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Abstract. We consider the vanishing viscosity solutions of Riemann prob-
lems for polymer flooding models. The models reduce to triangular sys-
tems of conservation laws in a suitable Lagrangian coordinate, which con-
nects to scalar conservation laws with discontinuous flux. These systems
are parabolic degenerate along certain curves in the domain. A vanishing
viscosity solution based on a partially viscous model is given in a par-
allell paper (Guerra and Shen in Partial Differ Equ Math Phys Stoch
Anal: 2017). In this paper the fully viscous model is treated. Through
several counter examples we show that, as the ratio of the viscosity pa-
rameters varies, infinitely many vanishing viscosity limit solutions can be
constructed. Under some further monotonicity assumptions, the unique-
ness of vanishing viscosity solutions for Riemann problems can be proved.
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1. Introduction

In this paper we study the uniqueness of the solutions of Riemann problems for
some systems of conservation laws, obtained as the vanishing viscosity limit.
In particular, we consider the equations for polymer flooding in secondary oil
recovery {

st + f(s, c)x = 0,

(m(c) + cs)t + (cf(s, c))x = 0.
(1.1)
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Here, s is the saturation of the water phase, and c is the fraction of the polymer
dissolved in the water phase. The function f(s, c) denotes the fractional flow
of water, normally taking the famous S-shaped Buckley–Leverett function [2].
The term m(c) models the adsorption of polymer in the rock [10]. One usually
assumes

m′(c) > 0, m′′(c) < 0. (1.2)
Letting m(c)=constant, (1.1) reduces to the simpler non-adsorptive model{

st + f(s, c)x = 0,

(cs)t + (cf(s, c))x = 0.
(1.3)

We study the Riemann problems for (1.1) and (1.3), with initial data

(s, c)(0, x) =

{
(sL, c−), for x < 0,

(sR, c+), for x > 0.
(1.4)

We focus on the vanishing viscosity solutions and their dependence on the
added viscosities.

The systems (1.1) and (1.3) are known to be parabolic degenerate along
certain curves in the domain, where two eigenvalues and eigenvectors coincide.
Along the degenerate curves, non-linear resonance occurs, and the total vari-
ation of the unknown s(t, x) could blow up in finite time [9]. Analysis of this
degenerate system is made feasible thanks to a decoupling feature of the sys-
tem in a suitable Lagrangian coordinates [6,11]. One can define a Lagrangian
coordinates (ψ, φ) as

∂φ

∂x
= −s,

∂φ

∂t
= f, ψ = x. (1.5)

Here φ is the potential of the first equation in (1.1). In this Lagrangian coor-
dinates, system (1.1) becomes triangular⎧⎪⎪⎨

⎪⎪⎩
∂

∂φ

(
s

f(s, c)

)
− ∂

∂ψ

(
1

f(s, c)

)
= 0,

∂

∂φ
m(c) +

∂c

∂ψ
= 0.

(1.6)

In (1.6), the first equation describes the hydro-dynamics, while the second
one denotes the thermo-dynamics. The decoupling feature in (1.6) indicates
that the thermo-dynamics is independent of the hydro-dynamics. Thus, the
solutions of c can be obtained independently by solving the second equation
in (1.6). This possibly discontinuous solution can be plugged into the first
equation and solve for s. This procedure leads to the consideration of a scalar
conservation law with discontinuous flux. In the setting of the Riemann prob-
lem, the solution of c would contain a single jump. In the linear case where
m(c)=constant, the c-jump is stationary in the Lagrangian coordinates. In the
nonlinear case where m(c) satisfies (1.2), the initial data c− > c+ results in a
shock with speed

σ =
m(c−) − m(c+)

c− − c+
.
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In a general setting, we consider a scalar conservation law with discon-
tinuous flux

ut + h(a(x), u)x = 0, (1.7)

where

a(x) =

{
a− (x < 0),
a+ (x > 0),

(1.8)

associated with initial Riemann data

u(0, x) =

{
uL (x < 0),
uR (x > 0).

(1.9)

The solutions to (1.7)–(1.9) can be obtained as limits of two combined
approximations: (i) Approximating the jump function a(·) by a sequence of
smooth functions an(·); (ii) Adding a viscosity term εnuxx on the right hand
side of (1.7). In this setting, we consider the limits of approximations

u(t, x) = lim
n→∞ u(n)(t, x)

where u(n) is a solution to the viscous conservation law with smooth flux

ut + h(an(x), u)x = εnuxx . (1.10)

We address the following three questions:

(1) For a given initial Riemann data, do the double limits n → ∞ and εn → 0
commute, or does the limit solution u depend on the relative rate at which
the sequences (1/n, εn) approach zero?

(2) If in general the limit solution depends on the ratio, what are the sufficient
assumptions one can make such that all these limits are the same?

(3) How can one determine the traces u− = u(t, 0−), u+ = u(t, 0+) in this
limit solution?

In this paper we will show through several detailed counter examples
that the double limits n → ∞ and εn → 0 do not commute. For the second
question, we provide suitable monotonicity assumptions on the function h(a, u)
and the convergent sequence an(x), such that the double limits are unique. The
answer to the third question, worked out in a parallel paper [4], leads to a set
of equivalent admissible conditions as well as a detailed construction of the
solutions of Riemann problem, as the vanishing viscosity limit.

We remark that scalar conservation laws with discontinuous flux is a
very active research field which has witnessed great progress in recent years.
We refer to a survey paper [1] and references therein. A detailed discussion
and list of references is beyond the scope of this paper.

We also consider a general triangular system of conservation laws{
ut + h(α, u)x = 0,

αt + g(α)x = 0,
(1.11)
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with initial data

α(0, x) =

{
α− (x < 0),
α+ (x > 0),

u(0, x) =

{
uL (x < 0),
uR (x > 0).

(1.12)

Let α = α(t, x) be a solution to the second conservation law in (1.11), con-
sisting of a single entropy-admissible shock with left and right states α−, α+,
respectively. By performing a linear transformation of the t-x variables, we
can assume that the shock speed is zero, so that α(t, x) = α(0, x) for t ≥ 0.
Inserting this solution in the first equation one obtains (1.7).

We can now approximate (1.11) by the viscous system{
ut + h(α, u)x = εn uxx ,

αt + g(α)x = ε′
n αxx .

(1.13)

Note that we allow the triangular system (1.11) to be parabolic degenerate.
A natural question, also addressed in this paper, is whether the vanishing
viscosity limit of (1.13) is uniquely determined, or it depends on the asymptotic
ratio εn/ε′

n at which the two diffusion coefficients approach zero.
Returning back to the Lagrangian system (1.6) for polymer flooding, the

two parameters εn and ε′
n denote the viscosities for the hydro-dynamics and

thermo-dynamics, respectively. Our discussions indicate that, the solution of
the Riemann problem in general depends on the ratio of these two viscosities.

