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Abstract. The aim of this paper is investigating the existence and the
multiplicity of weak solutions of the quasilinear elliptic problem{ −Δpu = g(x, u) in Ω,

u = 0 on ∂Ω,

where 1 < p < +∞, Δpu = div(|∇u|p−2∇u), Ω is an open bounded
domain of R

N (N ≥ 3) with smooth boundary ∂Ω and the nonlinearity g
behaves as up−1 at infinity. The main tools of the proof are some abstract
critical point theorems in Bartolo et al. (Nonlinear Anal. 7: 981–1012,
1983), but extended to Banach spaces, and two sequences of quasi–eigen-
values for the p–Laplacian operator as in Candela and Palmieri (Calc.
Var. 34: 495–530, 2009), Li and Zhou (J. Lond. Math. Soc. 65: 123–138,
2002).
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1. Introduction

Let us consider the following quasilinear elliptic problem{−Δpu = g(x, u) in Ω,
u = 0 on ∂Ω, (1.1)

where 1 < p < +∞, Δpu = div(|∇u|p−2∇u), Ω is an open bounded domain
of R

N (N ≥ 3) with smooth boundary ∂Ω and g is a given real function on
Ω × R.

Partially supported by M.I.U.R. Research Project PRIN2009 “Metodi Variazionali e Topo-
logici nello Studio di Fenomeni Nonlineari”.
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Our aim is obtaining solutions of problem (1.1) when g is asymptotically
“linear”, i.e. there exists

lim
|t|→+∞

g(x, t)
|t|p−2t

∈ R uniformly with respect to x ∈ Ω.

So, we consider the interaction of g with the spectrum σ(−Δp) of the p-La-
placian operator −Δp in W 1,p

0 (Ω), using some sequences of eigenvalues and of
quasi-eigenvalues for the p-Laplacian.

It is well known that if p = 2 the spectrum of −Δ in H1
0 (Ω) consists of

a diverging sequence (λk)k of eigenvalues, repeated according to their multi-
plicity, satisfying 0 < λ1, < λ2 ≤ . . . ≤ λk ≤ . . . . On the other hand, when
p �= 2 the full spectrum of −Δp is still unknown, even if various authors have
been introducing different characterizations of eigenvalues and definitions of
quasi-eigenvalues. Here, we use two sequences of quasi-eigenvalues, denoted
by (ηk)k and (νk)k, following respectively [10,16] (such sequences and their
properties are fully described in Sect. 2).

Throughout this paper we suppose that there exist l∞ ∈ R and f :
Ω × R → R such that

g(x, t) = l∞|t|p−2t+ f(x, t), (1.2)

so problem (1.1) becomes

(P∞)
{−Δpu− l∞|u|p−2u = f(x, u) in Ω,
u = 0 on ∂Ω.

Starting from (1.2), let us introduce the following assumptions:
(H0) f is a Carathéodory function (i.e., f(·, t) is measurable in Ω for all t ∈ R

and f(x, ·) is continuous in R for a.e. x ∈ Ω) and

sup
|t|≤r

|f(·, t)| ∈ L∞(Ω) for all r > 0;

(H1) there exists

lim
|t|→+∞

f(x, t)
|t|p−2t

= 0 uniformly with respect to a.e. x ∈ Ω;

(H2) there exists

lim
t→0

f(x, t)
|t|p−2t

= l0 ∈ R uniformly with respect to a.e. x ∈ Ω;

(H3) l∞ �∈ σ(−Δp);
(H4) there exist h, k ∈ N, with k ≥ h, such that

min{l0 + l∞, l∞} < ηh ≤ νk < max{l0 + l∞, l∞},
where (ηh)h, (νk)k are respectively as in (2.4) and (2.6) below;

(H5) f(x, ·) is odd for a.e. x ∈ Ω.

We are ready to state our multiplicity result for problem (P∞), point-
ing out that by a solution of (P∞) we mean a weak solution, i.e. a function
u ∈ W 1,p

0 (Ω) satisfying the problem in the sense of distributions. Clearly, (H2)
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implies that u = 0 is a solution of the problem; hence we look for non-trivial
solutions.

