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gradient quadratic lower order terms
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Abstract. In this paper we deal with solutions of problems of the type{
−div

(
a(x)Du

(1+|u|)2
)

+ u = b(x)|Du|2
(1+|u|)3 + f in Ω,

u = 0 on ∂Ω,

where 0 < α ≤ a(x) ≤ β, |b(x)| ≤ γ, γ > 0, f ∈ L2(Ω) and Ω is a bounded
subset of R

N with N ≥ 3. We prove the existence of at least one solution
for such a problem in the space W 1,1

0 (Ω) ∩ L2(Ω) if the size of the lower
order term satisfies a smallness condition when compared with the prin-
cipal part of the operator. This kind of problems naturally appears when
one looks for positive minima of a functional whose model is:

J(v) =
α

2

∫
Ω

|Dv|2
(1 + |v|)2 +

12∫
Ω

|v|2 −
∫

Ω

f v, f ∈ L2(Ω) ,

where in this case a(x) ≡ b(x) = α > 0.
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Keywords. Nonlinear elliptic equations, W 1,1
0 (Ω) solutions,

Quadratic gradient terms.

1. Introduction

In this paper we prove existence results for a class of nonlinear elliptic prob-
lems with lower order term having quadratic (natural) growth with respect
to the gradient and whose principal part is strongly degenerate. Our model
problem is: ⎧⎨

⎩−div
(

αDu
(1+|u|)2

)
+ u = γ |Du|2

(1+|u|)3 + f in Ω,

u = 0 on ∂Ω,
(1.1)

where α, γ>0, f ∈Lm(Ω) with m≥2 and Ω is a bounded subset of R
N , N≥3.
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If α = γ, such kind of problems naturally appear as the (formal) Euler–
Lagrange equation satisfied by the positive minima of functionals J of the
type

J(v) =
1
2

∫
Ω

α|Dv|2
(1 + |v|)2 +

1
2

∫
Ω

|v|2 −
∫

Ω

f v.

Following the ideas of [7] the natural space to look for minima of J is the
space W 1,1

0 (Ω) ∩ L2(Ω).
We deal with solutions of a class of problems that, in general, do not

have a variational structure. Specifically, let a(x) be a measurable function
such that for some positive constants α and β it holds

0 < α ≤ a(x) ≤ β. (1.2)

Let also H(x, s, ξ) be a Carathéodory function such that

|H(x, s, ξ)| ≤ γ
|ξ|2

(1 + |s|)3 , (1.3)

for some γ > 0. Suppose moreover that

f(x) ∈ Lm(Ω), m ≥ 2. (1.4)

Under the above assumptions, we study the existence of solutions u of the
following boundary value problem:⎧⎨

⎩−div
(

a(x)Du
(1+|u|)2

)
+ u = H(x, u,Du) + f in Ω

u = 0 on ∂Ω,
(1.5)

in the following sense:

u ∈ W 1,1
0 (Ω) ∩ L2(Ω), such that

|Du|2
(1 + |u|)3 ∈ L1(Ω) ,

and ∫
Ω

a(x)
DuDψ

(1 + |u|)2 +
∫

Ω

uψ =
∫

Ω

H(x, u,Du)ψ +
∫

Ω

fψ,

for every ψ ∈ W 1,2
0 (Ω) ∩ L∞(Ω).

Note that every term in the above integral identity makes sense. Indeed,
by the assumptions (1.2) and (1.3), if |Du|2

(1+|u|)3 ∈ L1(Ω), then it follows that
Du

(1+|u|)2 ∈ L2(Ω)N and H(x, u,Du) ∈ L1(Ω).
We also observe that the presence of the zeroth order term in the left

hand side in the equation is crucial. Indeed it gives a sort of coerciveness to
the equation and it allows us to deduce that the differential operator is well
defined in the space W 1,1

0 (Ω) ∩ L2(Ω). We basically recover the same type of
results proved in [8] forH(x, s, ξ) ≡ 0. Equations with this type of degenerative
coercivity have been introduced in [9] and also studied in [6].

Now we state our main results.



Vol. 20 (2013) W 1,1
0 -solutions for nonlinear problems 1743

Theorem 1.1. Assume that (1.2), (1.3) and (1.4) hold true. If

α
m

2
− γ > 0, (1.6)

then there exists a solution u ∈ W 1,1
0 (Ω) ∩ Lm(Ω) of (1.5).

Moreover:
(1) if 2 < m < 4, then u ∈ W

1, m
2

0 (Ω);
(2) if m ≥ 4, then u ∈ W 1,2

0 (Ω);
(3) if m ≥ max{N, N

2 ( γ
α + 1)}, then u ∈ W 1,2

0 (Ω) ∩ L∞(Ω).

We first notice that assumption (1.6) relies to be a size condition on
the right hand side in the equation of (1.5). Actually it means that the term
H(x, u,Du) cannot exceed the principal part of the operator, up to a coeffi-
cient m

2 that depends on the regularity of the datum f . This kind of condition
is not completely new and naturally appears in this type of problems (see for
instance [1] and [15]).