The rest of the paper is organized as follows. In Sect. 2 we recall the
main results in [4]. These include three equivalent admissible conditions, and
a Riemann solver that generates the vanishing viscosity solution. In Sect. 3 we
provide a counter example showing that the Cauchy problem for (1.7), obtained
as the vanishing viscosity limit in Sect. 2, does not depend continuously in L1

on the data a(x). Several other detailed counter examples are constructed in
Sect. 4, analytically and/or numerically, showing that infinitely many vanishing
viscosity limits could be obtained for (1.10) and (1.13) by taking different
ratios of εn/ε′

n. In Sect. 5 we introduce two monotonicity assumptions, and
prove the uniqueness of the double limits under these assumptions. Finally,
some concluding remarks are given in Sect. 6.

2. Review of admissibility conditions and Riemann solver for
partially viscous model

We review the main results in the paper [4]. Consider the following partially
viscous approximation to (1.7)

ut + h(a(x), u)x = εnuxx, (2.1)

where a(x) is given in (1.8), and the equation is associated with Riemann data
(1.9). For notation convenience, we denote the functions

h−(u) =̇ h
(
a−, u

)
, h+(u) =̇ h

(
a+, u

)
.
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For any given uL, uR, we introduce the monotone functions

G�
(
u;uR

)
=̇

{
max

{
h+(w); w ∈ [uR, u]

}
, if u ≥ uR,

min
{
h+(w); w ∈ [u, uR]

}
, if u ≤ uR,

(2.2)

G�(u;uL) =̇

{
min

{
h−(w); w ∈ [uL, u]

}
, if u ≥ uL,

max
{
h−(w); w ∈ [u, uL]

}
, if u ≤ uL.

(2.3)

We assume that, for the given data uL, uR, there exists some ũ∗ such that

G�
(
ũ∗;uL

)
= G�

(
ũ∗;uR

)
. (2.4)

The following Theorem, proved in [4], states three equivalent admissible
conditions for the jump at x = 0.

Theorem 2.1. Given (u−, u+), let a(x) be the jump function in (1.8), and let
û be the jump function

û(x) =̇

{
u− (x < 0),
u+ (x > 0).

(2.5)

The following three conditions are equivalent.

(I) There exists a family of monotone viscous solutions uε(t, x) of (2.1) such
that

lim
ε→0+

‖uε(t, ·) − û(·)‖L1 = 0, (2.6)

uniformly on every bounded time interval [0, T ].
(II) The following Rankine–Hugoniot condition holds

h−(u−) = h+(u+) =̇ h̄ (2.7)

together with the following generalized Oleinik-type conditions:
(i) If u− < u+, then there exists an intermediate state u∗ ∈ [u−, u+]

such that {
h−(u) ≥ h̄ for u ∈ [u−, u∗] ,

h+(u) ≥ h̄ for u ∈ [u∗, u+] .
(2.8)

(ii) If u− > u+, then there exists an intermediate state u∗ ∈ [u+, u−]
such that {

h+(u) ≤ h̄ for u ∈ [u+, u∗] ,

h−(u) ≤ h̄ for u ∈ [u∗, u−] .
(2.9)

(III) There exists a state ũ∗, between u− and u+, such that

h̄ = h−(u−) = G�
(
ũ∗;u−)

= G�
(
ũ∗;u+

)
= h+

(
u+

)
. (2.10)

Condition (III) leads to a Riemann solver, which generates vanishing
viscosity solutions of (2.1) as εn → 0+, proved in [4]. See also an earlier work
[3]
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Theorem 2.2. Given a left and right states (uL, uR), let G�(u;uR), G�(u;uL)
be defined as in (2.2)–(2.3), and let h̄ be the unique value such that

h̄ = G�
(
ũ∗;uL

)
= G�

(
ũ∗;uR

)
(2.11)

for some ũ∗. We define the trace u−, u+ of u along x = 0 as follows:

u− =̇ argmin
{∣∣u − uL

∣∣ ; h−(u) = h̄
}

, (2.12)

u+ =̇ argmin
{∣∣u − uR

∣∣ ; h+(u) = h̄
}

. (2.13)

Then, the vanishing viscosity solution u(t, x) of (1.7)–(1.9) is obtained by piec-
ing together the solutions to

ut + h−(u)x = 0, u(0, x) =

{
uL, if x < 0,

u−, if x > 0,
(2.14)

for x < 0, and the solution to

ut + h+(u)x = 0, u(0, x) =

{
u+, if x < 0,

uR, if x > 0,
(2.15)

for x > 0. In particular, for every t > 0 we have

lim
x → 0−

u(t, x) = u−, lim
x → 0+

u(t, x) = u+, (2.16)

and
lim
ε→0

‖uε(t, ·) − u(t, ·)‖L1(R) = 0 (2.17)

uniformly on every bounded time interval [0, T ], where uε is a solution to the
viscous equation (2.1) with the same initial data.

3. Lack of continuous dependence on the coefficient a(x)

We present a counter example which shows that the solution u(t, x) of the
Cauchy problem (1.7)–(1.9), defined as the vanishing viscosity solution of the
partially viscous model (2.1), does not depend continuously on the coefficient
a(x) in L1. The example consists of two Riemann problems, whose unique
solutions are constructed as the vanishing viscosity solutions in Theorem 2.2.

Example 3.1. Consider the Cauchy problem for (1.7) with

a(x) = a�(x) =̇

{
a1 if |x| < �,

a2 if |x| > �,

with a1 < a2, and denote the flux functions as

h1(u) =̇ h(a1, u), h2(u) =̇ h(a2, u).

We consider constant initial data u(0, x) = ũ. Assume the functions h1, h2 and
data ũ are as illustrated in Fig. 1 (left plot), where ũ is the point where h1(·)
reaches its maximum.

The solution of this Cauchy problem consists of two Riemann problem
solutions, at x = ±�. At x = −�, the solution consists of a u-shock from A to
D with negative speed, and a stationary a-jump from D to C. At x = �, the
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u

C

A

B D

h1

h2

u ũ u
x

a-jump

a-jump as → 0

a-jump

u-shocku-shock

ũ
u ũ ũ

ũ
u

−

Figure 1. Solution consists of patching together two Rie-
mann problems

Riemann solution consists of a stationary a-jump from C to B, and a u-shock
from B to A, with positive speed. See Fig. 1.