Theorem 1.1. Assume that (H0)− (H5) hold. Then, problem (P∞) has at least
k − h+ 1 distinct pairs of non-trivial solutions.

A result similar to Theorem 1.1 holds also if assumption (H3), corre-
sponding to the so-called non-resonant case, is avoided, up to assume some-
thing stronger on f . Here, as in [16], we assume

(H ′
3) l∞ ∈ σ(−Δp);

(H6) there exists

lim
|t|→+∞

(f(x, t)t− pF (x, t)) = +∞ uniformly with respect to a.e. x ∈ Ω,

with F (x, t) =
∫ t
0
f(x, s) ds;

hence the following result can be stated.

Theorem 1.2. Assume that (H0) − (H2), (H ′
3) and (H4) − (H6) hold. Then,

problem (P∞) has at least k − h+ 1 distinct pairs of non-trivial solutions.

Remark 1.3. The previous multiplicity results hold also if the limit in (H2) is
infinite, i.e. l0 ∈ {±∞} (see Remark 3.2 for more details).

The multiplicity results above are stated in particular under the assump-
tion (H5), by the way, the existence of at least a non-trivial solution can also
be proved in the non-symmetric case. For instance, using the above notations,
let us assume that

(H7) there exists k ∈ N such that

min{l0 + l∞, l∞} < ηk ≤ νk < max{l0 + l∞, l∞}
and

νk−1 < νk = νk+1 = . . . = νk̄ < ηk̄+1 for k̄ ∈ N, k̄ ≥ k; (1.3)

(H8) for k ∈ N as in (H7), there exists ε0 > 0 such that

(νk−1 + ε0 − l∞)
|t|p
p

≤ F (x, t) for a.e. x ∈ Ω and for all t ∈ R.

Then, the following results can be stated, both in the non-resonant and
in the resonant case.

Theorem 1.4. Assume that (H0) − (H3) and (H7) − (H8) hold. Then, problem
(P∞) has at least a non-trivial solution.

Theorem 1.5. Assume that (H0) − (H2), (H ′
3) and (H6) − (H8) hold. Then,

problem (P∞) has at least a non-trivial solution.

Remark 1.6. The previous existence results hold also when the limit in (H2)
is infinite (see Remark 4.1 for more details).
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Remark 1.7. By Proposition 2.9 and the monotonicity of (νk)k (see Sect. 2),
we have that ηh ≤ νk for k ≥ h ≥ 1; thus this inequality is not an assumption,
even if it appears in (H4) and (H7). Moreover, (H1), (H2) and (H8) imply that
νk−1 < min{l0 + l∞, l∞}, hence, without loss of generality, in (H7) we assume
that νk is the smallest quasi-eigenvalue such that νk > min{l0+l∞, l∞} > νk−1.

When p = 2 problem (P∞) is known as the asymptotically linear one and
has been widely investigated (see [1,5] and references therein). In this case
νk = ηk = λk for all k ∈ N (see Sect. 2) , so our results reduce to classical ones
or some extensions of them (see also [6, Theorem 3.1], [16, Theorem 1.2]).

In spite of the large amount of papers dealing with this kind of nonlin-
earities in the semilinear case, only a few results have been obtained when
p �= 2. Namely, some existence results can be found in [3,4,9,12,15,19,20]. In
particular, in [15, Theorem 1.1] the existence of a non-trivial positive solution
is obtained for l0 + l∞ = 0 and l∞ > μ1 (see (2.1)), both in the non-resonant
and in the resonant case. On the other hand, under some additional conditions
on the nonlinearity f near 0, Liu and Li find non-zero solutions via Morse the-
ory (cf. [19, Theorems 1.2 and 1.3]). Moreover, under assumptions comparable
with ours, in [20, Theorem 1.1] Perera and Szulkin use a suitable notion of
linking for finding a solution if l0 + l∞, l∞ �∈ σ(−Δp).