Note that if f ∈ L2(Ω), the condition (1.6) implies that α > γ and thus
Theorem 1.1 does not cover the case m = 2 and α = γ.

We show that the arguments used to prove the Theorem 1.1 can be
adapted to the case m = 2 and α = γ provided that f belongs to a slightly
smaller space than L2(Ω).

Theorem 1.2. Assume that (1.2) and (1.3) hold with α = γ. If∫
Ω

|f |2 log(1 + |f |) < ∞,

then there exists a solution of (1.5).

The technique we use to obtain the existence of a solution in Theorems 1.1
and 1.2 relies on approximate (1.5) by a sequence of nondegenerate problems
with L∞(Ω)—data for which we prove suitable a priori estimates and com-
pactness results. Specifically, if fn(x) = f(x)

1+ 1
n |f(x)| and Hn(x, s, ξ) = H(x,s,ξ)

1+ 1
n |ξ|2 ,

we deal with a sequence {un} ⊂ W 1,2
0 (Ω) ∩ L∞(Ω) such that:∫

Ω

a(x)DunDψ

(1 + Tn(|un|))2 +
∫

Ω

unψ =
∫

Ω

Hn(x, un,Dun)ψ +
∫

Ω

fnψ, (1.7)

for any ψ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), where for any k ≥ 0, Tk(s) is the classical

truncation defined by Tk(s) = min{k,max{−k, s}}. Hereafter we also denote
Gk(s) = s− Tk(s).

We remark that the existence of such a sequence is a consequence of [12].
In order to prove that (1.5) is solvable, we pass to the limit in (1.7). The
difficulty to make it is twofold. From one side we need to prove a strong L1

compactness of the lower order term that has natural growth with respect to
the gradient. On the other hand, the strong degeneracy of the principal part
of the operator forces us to change framework. Indeed, we cannot expect the
solutions to belong to W 1,2

0 (Ω), but we look for them in a bigger space, namely
W 1,1

0 (Ω)∩L2(Ω). It, consequently, implies that we need to prove a compactness
result in such a space.
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In addition, we prove that the condition on the integrability of |f |2 log(1+
|f |) in Theorem 1.2 can be overcome in the case that (1.5) is variational. Spe-
cifically for f ∈ L2(Ω), and a(x) satisfying (1.2), we look for solutions of the
equation ∫

Ω

a(x)DuDϕ
(1 + |u|)2 +

∫
Ω

uϕ =
∫

Ω

fϕ+
∫

Ω

a(x)|Du|2
(1 + |u|)3 sign(u)ϕ, (1.8)

for every ϕ ∈ W 1,2
0 (Ω)∩L∞(Ω). Note that if u ∈ W 1,1

0 (Ω)∩L2(Ω) and |Du|2
(1+|u|)2 ∈

L1(Ω), then the functional J defined for v ∈ W 1,1
0 (Ω) ∩ L2(Ω) by

J(v) =

⎧⎪⎪⎨
⎪⎪⎩

1
2

∫
Ω

a(x)|Dv|2
(1 + |v|)2 +

1
2

∫
Ω

|v|2 −
∫

Ω

f v, if
∫
Ω

|Dv|2
(1+|v|)2 < +∞,

+∞, otherwise

(1.9)

is differentiable at u along every direction ϕ ∈ W 1,2
0 (Ω) ∩ L∞(Ω) with

derivative

< J ′(u), ϕ >

=
∫

Ω

a(x)
Du

(1 + |u|)2Dϕ+
∫

Ω

uϕ−
∫

Ω

fϕ−
∫

Ω

a(x)
|Du|2

(1 + |u|)3 sign(u)ϕ.

Hence every minimum of J is a solution of (1.8).
In [7] it was proved the existence of a function u ∈ W 1,1

0 (Ω)∩L2(Ω) such
that J(u) ≤ J(v) for any v ∈ W 1,2

0 (Ω). We slightly improve such a result (see
Theorem 4.1 below) by showing that u is in fact a minimum for J in the whole
W 1,1

0 (Ω) ∩ L2(Ω) and, therefore, a solution of (1.8).
Observe that in case that f ≥ 0, it is not difficult to prove that the min-

imum u is positive (J(u) ≥ J(u+)). Hence, if furthermore the function a(x) is
constant, i.e. a(x) ≡ α > 0, then problem (1.8) relies to be in the limit case
(condition (1.3) holds with α = γ) and (1.8) becomes (1.1).

2. A priori estimates

In this section we assume (1.2), (1.3) and (1.4) and we suppose that

α(m− 1) − γ > 0 (2.1)

holds true. Notice that such an assumption is less restrictive than (1.6), since
m ≥ 2.

