 + ‖u0‖2

V + ‖v0‖2
H + ‖ξ‖2

L2(0,T ;L2(ΓC)d)

)
. (4.10)

Next, we choose η = θ(t) in (4.2), and then it follows from (H4) that

1
2

d
dt

‖θ(t)‖2
L2(Γ) + κ‖∇Γθ(t)‖2

L2(ΓC)d � C
(
1 + ‖θ(t)‖2

L2(ΓC)2

)
. (4.11)

Again, integrating (4.11) over (0, t) for t ∈ (0, T ) we obtain

‖θ(t)‖2
L2(ΓC) + κ‖∇Γθ‖2

L2(0,t;L2(ΓC)d) � C
(
1 + ‖θ0‖2

L2(ΓC) + ‖θ‖2
L2(0,t;L2(ΓC))

)
. (4.12)

Using the Gronwall inequality we get for t ∈ (0, T )

‖θ(t)‖2
L2(ΓC) � C

(
1 + ‖θ0‖2

L2(ΓC)

)
. (4.13)

Combining (4.12) and (4.13) it follows that

‖∇Γθ‖L2(0,T ;L2(ΓC)d) � C
(
1 + ‖θ0‖2

L2(ΓC)

)
, (4.14)

hence from (4.13) and (4.14) we conclude that

‖θ‖2
L2(0,T ;H1(ΓC)) � C

(
1 + ‖θ0‖2

L2(ΓC)

)
. (4.15)

Straightforward manipulations using the estimates (4.10) and (4.15) and (4.1) and (4.2) lead to the
following bounds on v′ and θ′,

‖v′‖2
L2(0,T ;V ∗) � C

(
1 + ‖u0‖2

V + ‖v0‖2
H + ‖ξ‖2

L2(0,T ;L2(ΓC)d)

)
, (4.16)

‖θ′‖2
L2(0,T ;H1(Ω)∗) � C

(
1 + ‖θ0‖2

L2(ΓC)

)
. (4.17)

Now, we need to show the existence of ξ ∈ L2((0, T ) × ΓC)d such that ξ(t) ∈ S2
∂jτ

(vτ (t)) for a.e. t ∈
(0, T ). To show this it is sufficient to prove the existence of a measurable selection, since the integrability,
as well as the bound (4.9) follow from (H8). However, the existence of a measurable selection of the
subdifferential follows from [5, Theorem 5.6.39], as the Clarke subdifferential of the locally Lipschitz
integral functional

J : L2(0, T ;L2(ΓC)d) → R,

defined by

J(v) =

T∫

0

∫

ΓC

jτ (v(x, t)) dΓdt,

is nonempty and its elements are measurable on the one-hand, and on the other-hand they are selections
of the multifunction ∂j(v(x, t)), see also [11].
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Therefore, (4.10), (4.15)–(4.17) and (H8) imply that, for some positive constants C1, C2 and C3, the
following estimates:

‖v‖2
W � C1

(
1 + ‖u0‖2

V + ‖v0‖2
H + ‖ξ‖2

L2(0,T ;L2(ΓC)d)

)
,

‖θ‖2
WΓ

� C2

(
1 + ‖θ0‖2

L2(ΓC)

)
,

‖ξ‖2
L2(0,T ;L2(ΓC)d) � C3.

This completes the proof of Lemma 4.8. �

Next, we define the space Z = W × WΓ × L2(0, T ;L2(ΓC)d) and consider the solution operator
Λ: Z → 2Z , which assigns to a triple (v, θ, ξ) a triple (v, θ, ξ), where v and θ are the solutions of
Problems 4.3 and 4.4, respectively, and ξ is a L2-measurable selection out of ∂j(vτ ). We have the following
lemma.

Lemma 4.9. There exist positive constants R1, R2 and R3 such that Λ(B) ⊂ 2B, where the set B =
B(R1, R2, R3) is given by

B(R1, R2, R3) = {(v, θ, ξ) ∈ Z | ‖v‖W � R1, ‖θ‖WΓ � R2, ‖ξ‖L2(0,T ;L2(ΓC)d) � R3}.