In the limit, as � → 0, the two a-jumps merge into one single jump at
x = 0, where a is continuous, and u takes u′ and u′′ as the left and right limits.
This jump is not entropy admissible.

Note that, this limit solution is not the solution with the function a(x) =
a2, which would have given the trivial constant solution u(t, x) = ũ.

Remark 3.2. We observe that the lack of continuous dependence is caused by
the fact that, as the sequence a�(x) converges to the constant function a2 in L1,
the total variation does not converge, i.e., the function a�(x) is not monotone.
At first glance this counter example seems rather irrelevant to our discussion
on solutions of a single Riemann problem. However, this non-monotonicity
actually serves as the key ingredient in one of our counter examples in Sect. 4.1,
where the non-monotonicity is built into the flux function itself. Then we can
construct infinitely many vanishing viscosity limits for (1.10).

4. Non-uniqueness of the double vanishing viscosity limits

In this section we construct several counter examples for various cases.

4.1. Scalar conservation laws with discontinuous flux functions

We consider the Riemann problem (1.7)–(1.9). Let uε,n be the solutions for
the approximate viscous model

ut + h(an(x), u)x = εuxx, (4.1)

where an are smooth and monotone functions that converges to a(x). We will
show that, in many cases, one has

lim
n→∞ lim

ε→0+
uε,n �= lim

ε→0+
lim

n→∞ uε,n. (4.2)
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u
u+
k u−

kū

Ch

h1

h2

Figure 2. The functions h1, h2 and the values of u±
κ

Let h1(·), h2(·) be two concave functions with h1(u) < h2(u) for all u.
Let ū be the point where both h1(·) and h2(·) attain the maximum value, see
Fig. 2. Let a− < a+, and let am = (a− + a+)/2 be the mid-point.

For a ∈ (a−, a+), let the flux function h(a, u) be defined as

h(a, u) =

⎧⎪⎪⎨
⎪⎪⎩

am − a

am − a− h2(u) +
a − a−

am − a− h1(u), if a− < a < am.

a+ − a

a+ − am
h1(u) +

a − am

a+ − am
h2(u), if am < a < a+.

(4.3)

Then we clearly have

h(a−, u) = h(a+, u) = h2(u), h(am, u) = h1(u).

Note that the partial derivative ∂h/∂a changes sign at a = am.
Consider the Riemann problem (1.7)–(1.9) with the Riemann data

uL = uR = ū. (4.4)

Since we have h− = h+, the solution to this Riemann problem is trivially the
constant function u(t, x) ≡ ū for all (t, x). However, we will show that, for the
approximate model (4.1), the case is quite different.

Consider a sequence an(x), smooth and monotone, satisfying

an(x) =̇ ā(nx), ā(ξ) =̇

⎧⎪⎨
⎪⎩

a− if ξ < −2,

am if − 1 < ξ < 1,

a+ if ξ > 2.

(4.5)

We have now
lim

n→∞ an(x) = a(x). (4.6)

For each given an, we seek a stationary viscous profile u(t, x) = U(x) for
(4.1). Such a profile, if exists, must satisfy the ODE

εU ′ = h (an(x), U) − Ch, (4.7)

where
Ch = h

(
a−, U(−∞)

)
= h

(
a+, U(+∞)

)
, (4.8)

for some suitable U(±∞) which will be determined later.
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Let εn be a sequence of viscosity such that εn → 0 as n → ∞ with a
fixed ratio κ, i.e.,

εn =̇ κ/n, κ = nεn. (4.9)
We now study in detail the rescaled ODE, with ξ

.= nx,

κ · U ′(ξ) = h (ā(ξ), U(ξ)) − Ch. (4.10)

We claim that, there exists a value κM , such that the followings hold.
(i) For every κ ∈ [0, κM ), there exists a unique value Ch ∈ [h1(ū), h2(ū)),

such that the ODE (4.10) has a unique monotone solution Uκ(·), with

Uκ(−∞) = u−
κ , Uκ(+∞) = u+

κ ,

where u−
κ , u+

κ are the unique values that satisfy (see Fig. 2)

h2(u−
κ ) = h2(u+

κ ) = Ch, u−
κ > ū > u+

κ .

(ii) For κ ≥ κM , we have Ch = h2(ū), and the unique solution for the ODE
(4.10) is the constant function Uκ(ξ) = ū.
If these claims hold, then the functions

uκ,εn(t, x) = Uκ(x/εn)

provide a stationary traveling wave solution to the viscous conservation law
(4.1), with boundary conditions

uκ,ε(t,±∞) = u±
κ .

In addition, we consider a sequence of solutions vn to the viscous Riemann
problems

vt + h(a−, v)x = εnvxx, v(0, x) =

{
ū, (x < 0),
u−

κ , (x > 0),

and a sequence of solutions wn to the viscous Riemann problems

wt + h(a+, w)x = εnwxx, w(0, x) =

{
u+

κ , (x < 0),
ū, (x > 0).

Note that if ū �= u±
κ , vn contains only viscous traveling waves with neg-

ative speed, while wn with positive speed. Patching together the functions
vn, uκ,εn , wn, in a similar way as in the proof for Theorem 2.2 in [4], we can
construct a sequence of solutions to (4.1) with Riemann data (uL, uR) where
uL = uR = ū, converging to a self-similar limit function uκ(t, x) = Uκ(x/t)
with the following properties. For x < 0, uκ provides the entropy solution to
the Riemann problem

ut + h(a−, u)x = 0, u(0, x) =

{
ū, (x < 0),
u−

κ , (x > 0).

For x > 0, uκ provides the entropy solution tot he Riemann problem

ut + h(a+, u)x = 0, u(0, x) =

{
u+

κ , (x < 0),
ū, (x > 0).
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ξ
u+

κ

u−
κ

1−1 2−2

D

κ small

κ large

κ = K(Ch)

Figure 3. Illustration for the vector field of u′(s), and some
sample solutions of the ODE (4.10) for a given Ch and for
various values of κ

It is then clear that infinitely many different limits can be obtained, by choosing
different values of the ratio κ.

We now prove these claims.

Proof. The proof takes several steps.
Step 1 We first show that, for every given Ch ∈ (h1(ū), h2(ū)), there exists
a unique κ such that the ODE (4.10) has a unique solution that satisfies the
claim (i).

Indeed, by the continuity of the function h(a, u), there exists a continuous
function X (u) on u+

κ < u < u−
κ with 1 < X < 2 such that the right hand side

of the ODE (4.10) is 0 along the curves ξ = ±X (u) for u+
κ < u < u−

κ . See the
black curves in Fig. 3. Define the domain

D =
{
(ξ, u) : u+

κ < u < u−
κ , −X (u) < ξ < X (u)

}
.