Lemma 2.1. Assume that (1.2), (1.3), (1.4) and (2.1) hold true. If un ∈
W 1,2

0 (Ω) ∩ L∞(Ω) is a solution of (1.7), then for any k ≥ 0,∫
Ω

|Gk(un)|m ≤
∫

{k≤|un|}
|f |m. (2.2)

Moreover, there exist R > 0 and C0 depending on ‖f‖Lm(Ω), α and γ, such
that ∫

Ω

|Dun|2(1 + |un|)m−4 ≤ R, (2.3)
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and, for any k ≥ 0, ∫
Ω

|DTk(un)|2 ≤ C0 k
3. (2.4)

Proof. As we have already noticed, the existence of a solution un ∈ W 1,2
0 (Ω)∩

L∞(Ω) solving (1.7) is a consequence of [12].
Let us choose ψ = |Gk(un)|m−2Gk(un) as test function in (1.7), and use

(1.2) and (1.3) to deduce that

(m− 1)α
∫

Ω

|Dun|2
(1 + Tn(|un|))2 |Gk(un)|m−2 +

∫
Ω

|un||Gk(un)|m−1

≤
∫

Ω

|fn||Gk(un)|m−1 + γ

∫
Ω

|Dun|2
(1 + |un|)3 |Gk(un)|m−2|Gk(un)|.

Thus, joining the terms involving the gradient, we get

((m−1)α−γ)
∫

{|un|≥k+1}

|Dun|2
(1+|un|)2 +

∫
Ω

|Gk(un)|m

≤
∫

Ω

[
(m−1)α−γ |Gk(un)|

1+|un|
] |Dun|2
(1+|un|)2 |Gk(un)|m−2+

∫
Ω

|un||Gk(un)|m−1

≤
∫

Ω

|fn||Gk(un)|m−1.

By (2.1) the first term is positive and consequently, by (1.4) and Young inequal-
ity, we derive that (2.2) holds true for any k ≥ 0.

Let us choose now ψ = [(1 + |un|)m−1 − 1] sign(un) as test function in
(1.7). Again, using (1.2), (1.3) and (1.4), we have by Hölder inequality

((m− 1)α− γ)
∫

Ω

|Dun|2
(1 + |Tn(un)|)2 (1 + |un|)m−2

≤ ‖f‖Lm(Ω)

(∫
Ω

(1 + |un|)m

)1− 1
m

. (2.5)

By (2.2) with k = 0, (2.3) follows.
Finally we prove (2.4). If m ≥ 4, as a consequence of (2.3), the whole

sequence {un} is bounded in W 1,2
0 (Ω) and (2.4) holds.

In the case 2 ≤ m < 4, consider ψ = Tk(un) as test function in (1.7).
Using as usual (1.2) (1.3) and (1.4), we deduce that

α

∫
{|un|≤k}

|DTk(un)|2
(1 + |un|)2 +

∫
Ω

unTk(un) ≤ k(‖fn‖L1(Ω) + ‖Hn(x, un,Dun)‖L1(Ω))

≤ k(‖f‖L1(Ω) + γ R),

which also implies (2.4). �
Remark 2.2. Since m ≥ 2, the growth assumption (1.3) on H(x, s, ξ) and (2.3)
imply that there exists M = M(R) such that∫

Ω

|Hn(x, un,Dun)| ≤ γ

∫
Ω

|Dun|2
(1 + |un|)3 ≤ M. (2.6)
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As a consequence of the estimates of Lemma 2.1 we obtain the following
convergence results.

Proposition 2.3. Assume that (1.2), (1.3), (1.4) and (2.1) hold true. If {un} is
a sequence of solutions of (1.7), then there exists u ∈ W 1,1

0 (Ω) ∩ Lm(Ω) such
that, up to a subsequence,

un −→ u in W 1,1
0 (Ω) and in Lm(Ω).

In addition:
(i) if m > 2, then

un −→ u weakly in W 1,q
0 (Ω) with q = min{m

2
, 2};

(ii) if m > max{N, N
2

(
1 + γ

α

)}, then u ∈ L∞(Ω).

Remark 2.4. A consequence of the strong compactness in L1(Ω)N of Dun is
that, up to a subsequence, Dun(x) → Du(x) a.e. in Ω.

Remark 2.5. By the previous remark and the Fatou lemma we deduce from
(2.3) that ∫

Ω

|Du|2(1 + |u|)4−m ≤ R.

We also have, once again by (2.3) and the a.e. convergence of Dun, that

Dun

(1 + |un|)2− m
2

−→ Du

(1 + |u|)2− m
2

weakly in L2(Ω)N .

Proof of Proposition 2.3.

Step 1. Almost everywhere convergence of the sequence {un}.
We observe that, since m ≥ 2, a consequence of the estimate (2.3) is∫

Ω

|Dun|2
(1 + |un|)2 ≤ R.

So that the sequence {log(1+|un|)} is bounded inW 1,2
0 (Ω) and, by the Rellich–

Kondrakov compact embedding, it is compact in Lp(Ω), for any 1 ≤ p < 2∗.
Hence there exists a function u such that, up to subsequences,

un(x) → u(x) a.e. in Ω.

Step 2. Weak convergence of truncations Tk(un) in W 1,2
0 (Ω).