Proof. We use the estimates above and choose

R3 = C3, R2 = C2

(
1 + ‖θ0‖2

L2(ΓC)

)
, R1 = C1

(
1 + ‖u0‖2

V + ‖v0‖2
H + R3

)
. (4.18)

Now, the assertion of the Lemma follows from Lemma 4.8. �

Lemma 4.10. Λ has nonempty and convex values.

Proof. The result follows from the convexity in the definition of the Clarke subdifferential, see, e.g.,
[4], the existence of ξ given in Lemma 4.8, and the existence and uniqueness of v and θ established in
Lemmas 4.5 and 4.6. �

Lemma 4.11. Gr(Λ) is sequentially closed in (w − Z) × (w − Z) topology.

Proof. We choose three sequences such that vn → v weakly in W, θn → θ weakly in WΓ and ξn → ξ
weakly in L2(0, T ;L2(ΓC)d). Define vn, θn and ξn as, respectively, the solutions of Problems 4.3 and 4.4
corresponding to vn, θn, ξn, and the L2 selection of ∂jτ (vnτ (x, t)). Assume that vn → v weakly in W,
θn → θ weakly in WΓ and ξn → ξ weakly in L2(0, T ;L2(ΓC)d). We need to show that v and θ are
the solutions of Problems 4.3 and 4.4 that correspond to v, θ and ξ, and that ξ is the L2 selection of
∂jτ (vτ (x, t)).

First observe that the compactness of the embedding i : V → H1−δ(Ω)d together with the Aubin–Lions
lemma imply that the tangential components of the traces satisfy

vnτ → vτ strongly in L2(0, T ;L2(ΓC)d).

Since ξn → ξ weakly in L2(0, T ;L2(ΓC)d) and ξn is a selection out of ∂jτ (vnτ (x, t)), a standard argument
based on the Aubin–Cellina convergence theorem, [3, Theorem 7.2.2], implies that ξ is a selection out of
∂jτ (vτ (x, t)).

To show that v and θ are the solutions of Problems 4.3 and 4.4 corresponding to v, θ and η, we need
to write (4.1) and (4.2) for vn and θn, and then pass to the limit n → ∞. It is clear that θn(0) → θ(0)
weakly in L2(ΓC) and vn(0) → v(0) weakly in H, which implies that θ and v satisfy the same initial
conditions as θn, vn. Moreover, the following hold,



96 Page 12 of 17 P. Kalita, P. Szafraniec and M. Shillor ZAMP

〈v′
n(t), w〉V ∗×V + 〈Avn(t), w〉V ∗×V + 〈Gun(t), w〉V ∗×V

+
∫

ΓC

hν(Nlun(t))wν dΓ +
∫

ΓC

hτ (Nlun(t), Nlvn(t),Mlθn(t))ξn(t)wτ dΓ

= 〈f(t), w〉V ∗×V ∀w ∈ V a.e. t ∈ (0, T ),

〈θ′
n(t), η〉H1(ΓC)∗×H1(ΓC) + κ(∇Γθn(t),∇Γη)L2(ΓC)d

=
∫

ΓC

hw(Nlun(t), Nlvn(t))η dΓ ∀η ∈ H1(ΓC) a.e. t ∈ (0, T ).

