Skip to main content
Log in

Analysis of a drift–diffusion model for organic semiconductor devices

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We discuss drift–diffusion models for charge carrier transport in organic semiconductor devices. The crucial feature in organic materials is the energetic disorder due to random alignment of molecules and the hopping transport of carriers between adjacent energetic sites. The former leads to statistical relations with Gauss–Fermi integrals, which describe the occupation of energy levels by electrons and holes. The latter gives rise to complicated mobility models with a strongly nonlinear dependence on temperature, density of carriers, and electric field strength. We present the state-of-the-art modeling of the transport processes and provide a first existence result for the stationary drift–diffusion model taking all of the peculiarities of organic materials into account. The existence proof is based on Schauder’s fixed-point theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bässler, H.: Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Physica Status Solidi (b) 175(1), 15–56 (1993)

    Article  Google Scholar 

  2. Bonč-Bruevič, V.L., Kalašnikov, S.G.: Halbleiterphysik. VEB Deutscher Verlag der Wissenschaften, Berlin (1982)

    Book  Google Scholar 

  3. Bessemoulin-Chatard, M.: A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter–Gummel scheme. Numerische Mathematik 121(4), 637–670 (2012)

    Article  MathSciNet  Google Scholar 

  4. Bessemoulin-Chatard, M., Chainais-Hillairet, C.: Exponential decay of a finite volume scheme to the thermal equilibrium for drift-diffusion systems. J. Numer. Math. 25(3), 147–168 (2017)

    Article  MathSciNet  Google Scholar 

  5. Brinkman, D., Fellner, K., Markowich, P.A., Wolfram, M.-T.: A drift-diffusion-reaction model for excitonic photovoltaic bilayers: asymptotic analysis and a 2D HDG finite element scheme. Math. Models Methods Appl. Sci. 23(5), 839–872 (2013)

    Article  MathSciNet  Google Scholar 

  6. Coehoorn, R., Pasveer, W.F., Bobbert, P.A., Michels, M.A.J.: Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder. Phys. Rev. B 72, 155206 (2005)

    Article  Google Scholar 

  7. Fischer, A., Pahner, P., Lüssem, B., Leo, K., Scholz, R., Koprucki, T., Gärtner, K., Glitzky, A.: Self-heating, bistability, and thermal switching in organic semiconductors. Phys. Rev. Lett. 110, 126601/1–126601/5 (2013)

    Google Scholar 

  8. Farrell, P., Rotundo, N., Doan, D.H., Kantner, M., Fuhrmann, J., Koprucki, T.: Drift-diffusion models. In: Piprek, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation, chap. 50, vol. 2, pp. 733–771. CRC Press, Boca Raton (2017)

    Chapter  Google Scholar 

  9. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Appl. 113, 12–35 (1986)

    MathSciNet  MATH  Google Scholar 

  10. Gajewski, H., Gröger, K.: Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi–Dirac statistics. Math. Nachr. 140, 7–36 (1989)

    Article  MathSciNet  Google Scholar 

  11. Glitzky, A., Gärtner, K.: Existence of bounded steady state solutions to spin-polarized drift-diffusion systems. SIAM J. Math. Anal. 41, 2489–2513 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin (1974)

    MATH  Google Scholar 

  13. Gröger, K.: On steady-state carrier distributions in semiconductor devices. Aplikace Matematiky 32, 49–56 (1987)

    MathSciNet  MATH  Google Scholar 

  14. Kordt, P., Bobbert, P., Coehoorn, R., May, F., Lennartz, C., Andrienko, D.: Organic light-emitting diodes. In: Piprek, J. (ed.) Handbook of Optoelectronic Device Modeling and Simulation, chap. 15, vol. 1, pp. 473–523. CRC Press, Boca Raton (2017)

    Google Scholar 

  15. Knapp, E., Häusermann, R., Schwarzenbach, H.U., Ruhstaller, B.: Numerical simulation of charge transport in disordered organic semiconductor devices. J. Appl. Phys. 108(5), 054504 (2010)

    Article  Google Scholar 

  16. Koster, L.J.A., Smits, E.C.P., Mihailetchi, V.D., Blom, P.W.: Device model for the operation of polymer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (2005)

    Article  Google Scholar 

  17. Kordt, P., van der Holst, J.J.M., Al Helwi, M., Kowalsky, W., May, F., Badinski, A., Lennartz, C., Andrienko, D.: Modeling of organic light emitting diodes: from molecular to device properties. Adv. Funct. Mater. 25(13), 1955–1971 (2015)

    Article  Google Scholar 

  18. Lions, J.L.: Quelques méthodes de rèsolution des problémes aux limites non linéaires. Dunod Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  19. Liero, M., Koprucki, Th, Fischer, A., Scholz, R., Glitzky, A.: \(p\)-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices. Z. Angew. Math. Phys. 66, 2957–2977 (2015)

    Article  MathSciNet  Google Scholar 

  20. Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, New York (1986)

    Book  Google Scholar 

  21. Pasveer, W.F., Cottaar, J., Tanase, C., Coehoorn, R., Bobbert, P.A., Blom, P.W., Leeuw, D.M., Michels, M.A.J.: Unified description of charge-carrier mobilities in disordered semiconducting polymers. Phys. Rev. Lett. 94, 206601 (2005)

    Article  Google Scholar 

  22. Paasch, G., Scheinert, S.: Charge carrier density of organics with Gaussian density of states: analytical approximation of the Gauss–Fermi integral. J. Appl. Phys. 107, 104501 (2010)

    Article  Google Scholar 

  23. Stodtmann, S., Lee, R.M., Weiler, C.K.F., Badinski, A.: Numerical simulation of organic semiconductor devices with high carrier densities. J. Appl. Phys. 112(11), 114909 (2012)

    Article  Google Scholar 

  24. Sze, S.M., Ng, Kwok K.: Physics of Semiconductor Devices. Wiley, New York (2007)

    Google Scholar 

  25. van der Holst, J.J.M., van Oost, F.W.A., Coehoorn, R., Bobbert, P.A.: Electron-hole recombination in disordered organic semiconductors: validity of the Langevin formula. Phys. Rev. B 80, 235202 (2009)

    Article  Google Scholar 

  26. van Mensfoort, S.L.M., Coehoorn, R.: Effect of Gaussian disorder on the voltage dependence of the current density in sandwich-type devices based on organic semiconductors. Phys. Rev. B 78, 085207 (2008)

    Article  Google Scholar 

  27. Verri, M., Porro, M., Sacco, R., Salsa, S.: Solution map analysis of a multiscale Drift–Diffusion model for organic solar cells. Comput. Methods Appl. Mech. Eng. 331, 281–308 (2018)

    Article  MathSciNet  Google Scholar 

  28. Weiler, C.K.F.: Optimum experimental design for the identification of Gaussian disorder mobility parameters in charge transport models of organic semiconductors. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg, (2014)

  29. Wetzelaer, G.A.H.: Charge transport and recombination in organic semiconductor diodes. Ph.D. thesis, University of Groningen, (2014)

Download references

Acknowledgements

This work was supported by the Einstein Center for Mathematics (ECMath) via Matheon project D-SE18 and MATH+ transition project SE18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Liero.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doan, DH., Glitzky, A. & Liero, M. Analysis of a drift–diffusion model for organic semiconductor devices. Z. Angew. Math. Phys. 70, 55 (2019). https://doi.org/10.1007/s00033-019-1089-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1089-z

Mathematics Subject Classification

Keywords

Navigation