Thanks to Fatou lemma we deduce from (2.2) that u belongs to Lm(Ω). More-
over by (2.4) we have that, up to subsequences,

Tk(un) ⇀ Tk(u) in W 1,2
0 (Ω). (2.7)

Step 3. Strong convergence of un in Lm(Ω).
Notice that, by (2.2) with k = 0, we have, for any j > 0

meas{j ≤ |un|} ≤
‖f‖m

Lm(Ω)

jm
.
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Thus, for any ε > 0, there exists j∗(ε), independent from n, such that for any
j ≥ j∗(ε), 2m−1

∫
{|un|≥j} |f |m ≤ ε, thanks to the absolute continuity of the

integral.
Hence, for every measurable subset E ⊂ Ω and any positive j we have,

by (2.2), that∫
E

|un|m ≤ 2m−1

∫
E

|Tj(un)|m + 2m−1

∫
Ω

|Gj(un)|m

≤ 2m−1jmmeas(E) + 2m−1

∫
{|un|≥j}

|f |m ≤ 2m−1jmmeas(E) + ε,

that implies the equi-integrability of the sequence {|un|m}. The almost every-
where convergence of un(x) to u(x) and Vitali Theorem imply that un con-
verges to u in Lm(Ω).

Step 4. Dun → Du weakly in L1(Ω)N .
We follow the ideas contained in [8]. For any measurable set E ⊂ Ω we have,
using (2.3) with m = 2,∫

E

|Dun| =
∫

E

|Dun|
1 + |un| (1 + |un|)

≤
[ ∫

Ω

|Dun|2
(1 + |un|)2

] 1
2
[ ∫

E

(1 + |un|)2
] 1

2

≤ R
1
2

[ ∫
E

(1 + |un|)2
] 1

2

.

Thanks to Vitali Theorem and by Step 3 we have that

lim
meas(E)→0

∫
E

|Dun| = 0, uniformly with respect to n.

Thus by Dunford Pettis theorem, we deduce that Du exists in L1(Ω)N and
that it is the weak-L1(Ω)N limit of Dun.
Step 5. Strong convergence of Dun to Du in L1(Ω).
For the proof of this step, we have been inspired by [2] and [5]. For k, h > 0,
let us choose ψ = Th[un − Tk(u)] as test function in (1.7) (this test function is
admissible since Tk(u) ∈ W 1,2

0 (Ω) ∩ L∞(Ω)) and we obtain∫
Ω

a(x)Dun

(1+|Tn(un)|)2DTh[un−Tk(u)]+
∫

Ω

unTh[un−Tk(u)]≤hM, (2.8)

where M = ‖f‖
L1(Ω)

+ γ R. By (2.7) we have

lim
n→∞

∫
Ω

a(x)DTk(u)
(1 + |Tn(un)|)2DTh[un − Tk(u)] = 0.

Moreover, thanks to the L2 convergence of un, the second integral in (2.8)
converges (as n diverges) to a positive number. Thus, it yields to

α

∫
Ω

|DTh[un − Tk(u)]|2
(1 + |un|)2 ≤ hM + ω(n), (2.9)
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where by ω(n) we denote any quantity that vanishes as n diverges. Hence, by
Hölder inequality, we deduce that∫{|un−u|≤h

|u|≤k
} |D(un−u)|=

∫
Ω

|DTh[un − Tk(u)]|
∫

Ω

|DTh[un−Tk(u)]|
1+|un| (1+|un|)

≤
[ ∫

Ω

|DTh[un−Tk(u)]|2
(1+|un|)2

] 1
2
[ ∫

Ω

(1+|un|)2
] 1

2

≤
√
hM+ω(n)

α
Cf , (2.10)

where in the last inequality we have used (2.9) and (2.2) with m = 2 and
k = 0.

Fix, now, ε > 0 and h > 0 such that Cf

√
hM
α ≤ ε. Thanks to Step 4 and

the absolute continuity of the integral, there exists k∗ (independent from n)
such that, for k > k∗, we have∫

{|u|>k}
|Dun| +

∫
{|u|>k}

|Du| ≤ ε. (2.11)

In addition, by the convergence in measure of un to u, Step 4 and once
again by Dunford Pettis Theorem, we deduce that there exists n(h, ε) such
that, for n > n(h, ε), we have∫

{|un−u|>h}
|D(un − u)| ≤ ε. (2.12)

As a consequence of (2.10), (2.11), (2.12), we conclude∫
Ω

|D(un−u)|

=
∫{|un−u|≤h

|u|≤k
} |D(un−u)|+

∫{|un−u|≤h

|u|>k
} |D(un − u)|+

∫
{|un−u|>h}

|D(un − u)|

≤ 3ε+ ω(n), ∀n > n(h, ε).

This proves the strong convergence of Dun to Du in L1(Ω)N .

Step 6. We prove, following the idea of [10], that (i) holds true.
It is clear that if m ≥ 4, then (2.3) directly implies that the sequence

{un} is bounded in W 1,2
0 (Ω).