To show the weak sequential closedness of Gr(Λ), we show the convergence of all the terms. The Aubin–
Lions lemma implies

vn → v strongly in L2(0, T ;H) and θn → θ strongly in L2(0, T ;L2(ΓC)), (4.19)

vn → v strongly in L2(0, T ;L2(ΓC)d), un → u strongly in L2(0, T ;L2(ΓC)d), (4.20)

θn → θ strongly in L2(0, T ;L2(ΓC)). (4.21)

Now, Lemma 4.9, (4.18) and (4.19), and the linearity of the duality pairings and the linearity and
boundedness of operators A and G, we obtain that

T∫

0

〈v′
n(t), w(t)〉V ∗×V dt →

T∫

0

〈v′(t), w(t)〉V ∗×V dt,

T∫

0

〈Avn(t), w(t)〉V ∗×V dt →
T∫

0

〈Av(t), w(t)〉V ∗×V dt,

T∫

0

〈Gun(t), w(t)〉V ∗×V dt →
T∫

0

〈Gu(t), w(t)〉V ∗×V dt,

T∫

0

〈θ′
n(t), η(t)〉H1(ΓC)∗×H1(ΓC) dt →

T∫

0

〈θ(t), η(t)〉H1(ΓC)∗×H1(ΓC) dt,

T∫

0

κ(∇Γθn(s),∇Γη(t))L2(ΓC)d dt →
T∫

0

κ(∇Γθ(s),∇Γη(t))L2(ΓC)d dt,

for every w ∈ L2(0, T ;V ), and every η ∈ L2(0, T ;H1(Ω)), as n → ∞. Next, we deal with the boundary
integrals. To simplify the presentation, we omit the time dependence of the functions. We write

T∫

0

∫

ΓC

hτ (un, vn, θn)ξnwτ dΓ ds =

T∫

0

∫

ΓC

hτ (un, vn, θn)ξnwτ dΓ ds

−
T∫

0

∫

ΓC

hτ (u, v, θ)ξnwτ dΓ ds +

T∫

0

∫

ΓC

hτ (u, v, θ)ξnwτ dΓ ds.
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The weak convergence ξn → ξ in L2(0, T ;L2(ΓC)d) implies
T∫

0

∫

ΓC

hτ (u, v, θ)ξnwτ dΓds →
T∫

0

∫

ΓC

hτ (u, v, θ)ξwτdΓds. (4.22)

Moreover, by the continuity of hτ , the strong convergences (4.20) and (4.21) and the Lebesgue dominated
convergence theorem, we find

T∫

0

∫

ΓC

hτ (un, vn, θn)ξnwτdΓds −
T∫

0

∫

ΓC

hτ (u, v, θ)ξnwτdΓds

� ‖ξn‖L2(0,T ;L2(ΓC)d)

⎛
⎝

T∫

0

∫

ΓC

|wτ |2(hτ (un, vn, θn) − hτ (u, v, θ)) dΓds

⎞
⎠

1/2

, (4.23)

where the last term converges to zero as n → ∞. Hence, (4.22) and (4.23) yield that as n → ∞,

∫

ΓC

hτ (un, vn, θn)ξnwτ dΓ ds →
T∫

0

∫

ΓC

hτ (u, v, θ)ξwτ dΓ ds.

By the direct application of the Lebesgue dominated convergence theorem and the continuity of hν and
hw, we find

T∫

0

∫

ΓC

hν(un, )wν dΓ ds →
T∫

0

∫

ΓC

hν(u)wνdΓds,

∫

ΓC

hw(un, vn)η dΓ ds →
T∫

0

∫

ΓC

hw(u, v)η dΓ ds,

as n → ∞. This completes the proof of the lemma. �

The next step is essentially the last one.

Lemma 4.12. The operator Λ has a fixed point.

Proof. Consider Λ|B(R1,R2,R3), where B(R1, R2, R3) is given by Lemma 4.9. It follows from the lemma that
Λ(B(R1, R2, R3)) ⊂ 2B(R1,R2,R3). Then, Lemma 4.10 shows that this mapping has nonempty and convex
values. From Lemma 4.11 we deduce that Gr(Λ|B(R1,R2,R3)) is sequentially closed in the (w−Z)×(w−Z)
topology. Since the topology is weak, we need the following argument to show that this set is closed. But,
Gr(Λ|B(R1,R2,R3)) ⊂ B(R1, R2, R3)×B(R1, R2, R3), which is bounded, closed and convex in the reflexive
space Z × Z; therefore, Gr(Λ|B(R1,R2,R3)) is sequentially compact, and so (w − Z) × (w − Z) is compact
and (w − Z) × (w − Z) is closed. Taking into account Lemma 4.10, the assertion of the lemma follows
now directly from Theorem 4.1. �

We have shown that all the assumptions of the fixed point theorem, Theorem 4.1, hold true and that
establishes the following theorem, which guarantees the existence of a solution of the truncated problem.