For what concerns multiple solutions, we are aware only of two results.
More precisely, in [16] Li and Zhou use the Symmetric Mountain Pass Theorem
when the Cerami compactness condition holds (cf. Definition 2.1), proving a
multiplicity result if l0 + l∞ = 0; moreover, under further assumptions, they
consider both the resonant case and the circumstance l∞ = +∞. At least if
l∞ /∈ σ(−Δp), their result is improved in [20, Theorem 1.2], where it is allowed
that l0 + l∞ �= 0, even if it is required that l0 + l∞ �∈ σ(−Δp).

Our approach differs from that in [20] since, following [5], we use the
pseudo-index theory related to the Krasnoselskii genus (cf. [7] and here Sect. 2),
although in [5] only Hilbert spaces are considered and the nonlinearity inter-
acts with the completely known spectrum of −Δ in H1

0 (Ω). On the other
hand, in [20] the authors construct a sequence of eigenvalues (see Sect. 2) and
use the pseudo-index theory related to the cohomological index of Fadell and
Rabinowitz [13].

This paper is organized as follows: in Sect. 2 we define the sequences
of quasi-eigenvalues (ηk)k and (νk)k which appear in the hypotheses, then
we recall their fundamental properties and establish a relation between them
(Proposition 2.9). Moreover in our setting we present an abstract critical point
theorem as stated in [5] (Theorem 2.6) and we prove an estimate from below
for the genus, involving the dimension and the codimension of some subspaces
of a Banach space (Theorem 2.7). In Sect. 3 we prove Theorems 1.1 and 1.2;
finally, in Sect. 4 we prove Theorems 1.4 and 1.5.

Notations. Throughout this paper we denote by (X, ‖ · ‖X) a Banach
space, by (X ′, ‖ · ‖X′) its dual, by I a C1 functional on X and by

• Ib = {u ∈ X : I(u) ≤ b} the sublevel of I corresponding to b ∈ R and
Ib = {u ∈ X : I(u) ≥ b} the superlevel of I corresponding to b ∈ R;
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• Kc = {u ∈ X : I(u) = c, dI(u) = 0} the set of the critical points of I in
X at the critical level c ∈ R.

Furthermore, let us denote by

• N = {1, 2, . . .};
• | · |s the usual norm in the Lebesgue space Ls(Ω), 1 ≤ s ≤ +∞;
• ‖ · ‖ the norm in W 1,p

0 (Ω), i.e. ‖u‖ = |∇u|p for all u ∈ W 1,p
0 (Ω);

• BR = {u ∈ W 1,p
0 (Ω) : ‖u‖ < R}, SR = {u ∈ W 1,p

0 (Ω) : ‖u‖ = R} for any
R > 0;

• p∗ = pN
N−p the critical exponent for the Sobolev embeddings of W 1,p

0 (Ω)
if p ∈]1, N [, p∗ = +∞ otherwise.

2. Preliminary material and variational tools

As we have pointed out in Sect. 1, the spectral properties of the p-Laplacian in
W 1,p

0 (Ω) are still mostly unknown. For example, two unbounded and increasing
sequences of eigenvalues (μk)k and (μ′

k)k, with μ′
k ≥ μk, have been constructed

in [14] (see also [2]) and [20], using respectively the Krasnoselskii genus as in
[21, Chapter 7] and the cohomological index of Fadell and Rabinowitz intro-
duced in [13]. Anyway, it is not known whether they cover the whole spectrum
σ(−Δp) when N ≥ 2, but the first eigenvalue μ1 and its properties have been
exploited and it is characterized as

μ1 = inf
u∈W 1,p

0 (Ω)\{0}

∫
Ω

|∇u|p dx∫
Ω

|u|p dx
, (2.1)

it is positive, simple, isolated and has a unique positive eigenfunction ϕ1 such
that |ϕ1|p = 1 (cf. e.g. [17]). With respect to the semilinear case, the drawback
in using eigenvalues is that, for the Banach space W 1,p

0 (Ω), their use does not
provide a decomposition having properties similar to that of the Hilbert space
H1

0 (Ω) by means of the eigenfunctions of −Δ on Ω with null homogeneous
Dirichlet data.

As we shall see in the proofs of our main results, the definition of the
quasi-eigenvalues proposed in [10] fits in with our purposes as a suitable decom-
position of the Sobolev space W 1,p

0 (Ω) can be introduced, so that it turns out
to be the classical one for p = 2.