On the other hand, if 2 < m < 4, we use Hölder inequality with exponents
4
m and 4

4−m , to obtain∫
Ω

|Dun|m
2 =

∫
Ω

|Dun|m
2

(1 + |un|)m
4 (4−m)

(1 + |un|)m
4 (4−m)

≤
[ ∫

Ω

|Dun|2
(1 + |un|)4−m

] 4
m

[ ∫
Ω

(1 + |un|)m

]1− 4
m

.

Hence, in this case, we conclude by using (2.2) and (2.3) that the sequence
{un} is bounded in W 1, m

2
0 (Ω).



Vol. 20 (2013) W 1,1
0 -solutions for nonlinear problems 1749

Therefore, in both cases, {un} is bounded in W 1,q
0 (Ω), with q =

min{m
2 , 2}, and consequently (i) is easily deduced.

Step 7. Finally, we prove that (ii) holds.
Since m > N

2 (1 + γ
α ), we have 1

2

(
γ
α − 1

)
< m

N − 1. Let us choose σ > 0 such
that

1
2

( γ
α

− 1
)
< σ <

m

N
− 1.

By (1.2) and (1.3), if we take [(1 + |un|)2σ+1 − (1 + k)2σ+1]+sign(un) as test
function in (1.7), we get

(2σ+1)α
∫

Ω

|DGk(un)|2(1+|un|)2σ−2+
∫

Ω

|un|[(1 + |un|)2σ+1−(1 + k)2σ+1]+

≤ γ

∫
Ω

|DGk(un)|2
(1+|un|)3 (1 + |un|)2σ+1+

∫
Ω

|fn|[(1+|un|)2σ+1 − (1 + k)2σ+1]+.

By Sobolev and Young inequalities, we deduce that:

[(2σ + 1)α− γ]
S2

σ2

(∫
{k≤|un|}

[(1 + |un|)σ − (1 + k)σ]2
∗
) 2

2∗

≤
∫

{k≤|un|}
C1 +

∫
{k≤|un|}

C1 |f |2σ+2 ≤ Cmmeas {k ≤ |un|}1− 2σ+2
m ,

where S denotes the best constant in Sobolev inequality. Defining zn = (1 +
|un|)σ and h = (1 + k)σ, the above inequality becomes

[(2σ + 1)α− γ]
S2

σ2

( ∫
{h≤zn}

(zn − h)2
∗
) 2

2∗

≤ Cmmeas{h ≤ zn}1− 2σ+2
m .

Since the assumption σ < m
N − 1 implies that 2

2∗ > 1 − 2σ+2
m , the boundedness

of the sequence {zn} (and then of {un}) follows by Lemma 3.1 in [16]. �

Remark 2.6. Observe that if 2 < m < 4, then it is easy to deduce the strong
convergence of un to u in W 1,q

0 (Ω) with q = m/2. Indeed, since we know that
un is strongly compact in Lm(Ω) and its gradient a.e. converges in Ω, for any
E ⊂ Ω measurable, we have by (2.3):∫

E

|Dun|m
2 ≤

[ ∫
Ω

|Dun|2
(1+|un|)4−m

] 4
m

[ ∫
E

(1+|un|)m

]1− 4
m

≤R 4
mC

[ ∫
E

|un|m
]1− 4

m

for a positive constant C. Hence by Vitali Theorem un is strongly compact in
W 1,q

0 (Ω).

3. Passing to the limit

This section is devoted to the proof of Theorem 1.1, which follows the ideas of
[1], [4], [11], [13] and [14].

Proof of Theorem 1.1. We first observe that since m ≥ 2, condition
(1.6) implies (2.1). Hence the results of the previous section hold true. Let
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αm
2 − γ > 0 and let us define the following function:

g(s) =

{ 1+s
α m

2 −γ , if s ≥ 0,
1

(1−s)(α m
2 −γ) , is s < 0.

(3.1)

Observe that g ∈ C1(R) verifies

{
αm

2 g
′(s) − γ g(s)

1+|s| > 0, in R,

g(s) > 0, in R.
(3.2)

Moreover, we define the following family of cut-off functions:

Rk(s) = 1 − |T1(Gk(s))|, ∀k > 0. (3.3)

Clearly, Rk ≥ 0, supp Rk(s) ⊂ [−k − 1, k + 1] and

R′(s) =

⎧⎨
⎩

1 if − k − 1 ≤ s ≤ −k,
−1 if k ≤ s ≤ k + 1,
0 otherwise.

(3.4)

To show that u is a solution of (1.5), the first part is the proof of the
inequality

∫
Ω

a(x)DuDφ
(1 + |u|)2 +

∫
Ω

uφ ≤
∫

Ω

H(x, u,Du)φ+
∫

Ω

fφ, (3.5)

for any φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), φ ≥ 0.