Theorem 4.13. There exists a solution to Problem 4.7.

The last step in the proof of our main theorem is to show that we can remove the truncation operators
from Problem 4.7.
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Proof of Theorem 3.2. We need to obtain the relevant estimates on a solution v, θ of Problem 4.7 that
are independent of the truncation parameter l. To that end, we choose η = v(t) in (4.3) and using again
the Cauchy inequality with ε > 0, we obtain

1
2

d
dt

‖v(t)‖2
H + α‖v(t)‖2

V +
1
2

d
dt

〈Gu(t), u(t)〉V ∗×V

+
∫

ΓC

hν(Nlu(t))vν(t) dΓ +
∫

ΓC

hτ (Nlu(t), Nlv(t),Mlθ(t))ξ(t)vτ (t) dΓ

� C(ε)‖f(t)‖2
V ∗ + ε‖v(t)‖2

V , (4.24)

for t ∈ (0, T ). The hypotheses (H5)-(H7) and an appropriate choice of ε > 0 in (4.24) yields

d
dt

‖v(t)‖2
H + α‖v(t)‖2

V +
d
dt

〈Gu(t), u(t)〉V ∗×V

� C
(
1 + ‖f(t)‖2

V ∗ +
∫

ΓC

|v(t)|dΓ +
∫

ΓC

|u(t)||v(t)|dΓ) (4.25)

for t ∈ (0, T ). Straightforward manipulations that use the Cauchy inequality with ε again, the fact that

u(t) = u0 +
t∫
0

v(t) dt and the inequality in [5], Lemma 8.4.12 show that

‖v‖2
L2(ΓC)2 ≤ ε‖v‖2

V + C(ε)‖v‖2
H ,

which leads to
d
dt

(‖v(t)‖2
H + 〈Gu(t), u(t)〉V ∗×V

)
+ α‖v(t)‖2

V

� C
(
1 + ‖f(t)‖2

V ∗ + ‖u0‖2
V +

t∫

0

‖v(s)‖2
H ds

)
. (4.26)

Integrating (4.26) over(0, t), t ∈ (0, T ) and using (H1) and (H3), we get

‖v(t)‖2
H + ‖v‖2

L2(0,t;V ) � C

⎛
⎝1 + ‖u0‖2

V + ‖v0‖2
H +

t∫

0

‖v(s)‖2
H ds

⎞
⎠ . (4.27)

By the Gronwall inequality applied to ‖v(t)‖2
H we find

‖v(t)‖2
H � C, (4.28)

for t ∈ (0, T ). Applying (4.28) to (4.27) we obtain

‖v‖2
L2(0,T ;V ) � C. (4.29)

Choosing η = θ(t) in (4.6), and applying (H4) for t ∈ (0, T ), leads to the estimate

d
dt

‖θ(t)‖2
L2(ΓC) + κ‖∇Γθ(t)‖2

L2(ΓC)d � C

⎛
⎝1 +

∫

ΓC

|u(t)|2|θ(t)|dΓ

+
∫

ΓC

|v(t)|2|θ(t)|dΓ +
∫

ΓC

|θ(t)|dΓ

⎞
⎠ . (4.30)
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Next, by using the continuous embedding H1(Ω) → L4(∂Ω), we find

d
dt

‖θ(t)‖2
L2(ΓC) + ‖∇Γθ(t)‖2

L2(ΓC)d � C
(
1 + ‖u(t)‖2

V ‖θ(t)‖L2(ΓC)

+‖v(t)‖2
V ‖θ(t)‖L2(ΓC) + ‖θ(t)‖2

L2(ΓC)