In order to present this definition, firstly let us recall that if V ⊆ X is
a closed subspace of a Banach space X, a subspace W ⊆ X is a topological
complement of V , briefly X = V ⊕W , if W is closed and every x ∈ X can be
uniquely written as v + w, with v ∈ V and w ∈ W ; furthermore the projec-
tion operators onto V and W are (linear and) continuous, hence there exists
L = L(V,W ) > 0 such that

‖v‖ + ‖w‖ ≤ L‖v + w‖ (2.2)

(see e.g. [8, p. 38]). When X = V ⊕W and V has finite dimension, we say that
W has finite codimension, with codimW = dimV .
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In [10, Sect. 5], starting from η1 = μ1, it is shown the existence of an
increasing diverging sequence (ηh)h of positive real numbers, with correspond-
ing functions (ψh)h such that ψ1 ≡ ϕ1 and ψi �= ψj if i �= j. They generate
the whole space W 1,p

0 (Ω) and are such that

W 1,p
0 (Ω) = Vh ⊕Wh for all h ∈ N, (2.3)

where Vh = span{ψ1, . . . , ψh} and its complement Wh can be explicitely
described.

Remarkably for all h ∈ N on the infinite dimensional subspace Wh the
following inequality holds:

ηh+1

∫
Ω

|w|p dx ≤
∫

Ω

|∇w|p dx for all w ∈ Wh (2.4)

(cf. [10, Lemma 5.4]).
Unluckily, we don’t know whether, by making use of this sequence of

quasi-eigenvalues, a reversed inequality holds on finite dimensional subspaces.
Then, we require a different setting and take advantage of another sequence,
introduced in [16], for obtaining some existence and multiplicity results on a
class of p-Laplacian problems.

More precisely, for all k ∈ N we consider

Wk =
{
V : V is a subspace of W 1,p

0 (Ω), ϕ1 ∈ V and dimV ≥ k
}

(2.5)

and

νk = inf
V ∈Wk

sup
u∈V \{0}

∫
Ω

|∇u|p dx∫
Ω

|u|p dx
. (2.6)

The main properties of (νk)k are the following: ν1 = μ1, (νk)k is an increasing
diverging sequence and, if p = 2, it agrees with (λk)k (cf. [16, Appendix]).

In Sect. 3 we shall see that problem (P∞) has a variational structure,
thus next we present the variational framework we are going to use. To this
aim we need some abstract tools, so from now till the end of this section we
consider a real Banach space (X, ‖ · ‖X) and a C1 functional I : X → R.

Firstly, we recall the so-called Cerami’s variant of the Palais–Smale condi-
tion; even if it is a condition weaker than the classical one, it is enough in order
to state a Deformation Theorem and some critical point theorems (cf. [5]).

Definition 2.1. The functional I satisfies the Cerami’s variant of the Palais–
Smale condition, briefly CPS, at level c (c ∈ R), if any sequence (un)n ⊆ X
such that

lim
n→+∞ I(un) = c and lim

n→+∞ ‖dI(un)‖X′(1 + ‖un‖X) = 0 (2.7)

converges in X, up to subsequences. In general, if −∞ ≤ a < b ≤ +∞, I
satisfies (CPS) in ]a, b[ if so is at each level c ∈]a, b[.

In order to state a classic existence critical point theorem, we recall that,
taking a subspace Y of X, if S ⊆ X is a closed subset of X and Q ⊆ Y
has boundary ∂Q with respect to Y , then S and ∂Q link if S ∩ ∂Q = ∅ and
φ(Q) ∩ S �= ∅, for any φ ∈ C(X,X) such that φ

∣∣
∂Q

= id.
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For further use, we recall two examples of linking sets (cf. [21, Examples
5.22 and 5.26] and also [5, Propositions 2.1 and 2.2] in the case of an Hilbert
space).

Example 2.2. Let V,W be two closed subspaces of X such that X = V ⊕ W
and dimV < +∞. Then, setting Q = V ∩BR for R > 0 and S = W , ∂Q and
S link.