First of all, note that the a.e. convergence of Dun (see Remark 2.4) and
its L2 boundedness (see (2.5)) imply both

Dun

(1 + Tn(|un|))2 g
m
2 (un) −→ Du

(1 + |u|)2 g
m
2 (u) weakly in L2(Ω)N , (3.6)

and

Dun

(1+Tn(|un|))2
1

g
m
2 (un)

−→ Du

(1+|u|)2
1

g
m
2 (u)

weakly in L2(Ω)N , (3.7)

where g is the function defined in (3.1).
Recalling also the definition of Rk given (3.3) we use

ψ =
g

m
2 (un)
g

m
2 (u)

Rk(u)φ
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as test function in (1.7) and we deduce that∫
Ω

a(x)DunDφ

(1+Tn(|un|))2
g

m
2 (un)
g

m
2 (u)

Rk(u)−m

2

∫
Ω

a(x)DunDu

(1+Tn(|un|))2
g

m
2 (un)

g
m
2+1(u)

g′(u)Rk(u)φ

+
∫

Ω

a(x)DunDu

(1+Tn(|un|))2
g

m
2 (un)
g

m
2 (u)

R′
k(u)φ

+
m

2

∫
Ω

a(x)DunDun

(1+Tn(|un|))2
g

m
2 −1(un)
g

m
2 (u)

g′(un)Rk(u)φ

−
∫

Ω

Hn(x, un,Dun)
g

m
2 (un)
g

m
2 (u)

Rk(u)φ

+
∫

Ω

un
g

m
2 (un)
g

m
2 (u)

Rk(u)φ =
∫

Ω

fn
g

m
2 (un)
g

m
2 (u)

Rk(u)φ. (3.8)

Using (1.2), (1.3), (1.6) and (3.2) we have[
m

2
a(x)DunDun

(1 + Tn(|un|))2 g
′(un) −Hn(x, un,Dun)g(un)

]

≥
[
α
m

2
g′(un) − γ

g(un)
1 + |un|

] |Dun|2
(1 + |un|)2 ≥ 0. (3.9)

Hence, by Fatou lemma, we obtain

lim inf
n→∞

m

2

∫
Ω

a(x)DunDun

(1 + Tn(|un|))2
g

m
2 −1(un)
g

m
2 (u)

g′(un)φ−
∫

Ω

Hn(x, un,Dun)
g

m
2 (un)
g

m
2 (u)

φ

≥ m

2

∫
Ω

a(x)DuDu
(1 + |u|)2

g′(u)
g(u)

φ−
∫

Ω

H(x, u,Du)φ. (3.10)

In addition, since φ ∈ W 1,2
0 (Ω) and

Rk(u)
g

m
2 (u)

is bounded, by (3.6) we have

lim
n→∞

∫
Ω

a(x)DunDφ

(1 + Tn(|un|))2
g

m
2 (un)
g

m
2 (u)

Rk(u) =
∫

Ω

a(x)DuDφ
(1 + |u|)2 Rk(u).

Similarly, using the strong Lm(Ω) compactness of (un − fn), we also deduce
that

lim
n→∞

∫
Ω

(un − fn)
g

m
2 (un)
g

m
2 (u)

Rk(u)φ =
∫

Ω

(u− f)Rk(u)φ. (3.11)

On the other hand, it is not hard to see that

Du

g
m
2 +1(u)

g′(u)Rk(u) ∈ L2(Ω)N ,

so that, again by (3.6), we have:

lim
n→∞ − m

2

∫
Ω

a(x)DunDu

(1 + Tn(|un|))2
g

m
2 (un)

g
m
2 +1(u)

g′(u)Rk(u)φ

= −m

2

∫
Ω

a(x)DuDu
(1 + |u|)2

g′(u)
g(u)

Rk(u)φ.
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Moreover, we claim that

lim
k→∞

lim
n→∞

∫
Ω

a(x)DunDu

(1 + Tn(|un|))2
g

m
2 (un)
g

m
2 (u)

R′
k(u)φ = 0. (3.12)

Indeed, recalling (3.4) we deduce that

lim
n→∞

∫
Ω

a(x)DunDu

(1 + Tn(|un|))2
g

m
2 (un)
g

m
2 (u)

R′
k(u)φ =

∫
Ω

a(x)DuDu
(1 + |u|)2 R′

k(u)φ.

Choosing ψ = T1(Gk(un)) as test function in (1.7), we obtain∫
{k≤|un|≤k+1}

a(x)DunDun

(1 + Tn(|un|))2 ≤
∫

{k≤|un|}
|fn| +

∫
Ω

|H(x, un, Dun)||T1(Gk(un))|

≤
∫

{k≤|un|}
|fn| +

∫
{k≤|un|}

γ
|Dun|2

(1 + |un|)3 ≤
∫

{k≤|un|}
|fn| +

∫
{k≤|un|}

γ
|Dun|2

(1 + |un|)2 .

Using Fatou lemma and Remark 2.5 we deduce that

lim
k→∞

∫
{k≤|u|≤k+1}

a(x)DuDu
(1 + |u|)2 = 0,

and (3.12) follows.
Gathering together (3.10), (3.11), (3.12) and passing to the limit in (3.8)

first with respect to n and after as k tends to infinity, we deduce that (3.5)
holds true.