)
. (4.31)

Integrating (4.31) over (0, t), t ∈ (0, T ), we find

‖θ(t)‖2
L2(ΓC) + ‖∇θ(t)‖2

L2(0,t;L2(ΓC)d)
� C

⎛
⎝1 +

t∫

0

‖u(s)‖2
V ‖θ(s)‖L2(ΓC) ds (4.32)

+

t∫

0

‖v(s)‖2
V ‖θ(s)‖L2(ΓC) ds +

t∫

0

‖θ(s)‖2
L2(ΓC) ds

⎞
⎠ . (4.33)

Using a nonlinear version of the Gronwall inequality ([15, p. 360]), we conclude that

‖θ(t)‖2
L2(ΓC) � C, (4.34)

for t ∈ (0, T ) and, consequently, applying (4.34) to (4.33) we have

‖θ‖2
L2(0,T ;H1(ΓC)) � C. (4.35)

The previous estimates imply the bound

‖v′‖2
L2(0,T ;V ∗) + ‖θ′‖2

L2(0,T ;H1(Ω)∗) � C, (4.36)

and so we conclude from (4.28), (4.29) and (4.34)–(4.36) that

‖v‖2
W + ‖θ‖2

WΓ
� C, (4.37)

where C is independent of l. This estimate is crucial for the proof of the theorem.
Now, let (vn, θn, ξn) be a solution of Problem 4.7 with the truncation constant l = n. Then, (4.37) and

the Aubin–Lions lemma imply that there is a subsequences such that vn → v strongly in L2(0, T ;H) and
in L2(0, T ;L2(ΓC)d), and θn → θ strongly in L2(0, T ;L2(ΓC)). Passing to the limit with the multivalued
term follows exactly as in the proof of Lemma 4.11, so, we pass to the limit with all terms in Problem 4.7.
To finally remove the truncations, we need to check that

hν(Nn(un)) → hν(u),

hτ (Nn(un), Nn(vn),Mn(θn)) → hτ (u, v, θ),

hw(Nn(un), Nn(vn)) → hw(u, v),

strongly in L2(0, T ;L2(ΓC)). By continuity of hν , hτ , hw it is enough to show that

Nn(vn) → v strongly in L2(0, T ;L2(ΓC)), (4.38)
Nn(un) → u strongly in L2(0, T ;L2(ΓC)), (4.39)
Mn(θn) → θ strongly in L2(0, T ;L2(ΓC)). (4.40)

Since by the Aubin–Lions lemma vn → v strongly in L2(0, T ;H1−δ(Ω)d), by continuity of the trace we
have

vn → v strongly in L2((0, T ) × ΓC). (4.41)

From (4.41), Lemma 4.2 and the Lebesgue dominated convergence theorem, we obtain

‖Nn(vn) − v‖2
L2((0,T )×ΓC) � 2‖Nn(vn) − Nn(v)‖2

L2((0,T )×ΓC) + 2‖Nn(v) − v‖2
L2((0,T )×ΓC)

� 2‖vn − v‖2
L2((0,T )×ΓC) + 2‖Nn(v) − v‖2

L2((0,T )×ΓC) → 0 as n → ∞.
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This proves (4.38). To show (4.39) and (4.40), we repeat similar calculations for un and θn. Hence, we
can pass to the limit with truncation parameter l = n → ∞ in all terms. This completes the proof of
Theorem 3.2. �

Thus, the model has at least one solution. The question of uniqueness remains unresolved, but in view
of the complexity of the system and its nonlinearities, it is unlikely. Indeed, the uniqueness of solution to
Problem 3.1 does not follow from the presented argument, as it does in a case of the Banach fixed point
theorem. Moreover, we suspect that uniqueness would require additional smallness assumptions on the
data and stronger assumption on the functions hτ , hν , hw.

As has been already mentioned, establishing an existence theorem for a purely elastic model is of
considerable mathematical interest.
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