Example 2.3. Let V,W be two closed subspaces of X such that X = V ⊕W ,
dimV < +∞, and e ∈ W with ‖e‖ = 1. If R1, R2, ρ > 0 and

S = Sρ ∩W, Q = (BR2 ∩ V ) ⊕ {te : t ∈ [0, R1]}, Y = V ⊕ span{e},
then S and ∂Q link whenever R1 > ρ.

The following Linking Theorem holds (see [5, Theorem 2.3] or [24, The-
orem 2.12]).

Theorem 2.4. Consider a, b, α, β ∈ R = R ∪ {±∞} such that −∞ ≤ a < α <
β < b ≤ +∞. Assume that:

(i) the functional I satisfies (CPS) in ]a, b[;
(ii) there exist a closed S ⊆ X and Q ⊆ Y , being Y a subspace of X, with

boundary ∂Q in Y , satisfying:
(a) I(u) ≤ α for all u ∈ ∂Q and I(u) ≥ β for all u ∈ S;
(b) S and ∂Q link;
(c) supu∈Q I(u) < +∞.

Then, there exists a critical level c of I given by

c = inf
φ∈Γ

sup
u∈Q

I(φ(u)), with β ≤ c ≤ sup
u∈Q

I(u),

where Γ = {φ ∈ C(X,X) : φ
∣∣
∂Q

= id}.
Besides some existence critical point theorems, sharper multiplicity

results can be stated when one deals with symmetric functionals on Hilbert
spaces (see e.g. [5,21]). In this section we rewrite [5, Theorem 2.9] on Banach
spaces where the index theory related to the genus acts. As in [5] the proof
is based on the use of a pseudo-index theory, so, before introducing such a
definition, we recall some notions of the index theory on Banach spaces X for
an even functional with symmetry group Z2 = {id,−id} (cf. e.g. [22]).

Define

Σ = Σ(X) = {A ⊆ X : A closed and symmetric w.r.t. the origin,
i.e. − u ∈ A if u ∈ A}

and

H = {h ∈ C(X,X) : h odd}.
Taking A ∈ Σ, A �= ∅, the genus of A is

γ(A)=inf
{
k ∈ N : ∃ψ ∈ C(A,Rk \ {0}) s.t. ψ(−u) = −ψ(u) for all u ∈ A

}
,

if such an infimum exists, otherwise γ(A) = +∞. Assume γ(∅) = 0.
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The index theory (Σ,H, γ) related to Z2 is also called genus (for more
details we refer to [22, Sect. 1] and [23, Sect. II.5]). For further use we recall
below its main properties: for all A,B ∈ Σ
(i1) γ(A) = 0 ⇔ A = ∅;
(i2) A ⊆ B ⇒ γ(A) ≤ γ(B) (monotonicity property);
(i3) γ(A ∪B) ≤ γ(A) + γ(B) (subadditivity property);
(i4) γ(A) ≤ γ(h(A)) for all h ∈ H (supervariancy property);
(i5) if A is compact, there exists δ > 0 such that γ(Nδ(A)) = γ(A), where

Nδ(A) = {x ∈ X : d(x,A) ≤ δ} is the closed δ-neighbourhood of A
(continuity property);

(i6) if h : X → X is an odd homeomorphism, B ⊆ X is an open bounded
symmetric neighbourhood of 0 and V is a finite dimensional subspace of
X, then

γ(V ∩ h(∂B)) = dimV ;

(i7) if W is a closed subspace of X with codimW < +∞ and A ∈ Σ is such
that γ(A) > codimW , then A ∩W �= ∅.
Let us consider the genus theory (Σ,H, γ) on X, an even functional I :

X → R and k ∈ N. Then, setting

bk = inf
A∈Σk

sup
u∈A

I(u),

with

Σk = {A ∈ Σ : γ(A) ≥ k}, (2.8)

the following characterization holds (the proof is essentially contained in
[21, Remarks 8.7(i)], nevertheless for completeness here we give more details).

Lemma 2.5. If Σk �= ∅ and bk ∈ R, then

bk = inf
{
b ∈ R : γ

(
Ib

) ≥ k
}
.