We want, now, to show that the reverse inequality holds true, namely
that ∫

Ω

a(x)
(1 + u)2

DuDφ+
∫

Ω

uφ ≥
∫

Ω

H(x, u,Du)φ+
∫

Ω

fφ, (3.13)

for any φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), φ ≥ 0. In order prove such inequality we

choose

ψ =
g

m
2 (u)

g
m
2 (un)

Rk(u)φ

as test function in (1.7) and we get∫
Ω

a(x)DunDφ

(1+Tn(|un|))2
g

m
2 (u)

g
m
2 (un)

Rk(u)+
∫

Ω

a(x)DunDu

(1+Tn(|un|))2
g

m
2 (u)

g
m
2 (un)

R′
k(u)φ

+
m

2

∫
Ω

a(x)DunDu

(1+Tn(|un|))2
g

m
2 −1(u)

g
m
2 (un)

g′(u)Rk(u)φ

+
∫

Ω

un
g

m
2 (u)

g
m
2 (un)

Rk(u)φ−
∫

Ω

fn
g

m
2 (u)

g
m
2 (un)

Rk(u)φ

=
m

2

∫
Ω

a(x)DunDun

(1+Tn(|un|))2
g

m
2 (u)

g
m
2+1(un)

g′(un)Rk(u)φ

+
∫

Ω

Hn(x, un,Dun)
g

m
2 (u)

g
m
2 (un)

Rk(u)φ. (3.14)
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We follow, step by step, the proof of inequality (3.5) with just a small change.
Indeed we can pass to the limit in the left hand side above exploiting that
(3.11) holds and using (3.7).

In order to get rid of the right hand side of (3.14) we use Fatou lemma,
using that[

m

2
a(x)DunDun

(1 + Tn(|un|))2 g
′(un) +Hn(x, un,Dun)g(un)

]
Rk(u)φ

g
m
2 (u)

g
m
2 +1(un)

≥
[
α
m

2
g′(un)Rk(u) − γg(un)

]
Rk(u)φ

g
m
2 (u)

g
m
2 +1(un)

|Dun|2
(1 + |un|)2 ≥ 0,

where last inequality holds since g verifies (3.2). By applying Fatou lemma
we deduce the convergence of the right hand side of (3.14) and consequently
(3.13) follows.

Gathering together (3.5) and (3.13) we deduce that u ∈ W 1,1
0 (Ω)∩Lm(Ω)

solves (1.5) for any test function φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω) positive. In order to

generalize it to any test function (without any restriction on its sign) we just
have to deal first with its positive part and then with its negative part.

Finally, the regularity results (1)–(3) of Theorem 1.1 are a direct conse-
quence of Proposition 2.3. �

4. The limit case

This section is devoted to prove the results in the limit case. We start by prov-
ing Theorem 1.2, that is, the existence of a solution in the case α = γ if the
datum belongs to a smaller space than L2(Ω).

Proof of Theorem 1.2. The proof follows the steps of Theorem 1.1.

Step 1. un a.e. converges to u ∈ L2(Ω).
Let us consider the real function η given by

η(t) = (1 + |t|) log(1 + |t|)sign(t), t ∈ R.

Choosing ψ = η(un) as test function in (1.7), we deduce, by (1.2) and (1.3)
with α = γ, that

α

∫
Ω

|Dun|2
(1+|un|)2 η

′(un)+
∫

Ω

|un||η(un)|≤
∫

Ω

|fn||η(un)|+α
∫

Ω

|Dun|2
(1+|un|)3 η(un).

Since η′(t) − |η(t)|
1 + |t| = 1 for every t ∈ R, we derive that

α

∫
Ω

|Dun|2
(1 + |un|)2 +

1
2

∫
Ω

|un||η(un)|

≤
∫

{ 1
2 |un|≤|f |}

|f ||η(un)| +
∫

{ 1
2 |un|≥|f |}

|f ||η(un)|

≤
∫

{ 1
2 |un|≤|f |}

|f ||η(2|f |)| +
1
2

∫
{ 1

2 |un|≥|f |}
|un||η(un)|
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and, consequently, there exists a constant C1 > 0 such that

α

∫
Ω

|Dun|2
(1 + |un|)2 +

1
2

∫
Ω

|un||η(un)| ≤ C1

(
1 +

∫
Ω

|f |2 log(1 + |f |)
)
.

This implies that log(1+ |un|) is bounded in W 1,2
0 (Ω) and Step 1 is concluded.

Step 2. A priori estimates.
Choosing now, for any k ≥ 0, ψ = η(Gk(un)) as test function in (1.7)

and arguing as in the above Step 1, we deduce that∫
Ω

|DGk(un)|2
(1 + |un|)2 +

1
2

∫
Ω

|un||η(Gk(un))| ≤ C1

(
1 +

∫
{k≤|un|}

|f |2 log(1 + |f |)
)
.