We have

κu′(ξ) :

⎧⎪⎨
⎪⎩

<0, (ξ, u) ∈ D,

<0, u > u−
κ or u < u+

κ ,

>0, otherwise.

Let the ODE (4.10) have the initial condition u(ξ) = u−
κ for ξ ≤ −2, and

consider the solution at ξ = 2. By the comparison principle and the uniqueness
of the solution of the ODE, uκ(2) changes continuously and monotonely in κ.
In fact, for sufficiently large value of κ we have uκ(2) > u+

κ , so the solution
uκ(ξ) → u−

κ as ξ → +∞. For sufficiently small κ, we have uκ(2) < u+
κ , and the

solution uκ(ξ) → −∞ as ξ → +∞. By continuity we conclude that, for each
given Ch, there exists a unique value of κ such that uκ(ξ) = u+

κ for ξ ≥ 2. See
Fig. 3 for sketches of these three typical solutions. We denote this mapping by
κ = K(Ch).
Step 2 There are two limit cases. First, if Ch = h2(ū), we denote the limit value
as κM = K(h2(ū)). In this case, we have u−

κ = u+
κ = ū, and the traveling wave

is a constant function. Second, if Ch = h1(ū), the righthand side of (4.10) is
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ξ
u+

κ

u−
κ

ū

1−1 2−2

D

Figure 4. The limit case with Ch = h1(ū) and κ = 0. The
solution path (indicated in red) goes through curves where
the vector field κu′(ξ) = 0

u

h

C̃h

Ĉh

h2h1

û−
κ̂ũ−

κ̃û+
κ̂ ũ+

κ̃

û+
κ̂

ũ+
κ̃

ũ−
κ̃

û−
κ̂

ξ = −2 ξ = 2

ũκ̃(ξ)
û (ξ)

û(ξ)

ûκ̂(ξ)

Figure 5. The monotonicity of the mapping κ = K(Ch):
κ̂ < κ̃ if and only if Ĉh < C̃h

zero on the line segment with u = ū and −1 ≤ ξ ≤ 1 in the domain D, and
the end points of the segment connect to the boundary of D. In this case, the
only possible path from u−

κ to u+
κ is when κ = 0, and the path goes through

the curve where h(α(ξ) − u(ξ)) − Ch = 0. See Fig. 4.
Step 3 In order to show that there exists a distinct value of Ch for each given
0 ≤ κ ≤ κM , it suffices to show that the mapping κ = K(Ch) is monotone
increasing and therefore one-to-one. Let C̃h, Ĉh, κ̃, κ̂ be given such that

κ̃ = K(C̃h), κ̂ = K(Ĉh), h1(ū) < Ĉh < C̃h < h2(ū).

We need to establish the relation

κ̂ < κ̃. (4.11)

Indeed, the situation is illustrated in Fig. 5, and the proof depends on a
topological argument. Let ũκ̃(ξ) be the unique solution to the ODE

u′(ξ) = κ̃−1 ·
[
h(a(ξ), u(ξ)) − C̃h

]
(4.12)
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which satisfies the following

ũκ̃(−2) = ũ−
κ̃ , ũκ̃(2) = ũ+

κ̃ , h2(ũ−
κ̃ ) = h2(u+

κ̃ ) = C̃h, ũ−
κ̃ > ũ+

κ̃ .

Let û�(ξ) be the solution of the ODE

u′(ξ) = κ̃−1 ·
[
h(α(ξ), u(ξ)) − Ĉh

]
, û�(−2) = ũ−

κ̃ . (4.13)

Since the right hand side of (4.13) is strictly larger than that of (4.12), by a
standard comparison argument we have û�(2) > ũκ̃(2).

Define û−
κ̂ , û+

κ̂ as the unique values such that

h2(û−
κ̂ ) = h2(û+

κ̂ ) = Ĉh, û−
κ̂ > û+

κ̂ .

Then, by the properties of h(a, u) (see the left plot in Fig. 5) we have

û−
κ̂ > ũ−

κ̃ > ũ+
κ̃ > û+

κ̂ .

Let û(ξ) be the unique solution of the ODE (4.13) with initial condition
û(−2) = û−

κ̂ . By the uniqueness of solutions we have

û(2) > û�(2) > ũκ̃(2) > û+
κ̂ .

See the right plot in Fig. 5. Finally, let ûκ̂(ξ) be the solution of the ODE

u′(ξ) = κ̂−1 ·
[
h(α(ξ), u(ξ) − Ĉh

]
,

which satisfies

ûκ̂(−2) = û−
κ̂ , ûκ̂(2) = û+

κ̂ , h2(û−
κ̂ ) = h2(û+

κ̂ ) = Ĉh, û−
κ̂ > û+

κ̂ .

The above analysis indicates that this is only possible when κ̂ < κ̃, proving
(4.11).
Step 4 Finally, if κ > κM , the monotonicity of the mapping K implies Ch ≥
h2(ū). However, if Ch > h2(ū), then the right hand side of the ODE (4.10)
will be strictly negative for all ξ, and no bounded traveling wave exists. Thus,
we must have Ch = h2(ū), which implies u±

κ = ū, and the constant function
Uκ(ξ) = ū is the unique solution. �

Remark 4.1. We observe that, for κ < κM , the vanishing viscosity solution
of (4.1) contains a stationary downward jump at x = 0, from u−

κ to u+
κ . This

jump is not entropy admissible for the conservation law

ut + h2(u)x = 0

which is the equation for the limit as n → ∞.

4.2. Triangular systems

Example 4.2. We now consider the triangular system (1.11) with Riemann
data (1.12). Without loss of generality, we assume that g(α−) = g(α+) = 0 and
g(α) > 0 for all α ∈ (α−, α+), such that the upward jump in α is admissible
and stationary. Let αm = 1

2 (α− + α+), and let the function h(α, u) be defined
as (4.3). We consider the Riemann problem with uL = uR = ū, where ū is the
point where both h1, h2 attain the maximum.
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ξ
u+

κ

u−
κ

D

κ small

κ large

κ = K(Ch)

Figure 6. For the triangular system: illustration for the vec-
tor field of κu′(s), and some sample solutions of the ODE
(4.16) for a given Ch and for various values of κ

Consider the corresponding viscous system (1.13).{
ut + h(α, u)x = εnuxx,

αt + g(α)x = ε′
nαxx .