Step 3. Dun weakly converges to Du in L1(Ω)N .
Arguing as in Steps 3 and 4 of the proof of Proposition 2.3, we get the

strong compactness of the sequence {un} in L2(Ω) and the weak L1(Ω)N con-
vergence of Dun is deduced.

Step 4. u is a solution of (1.5).
Following the ideas of Step 5 of Proposition 2.3, it is easy to show the

strong compactness of un in W 1,1
0 (Ω).

Thus, in order to prove that u turns out to be a solution of (3.13), we
first show that it is a subsolution of (1.5), i.e. u satisfies (3.5). To make it, we
follow the ideas of the proof in Theorem 1.1 by choosing in this case, for any
positive k, the test function

ψ =
h(un)
h(u)

Rk(u)φ

in (1.7), where φ ∈ W 1,2
0 (Ω) ∩ L∞(Ω), φ ≥ 0, Rk(s) is the function defined in

(3.3) and h(s) is given by

h(s) =

{
1 + s if s ≥ 0

1
1 − s

if s < 0.
(4.1)

Notice that h is positive, increasing and it verifies

h′(s) − h(s)
1 + |s| ≥ 0 in R.

Hence, we perform the same proof of of the first part of Theorem 1.1 and
we get (3.5).

Analogously, in order to prove that u is supersolution of (1.5) [i.e., u
verifies (3.13)] we deal with the following test function:

ψ =
h(u)
h(un)

Rk(u)φ

in (1.7), where φ ∈ W 1,2
0 (Ω)∩L∞(Ω), φ ≥ 0, Rk(s) is defined in (3.3) and h(s)

in (4.1). Following the second part of the proof of Theorem 1.1, we obtain
(3.13). Thus we deduce the existence of a solution for (1.5) just by gathering
together (3.5) and (3.13) and dealing, as before, with the positive and negative
part of φ. �
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Finally, we prove the existence of a minimum in W 1,1
0 (Ω) ∩ L2(Ω) of the

functional J given by (1.9). As it has been mentioned it implies the existence
of a solution for (1.8). The proof is essentially contained in [7].

Theorem 4.1. If f ∈ L2(Ω) and a(x) satisfies (1.2), then there exists a solution
of (1.8) which is a minimum in W 1,1

0 (Ω) ∩ L2(Ω) of the functional J defined
in (1.9).

Proof. In [7] it is proved the existence of a function u ∈ W 1,1
0 (Ω) ∩ L2(Ω)

such that

J(u) ≤ J(v), ∀v ∈ W 1,2
0 (Ω), (4.2)

where J is the functional given by (1.9).
We claim that u is a minimum in the whole W 1,1

0 (Ω) ∩ L2(Ω). Indeed,
assume by contradiction that there exists w ∈ W 1,1

0 (Ω) ∩ L2(Ω) such that
J(w) < J(u) < +∞. This implies that∫

Ω

a(x)|Dw|2
(1 + |w|)2 < +∞, (4.3)

and consequently

lim sup
k→∞

J(Tk(w)) ≤ J(w) + lim
k→∞

∫
Ω

fGk(w) = J(w) < J(u).

In particular, if we fix k large enough, the function z := Tk(w) ∈ W 1,1
0 (Ω) ∩

L∞(Ω) satisfies

J(z) < J(u). (4.4)

Since z ∈ L∞(Ω) and (4.3) holds true, we get from (1.2) that

α

(1 + ‖z‖∞)2

∫
Ω

|Dz|2 ≤
∫

Ω

a(x)|Dz|2
(1 + |z|)2 < +∞,

i.e., z ∈ W 1,2
0 (Ω) ∩L∞(Ω). Therefore (4.4) contradicts (4.2) proving that nec-

essarily

J(u) ≤ J(v), ∀v ∈ W 1,1
0 (Ω) ∩ L2(Ω)

and, thus, u satisfies (1.8). �

Remark 4.2. Observe that, if the solution is bounded, then the principal part of
the operator is not anymore degenerate and the existence of a solution of (1.1)
becomes trivial. Hence, we want to stress that if the datum on the right hand
side is not sufficiently regular, then unbounded solutions may exist. Indeed
assume that f(x) = α(N−1)+1−γ

|x| − 1, then a positive solution of

−div
(
α

∇u
(1 + u)2

)
+ u− γ

|∇u|2
(1 + u)3

= f(x) in B(0, 1),

is u(|x|) = 1
|x| − 1. Since f belongs to Lm(B(0, 1)), ∀1 < m < N , accord-

ing to the hypotheses of Theorem 1.1, we can only deduce that u belongs to
W 1,2

0 (Ω) ∩ Lm(B(0, 1)), but not to L∞(B(0, 1)).
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Facultad de Ciencias
Universidad de Granada
Campus Fuentenueva S/N 18071
Granada
Spain
e-mail: darcoya@ugr.es

Lucio Boccardo
Dipartimento di Matematica
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