(4.14)

Denote the ratio κ =̇ εn/ε′
n, and let (uεn,ε′

n , αε′
n) be the viscous solutions for

(4.14). The solution αε′
n is a stationary viscous traveling wave which is smooth

and monotone, connecting the two states α− and α+.
Let U(ξ), A(ξ) be the rescaled stationary traveling wave solution for (4.14),

with ξ = x/ε′
n. Then, they must satisfy the ODEs{

A′(ξ) = g(A(ξ)),
κU ′(ξ) = h(A(ξ), U(ξ)) − Ch,

(4.15)

with the boundary conditions A(±∞) = a±, and

Ch = h(A(−∞), U(−∞)) = h(A(+∞), U(+∞)).

Without loss of generality, we may set A(0) = αm.
Much of the analysis in the example in Sect. 4.1 can be carried out in

an analogous way. The function X (u) is modified, which is a smooth function
with asymptotes at u = u±

κ , see Fig. 6. The solution of the ODE

κU ′(ξ) = h(A(ξ), U(ξ)) − Ch, U(−∞) = u−
κ (4.16)

is defined in the following limiting process. Let {ûn} be a convergent sequence
such that limn→∞ ûn = u−

κ . Consider point (ξ̂, ûn) with ξ̂ = −X (ûn), on the
left black curve in Fig. 6. Let Un be the unique solution to the ODE

κU ′(ξ) = h(A(ξ), U(ξ)) − Ch, U(ξ̂) = ûn. (4.17)

The solution for (4.16) is then the unique limit Un(ξ) as n → ∞. The rest of
the example follows.
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Figure 7. Simulation results for Example 4.3

4.3. Counter examples by numerical simulations

All numerical simulations are performed using Scilab. To access all the codes
used for the examples in this paper, see [8].

Example 4.3. We simulate the counter example in Sect. 4.1. We consider the
conservation law

ut + h(a, u)x = 0, h(a, u) = 2a2 − u2, a(x) = ā(x/δ),

and the function ā(ξ) with ξ = x/δ is (see (4.5))

ā(ξ) =̇

⎧⎪⎨
⎪⎩

0 if 0 < ξ < 1,

ξ − 1 if 1 < ξ < 2,

1 if ξ > 2,

and ā(−ξ) = −ā(ξ).

Lax Friedrich method is used, which adds numerical diffusion to the equa-
tion. Thus, varying the ratio δ/Δx here has a similar effect as varying the ratio
κ in the example in Sect. 4.1. We use the Riemann data uL = uR = 0, and
simulate with δ/Δx = 0, 0.1, 1, 2, 10 with final computing time T = 0.1. For
δ = 0, the solution is the constant function u(x) = 0. The plots of the solu-
tions for the other 4 values of δ/Δx are shown in Fig. 7. These are exactly as
predicted in the Example of Sect. 4.1.

Example 4.4. In this example we provide another counter example that has
multiple double limits, first through numerical simulations, then follow up with
some analysis. Consider

ut + h(a, u)x = 0, h(a, u) = −(u − 2 − 3a)2,

where

a(x) =

⎧⎪⎨
⎪⎩

0 (x < −δ),
x/(2δ) (−δ < x < δ),
1 (x > δ).

We use the Riemann data uL = 3, uR = 4, and simulate using Lax–Friedrich
method, for δ/Δx = 0, 1, 5, 100, with T = 0.1. Simulation results are shown in
Fig. 8 (top). Clearly, different values of δ/Δx give different paths of Riemann
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uL uR

κ = 0

hL hR
uL uR

κ = 1

hL hR
uL uR

κ = 5

hL hR

uL uR

κ = 100

Figure 8. Simulation results (top) and paths (bottom) of
Riemann solutions for Example 4.4

Ch

u u− u+ u

hL hR

u

u−

u+

u

−δ δ

ε large

ε small

Figure 9. Vector field and solution paths for Example 4.4

solutions. These paths are shown in Fig. 8 (bottom) in the graphs for the flux
functions

hL(u) = h(0, u) = −(u − 2)2, hR(u) = h(1, u) = −(u − 5)2.

A detailed analysis of this example, similar to the analysis in Sect. 4.1,
can be carried out. We briefly explain the highlights here and omit some details.
Consider the viscous equation

ut + h(a(x), u)x = εuxx.

Stationary traveling waves Uε,δ(x) connecting u−, u+ must satisfy the ODE:

εU ′ = h(a(x), U) − Ch, Ch = hL(u−) = hR(u+), U(±∞) = u±∞. (4.18)

The vector field for U ′ and some sample solutions are illustrated in Fig. 9.
It shows that, for each Ch and δ, there exists an ε, such that there exists a
monotone solution that connects u− to u+ (the red curve in Fig. 9). In the
limit case where δ = 0, the only possible solution that connects u− to u+ is
when u− = u+, i.e., the intersection point of the graphs hL(u) and hR(u).
This coincides with the results in Theorems 2.1 and 2.2.
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4.4. Counter examples for polymer flooding models

Applying Theorems 2.1 and 2.2 to the polymer flooding system has lead to a
Riemann solver (used in [7]), as the vanishing viscosity limit [4]. Furthermore,
the application of the counter examples in Sects. 4.1 and 4.2 to the polymer
flooding model (1.1) is also apparent for the systems in the Lagrangian co-
ordinate (1.6). The equivalence of weak solutions between the Eulerian and
Lagrangian coordinates is proved in a seminal paper of Wagner [11], under the
assumption that s > 0.

Unfortunately, translating the viscosities in the Lagrangian coordinates
back to Eulerian coordinates leads to very complicated equations. From the
modeling point of view, one may consider the following approximation{

st + f(s, c)x = ε1sxx,

(m(c) + sc)t + (cf(s, c))x = ε1(csx)x + ε2(m(c)x + scx)x.
(4.19)

Intuitively, ε1 and ε2 denote the viscosities for s and c, respectively.
We conjecture that:

(i) For traveling waves, the vanishing viscosity solution of (4.19) is equivalent
to the triangular system (1.6) in Lagrangian coordinate;

(ii) For Cauchy problems, the vanishing viscosity solution of (4.19) is also
equivalent to the triangular system (1.6) in Lagrangian coordinate.

Conjecture (i) can be simply confirmed by analyzing the ODEs satisfied by
the traveling waves. For conjecture (ii), utilizing method of characteristics, it
leads to the study of a parabolic equation. Aspects of these claims would be
studied in a future work.

In this paper we present a numerical study, where different double limits
are achieved.

Example 4.5. Consider the non-adsorptive model (1.3) and consider the flux

f(s, c) =
s2

s2 + a(c)(1 − s)2
, where a(c) = 1 − 4(c − 0.5)2.

Figure 10. Simulation results for Example 4.5. Left : graph of
fL, fR in blue, fM in green, and the path of Riemann solution
in red. Right : Solution s (blue) and c (red) (colour figure on-
line)
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Figure 11. Simulation results for Example 4.6. Here the so-
lution s is plotted in blue and c in red

Note that the function a(c) is not monotone, causing the mapping c 
→ f(s, c)
to be non monotone. We use the following Riemann data

sL = 0.71, cL = 0.9, sR = 0.71, cR = 0.1.

In this setting, we have

fL(s) =̇ f(s, cL) = fR(s) =̇ f(s, cR),

but for mid value cM = (cL + cR)/2, the flux fM (s) = f(s, cM ) is different.
See Fig. 10 (left).

Since all wave speeds are positive, upwind method is used, which adds
small amount of numerical viscosities to both s and c. The simulation results
at T = 0.1 are plotted in Fig. 10 (right).

Using the Riemann solver in [4], one obtains the constant solution s =
0.71. However, our numerical solution is very different. The result here sug-
gests the existence of multiple double limits of (4.19), as ε1, ε2 → 0 at different
rate. Details are shown in the next Example.

Example 4.6. In the same setting as Example 4.5, we consider the viscous
approximation {

st + f(s, c)x = εsxx,

(sc)t + (cf(s, c))x = ε(csx)x.

Since upwind method adds numerical diffusions to both equations, varying the
ratio ε/Δx here has a similar effect as varying the ratio ε1/ε2 for the following
system {

st + f(s, c)x = ε1sxx,

(sc)t + (cf(s, c))x = ε1(c · sx)x + ε2(s · cx)x.

Simulation results are plotted in Fig. 11, for various ε values. We observe
that, for larger values of ε/Δx, the numerical solution approaches the constant
solution s(t, x) = 0.71.
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5. Uniqueness of the vanishing viscosity limit

5.1. Scalar conservation laws with discontinuous flux

We consider again the Riemann problem for conservation law with discontinu-
ous flux (1.7)–(1.9). In this setting, Theorem 2.2 describes the unique solution
which is obtained as the limit of vanishing viscosity approximation uε in (2.1).
The counter examples in Sect. 4 show that this solution doesn’t need to co-
incide with a limit of more general approximations of the form (4.1). In this
section we prove sufficient conditions in order that the approximations in (4.1)
all converge to the the same limit solution.

Toward this goal, two monotonicity assumptions are needed.

(M1) For every u, the function a 
→ h(a, u) is monotone. Namely, either
∂h

∂a
(a, u) ≥ 0 or

∂h

∂a
(a, u) ≤ 0 for all a, u.

(M2) The functions an are smooth and converge to the jump function a(x)
in (1.8) in the L1 distance. Moreover, they are all monotone:

a− ≤ a+ =⇒ a′
n(x) ≥ 0 ∀x, n ,

a− ≥ a+ =⇒ a′
n(x) ≤ 0 ∀x, n .

We note that, the condition (M1) indicates that, for two distinct values
of a1, a2, the graphs of u 
→ h(a1, u) and u 
→ h(a2, u) will ever crossing each
other.

Theorem 5.1. In the same setting as Theorem 2.1, let u−, u+ be two states
which satisfy the admissibility conditions, and call û the jump function in (2.5).
Let un = un(t, x) be a sequence of solutions to the viscous conservation laws

ut + h(an(x), u)x = εnuxx, (5.1)

where

lim
n→∞ εn = 0, lim

n→∞ an(x) = a(x).

Assume that the initial data of (5.1) satisfies

lim
n→∞ ‖un(0, ·) − û(·)‖L1 = 0. (5.2)

If the monotonicity assumptions (M1)–(M2) are satisfied, then

lim
n→∞ ‖un(τ, ·) − û(·)‖L1 = 0, (5.3)

uniformly as τ ranges in bounded sets.

Proof. We first observe that if a− = a+, the result reduces to the classical
theorem of Oleinik [5]. Furthermore, if u− = u+ = ū for all n, then by the
monotonicity condition (M1), we have

h(a, ū) ≡ h̄, ∀a− ≤ a ≤ a+ .

In this case we trivially have un(t, x) ≡ ū, and the theorem holds.
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In the rest of the proof, we consider a− �= a+ and u− �= u+. Without loss
of generality, we only consider the case

a− < a+, u− < u+, and
∂h

∂a
≥ 0 , (5.4)

while all the other cases being similar. The proof take several steps.
Step 1 Similar to the proof of Theorem 2.1 in [4], we consider a decreasing
sequence δn → 0, and define the modified flux

Hn(x, u) =̇ h(an(x), u) + δn(u+ − u)(u − u− + an(x) − a−) . (5.5)

For every n ≥ 1, we claim that the viscous conservation law

ut + Hn(x, u)x = εnuxx (5.6)

admits a monotone increasing stationary profile Un with

lim
x→−∞ Un(x) = u−, lim

x→+∞ Un(x) = u+ . (5.7)

Notice that u(t, x) = U(x) is a stationary solution of (5.6) if and only if U(·)
satisfies the ODE

εn U ′ = φn(x,U) =̇ Hn(x,U) − h̄, (5.8)

where

h̄ = h(a−, u−) = h(a+, u+).

It suffices to show that the ODE (5.8) admits a monotone solution that satisfies
(5.7).

Indeed, by the monotonicity condition ∂h/∂a ≥ 0, the graph of u 
→
h(a+, u) must lie above that of u 
→ h(a−, u) on the interval u ∈ [u−, u+].
Thus, we have h(a+, u) ≥ h̄ on the interval u ∈ (u−, u+). This implies

lim
x→+∞ φn(x, u) > 0, for u ∈ (u−, u+) .

Given x, let Un(x) be the largest value of u0 such that φn(x, u) > 0 on
the interval u ∈ (u−, u0). Then, x 
→ Un is a monotone function, possibly
discontinuous, and

φn (x,Un(x)) = 0, lim
x→−∞ Un(x) ≥ u− , lim

x→+∞ Un(x) = u+ .

Define the open set Ωn as

Ωn =̇
{
(x, u) : x ∈ R, u− < u < Un(x)

}
.

We have

φn(x, u) > 0, ∀(x, u) ∈ Ωn .

Note also that

φn(x, u−) > 0, for x sufficiently large .

For some typical examples of Un(x) and Ωn, see Fig. 12.
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h̄

h+

h−
u− u1 u2 u3 u+
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h−

h+
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u1
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Ωn

Un(x)

Figure 12. Two typical examples. Left : plots for h−(u)
and h+(u). Right : On the blue curves φn = 0, and the
thick red curve is the discontinuous function Un(x). We have
Un(−∞) > u− for the top example and Un(−∞) = u− for the
bottom one (colour figure online)

Clearly Ωn is an invariant region for the ODE (5.8), in the sense that if
the initial data (x0, U0) lies in Ωn, so will the solution (x,U(x)) for all x ≥ x0.
Furthermore, U(x) is monotone increasing on x ≥ x0, and

U(x) < Un(x) ∀x > x0, lim
x→+∞ U(x) = u+ . (5.9)

Consider now a sequence of solutions with initial data on the lower boundary
of Ωn, i.e., U(x0) = u−, and set Un(x) to be the limit solution as x0 → −∞.
Thus we conclude (5.7), proving the claim.
Step 2 For every n ≥ 1 and τ ≥ 0, by triangle inequality we have

‖un(τ, ·) − û‖L1 ≤ ‖un(τ, ·) − Un‖L1 + ‖Un − û‖L1 . (5.10)

It remains to show that, if the constants δn ↓ 0 are suitably chosen, then both
terms on the right hand side of (5.10) tend to zero.

Consider the term ‖un(τ, ·) − Un‖L1 . Since the evolution equation (5.6)
generates a contractive semigroup, regarding un as an exact solution and
w(t, x) = Un(x) as an approximate solution, one obtains the error estimate

‖un(τ, ·) − Un‖L1 ≤ ‖un(0, ·) − Un‖L1 +
∫ τ

0

∫ ∣∣∣h(an, Un)x − εn(Un)xx

∣∣∣ dx.

Using (5.5), the second term on the right-hand side can be bounded by

τ

∫
δn

∣∣∣ [
(Un − u− + an − a−)(u+ − Un)

]
x

∣∣∣ dx.
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Putting together, we get the estimate

‖un(τ, ·) − Un‖L1 ≤ ‖un(0, ·) − û‖L1 + ‖Un − û‖L1

+ 2τδn

(
u+ − u−) [

(u+ − u−) + (a+ − a−)
]
. (5.11)

Step 3 By assumption, the initial data satisfy

lim
n→∞ ‖un(0, ·) − û‖L1 = 0 .

To complete the proof, it suffices to construct a sequence δn ↓ 0 so that, as
n → ∞, we have

lim
n→∞ ‖Un − û‖L1 = 0 . (5.12)

Let Un(x) be the stationary profile as constructed in Step 1. Then, we
have Un(0) ≥ u− for all n. On the interval x > 0, let U �

n be the solution of the
ODE

εn(U �
n)′ = δn(u+ − U �

n)(U �
n − u− + an(x) − a−) , U �

n(εn) = u−. (5.13)

For n sufficiently large, we have

an(x) − a− ≥ (a+ − a−)/2 ∀x ≥ εn.

Thus, we have (U �
n)′ > 0 for x ≥ εn, U �

n < u+, and (U �
n)′ = 0 for U �

n = u+,
and the solution satisfies

lim
x→+∞ U �

n(x) = u+.

Furthermore, the difference
(
u+ − U �

n(x)
)

approaches 0 at an exponential rate
with the exponent O (δn/εn), and thus is integrable on the interval x > εn for
every εn and δn. Therefore, we have, for some constant M̃ ,∫ +∞

εn

[
u+ − U �

n(x)
]

dx =
δn

εn
M̃. (5.14)

For n sufficiently large, we have Un(εn) > u−. A standard comparison argu-
ment gives

u+ ≥ Un(x) ≥ U �
n(x) ∀x ≥ εn. (5.15)

See Fig. 13 for an illustration. Thus, by (5.14) we have, for some constant M ,∫ +∞

εn

[
u+ − Un(x)

]
dx =

δn

εn
M. (5.16)

For x < 0, we discuss two cases. First, consider the bottom case in Fig. 12.
Since h is a smooth function, then as an converges to the jump function (1.7)
in L1, the function Un converges to û in L1. Thanks to the bounds

u− ≤ Un(x) ≤ Un(x), ∀x,

a squeezing argument implies that

lim
n→+∞

∫ 0

−∞
(Un(x) − u−) dx = 0 . (5.17)

Finally, consider the top case in Fig. 12, and write

w− =̇ lim
n→+∞ Un(x) > u−.
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Figure 13. Illustration of Un, U �
n and U �

n

In this case, we have

lim
n→∞ Un(x) =

{
u+, (x > 0),
w−, (x > 0).

For x < −εn, let U �
n be the solution of the following ODE

εn(U �
n)′ = δn(u+ − U �

n)(U �
n − u−), U �

n(−εn) = w−. (5.18)

Again, as x → −∞, the function U �
n approaches u− at an exponential rate

with the exponent O
(

δn
εn

)
. Thus, we have the following estimate,

∫ −εn

−∞

[
U �

n(x) − u−]
dx =

δn

εn
M, for some constant M. (5.19)

For n sufficiently large, we have Un(−εn) ≤ w−. Again, a comparison argument
gives

u− ≤ Un(x) ≤ U �
n(x), ∀x < −εn . (5.20)

Combining (5.16), (5.15), (5.17), (5.19) and (5.20), we finally arrive at

‖Un − û‖L1 ≤
∫ −εn

−∞

(
U �

n(x) − u−)
dx + 2εn

(
u+ − u−)

+
∫ ∞

εn

(
u+ − U �

n(x)
)

dx

= 2M
δn

εn
+ 2εn

(
u+ − u−)

.

The limit (5.12) is achieved by assuming δn/εn → 0 and εn → 0 as n → ∞,
completing the proof. �

5.2. Triangular systems

We remark that a similar result of Theorem 5.1 holds for the triangular system
(1.11) and its approximation (4.14), obtained by a similar proof as for Theo-
rem 5.1. The viscous shock αn for the second equation in (4.14) is monotone,
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therefore we only need the monotonicity of the mapping α 
→ h. We state the
Theorem below, and omit the proof.

Theorem 5.2. Consider the triangular system (1.11) and the viscous approxi-
mation (4.14), with the Riemann data (u±, α±). Assume that

α− < α+, g(α−) = g(α+) = 0, g(α) > 0 for α− < α < α+.

Let εn, ε′
n be two convergent sequences such that

lim
n→∞ εn = 0, lim

n→∞ ε′
n = 0.

Let u−, u+ be two states which satisfy the admissible conditions in Theorem 2.1,
and recall the jump function û in (2.5). Let un = un(t, x) be a sequence of solu-
tions to the viscous system (4.14), where the initial data un(0, x) satisfies (5.2).
If the following monotonicity condition holds
(M1) For every u, the function α 
→ h(α, u) is monotone. Namely, either

∂h

∂α
(α, u) ≥ 0 or

∂h

∂α
(α, u) ≤ 0 for all α, u.

Then, we have the convergence (5.3), uniformly as τ ranges in bounded sets.

5.3. Polymer flooding models

The application of Theorems 5.1 and 5.2 to the polymer flooding models (1.6)
in Lagrangian coordinate is straight forward. It is useful to translate the mono-
tonicity condition (M1) into a condition relating to the flux function f(s, c)
for the Eulerian models (1.3) and (1.1).

We claim that, this monotone assumption is equivalent to the monotone
assumption on the flux function c 
→ f(s, c). This means, if c 
→ f(s, c) is
monotone, then the graphs of the mappings (1/f(s, c1)) 
→ (−s/f(s, c1)) and
(1/f(s, c2)) 
→ (−s/f(s, c2)) for two distinct values of c1, c2 never crosses each
other. Indeed, if the graphs intersect at a point, then we must have, for some
s1, s2

1
f(s1, c1)

=
1

f(s2, c2)
,

s1
f(s1, c1)

=
s2

f(s2, c2)
.

This implies s1 = s2 = s, which further implies f(s, c1) = f(s, c2) for this s, a
contradiction to the monotone assumption on c 
→ f(s, c).

Thus, under the monotone assumption

∂f(s, c)
∂c

< 0, ∀(s, c), (5.21)

Theorem 5.2 ensures that all vanishing viscosity limits for the system (1.6) in
Lagrangian coordinate are the same. We remark that, the monotone assump-
tion (5.21) has a physical interpretation: the water phase has lower mobility if
it is dissolved with more polymers.

We remark that, for the viscous approximation (4.19) in Eulerian coor-
dinates, the convergence result for vanishing viscosity is still open. We are
tempted to conjecture that all vanishing viscosity limits ε1, ε2 → 0 are the
same if (5.21) holds.
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Figure 14. Simulation results for Example 6.1

6. Concluding remarks

We remark that the monotonicity conditions (M1)–(M2) are sufficient, but not
necessary. We offer a simple example.

Example 6.1. We revise Example 4.4, and let

h(a, u) = −(1 − a)(u − 2)2 − a(u − 5)2.

We see that hL(u), hR(u) are the same as in Example 4.4. Note also that the
graphs of hL, hR cross each other at u = 3.5, where the partial derivative ∂h

∂a
changes sign, so the monotonicity condition (M1) fails. However, the numer-
ical simulations, plotted in Fig. 14, indicate unique vanishing viscosity limit.
The admissible a-jump occurs at the intersection point of the graphs of hL, hR,
which is the same limit as in Theorem 2.1. Simple sketches of the vector fields
for the ODE (4.18) satisfies by the traveling waves would lead to the same
conclusion.

One may conjecture that some weaker assumptions suffice. However, a
precise formulation of a necessary condition and a detailed proof of uniqueness
with such assumptions seem challenging.

Acknowledgements

The author acknowledges useful discussion with Graziano Guerra, from Uni-
versity of Milano-Bicocca in Italy, which led to the construction of Example 4.4.

References

[1] Andreianov, B.: New approaches to describing admissibility of solutions of scalar
conservation laws with discontinuous flux. ESAIM Proc. Surv. 50, 40–65 (2015)

[2] Buckley, S.E., Leverett, M.: Mechanism of fluid displacement in sands. Trans.
AIME 146, 107–116 (1942)

[3] Gimse, T., Risebro, N.H.: Riemann problems with a discontinuous flux function.
In: Engquist, B., Gustafsson, B. (eds). Proceedings of Third International Con-
ference on Hyperbolic Problems. Theory, Numerical Method and Applications.
Studentlitteratur/Chartwell-Bratt, Lund-Bromley, pp. 488–502 (1991)



NoDEA On the uniqueness of vanishing viscosity Page 25 of 25 37

[4] Guerra, G., Shen, W.: Vanishing viscosity solutions of Riemann problems for
models of polymer flooding. In: Gesztesy, F., Hanche-Olsen, H., Jakobsen, E.,
Lyubarskii, Y., Risebro, N., Seip, K. (eds). To appear in “Partial Differential
Equations, Mathematical Physics, and Stochastic Analysis”. A Volume in Honor
of Helge Holden’s 60th Birthday. EMS Congress Reports. (2017)

[5] Oleinik, O.: Uniqueness and stability of the generalized solution of the Cauchy
problem for a quasilinear equation. Uspehi Mat. Nauk. 14(2) (86), pp. 165-170
(1959) (Russian). English Translation in Amer. Math. Soc. Transl. Ser. 2, 33,
pp. 285–290 (1964)

[6] Pires, A.P., Bedrikovetsky, P.G., Shapiro, A.A.: A splitting technique for analyt-
ical modelling of two-phase multicomponent flow in porous media. J. Pet. Sci.
Eng. 51, 54–67 (2006)

[7] Shen, W.: On the Cauchy problems for polymer flooding with gravitation. J.
Differ. Equ. 261, 627–653 (2016)

[8] Shen, W.: Scilab codes for all the simulations presented in this paper can be
found at: http://www.personal.psu.edu/wxs27/SIM/BressanSISSA

[9] Temple B.: Stability and decay in systems of conservation laws. In: Carasso, C.,
Raviart, P.A., Serre, D. (eds). Proceeding of Nonlinear Hyperbolic Problems.
Springer-Verlag, New York, (1986)

[10] Tveito, A., Winther, R.: Existence, uniqueness, and continuous dependence for
a system of hyperbolic conservation laws modeling polymer flooding. SIAM J.
Math. Anal. 22(4), 905–933 (1991)

[11] Wagner, D.: Equivalence of the Euler and Lagrangian equations of gas dynamics
for weak solutions. J. Differ. Equ. 68, 118–136 (1987)

Wen Shen
Mathematics Department
Pennsylvania State University
University Park
PA 16802
USA
e-mail: wxs27@psu.edu

Received: 28 December 2016.

Accepted: 31 May 2017.

http://www.personal.psu.edu/wxs27/SIM/BressanSISSA

	On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding
	Abstract
	1. Introduction
	2. Review of admissibility conditions and Riemann solver for partially viscous model
	3. Lack of continuous dependence on the coefficient a(x)
	4. Non-uniqueness of the double vanishing viscosity limits
	4.1. Scalar conservation laws with discontinuous flux functions
	4.2. Triangular systems
	4.3. Counter examples by numerical simulations
	4.4. Counter examples for polymer flooding models

	5. Uniqueness of the vanishing viscosity limit
	5.1. Scalar conservation laws with discontinuous flux
	5.2. Triangular systems
	5.3. Polymer flooding models

	6. Concluding remarks
	Acknowledgements
	References