Proof. Let us set b̃k = inf
{
b ∈ R : γ

(
Ib

) ≥ k
}
. Taking b ≥ b̃k such that

γ
(
Ib

) ≥ k it results Ib ∈ Σk; hence bk ≤ b and therefore b̃k ≥ bk. Argu-
ing by contradiction, assume b̃k > bk and take b̄ such that bk < b̄ < b̃k. Then
there exists Ā ∈ Σk such that sup

u∈Ā
I(u) < b̄; whence Ā ⊆ I b̄ and γ(Ā) ≥ k. By

(i2) it follows γ(I b̄) ≥ k, hence b̄ ≥ b̃k, which yields a contradiction. �
According to [7], the pseudo-index related to the genus, an even func-

tional I : X → R and S ∈ Σ is the triplet (S,H∗, γ∗) such that H∗ is a group
of odd homeomorphisms and γ∗ : Σ → N ∪ {+∞} is the map defined by

γ∗(A) = min
h∈H∗

γ(h(A) ∩ S) for all A ∈ Σ.

Clearly by (i4) it follows

γ(h(A) ∩ S) = γ(A ∩ h−1(S)) for all h ∈ H∗,

then

γ∗(A) = min
h∈H∗

γ(A ∩ h(S)) for all A ∈ Σ. (2.9)
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The following mini–max theorem was proved in [5, Theorem 2.9] in the
setting of Hilbert spaces; the same proof holds on Banach spaces, just taking
into account [21, Theorem A.4].

Theorem 2.6. Consider a, b, c0, c∞ ∈ R, −∞ ≤ a < c0 < c∞ < b ≤ +∞. Let
I be an even functional, (Σ,H, γ) the genus theory on X, S ∈ Σ, (S,H∗, γ∗)
the pseudo-index theory related to the genus, I and S, with

H∗ = {h ∈ H : h bounded homeomorphism s.t. h(u) = u if u �∈ I−1(]a, b[)}.
Assume that:

(i) the functional I satisfies (CPS) in ]a, b[;
(ii) S ⊆ I−1([c0,+∞[);
(iii) there exist k̃ ∈ N and Ã ∈ Σ such that Ã ⊆ Ic∞ and γ∗(Ã) ≥ k̃.

Then the numbers

ci = inf
A∈Σ∗

i

sup
u∈A

I(u), i ∈ {1, . . . , k̃}, (2.10)

with Σ∗
i = {A ∈ Σ : γ∗(A) ≥ i}, are critical values for I and

c0 ≤ c1 ≤ · · · ≤ ck̃ ≤ c∞.

Furthermore, if c = ci = · · · = ci+r, with i ≥ 1 and i + r ≤ k̃, then γ(Kc) ≥
r + 1.

In order to apply the theorem above, we need the following result, which
allows us to obtain a lower bound for the pseudo-index of a suitable Ã as
in (iii); the proof is alike that of [5, Theorem A.2], nevertheless we prefer to
develop here all details, adapting it to Banach spaces.

Theorem 2.7. Let (Σ,H, γ) be the genus theory on X and V,W two closed
subspaces of X. Assume that

dimV < +∞ and codimW < +∞.

Then, for every odd bounded homeomorphism h on X and every open bounded
symmetric neighbourhood B of 0 in X, it results

γ(V ∩ h(∂B ∩W )) ≥ dimV − codimW.

Proof. Taking any odd bounded homeomorphism h on X and any open
bounded symmetric neighbourhood B of 0 in X, as the set V ∩ h(∂B ∩W ) is
compact, by property (i5) there exists δ > 0 such that

γ(Nδ(V ∩ h(∂B ∩W ))) = γ(V ∩ h(∂B ∩W )), (2.11)

where Nδ(V ∩ h(∂B ∩W )) is the closed δ-neighbourhood of V ∩ h(∂B ∩W ).
We claim that there exists ε > 0 such that, setting Wε = Nε(W ), it

results

V ∩ h(∂B ∩Wε) ⊆ Nδ(V ∩ h(∂B ∩W )). (2.12)
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Indeed, arguing by contradiction, let us assume that for any n ∈ N there
exists yn ∈ V ∩ h(∂B ∩W 1

n
) which does not belong to Nδ(V ∩ h(∂B ∩W )),

or equivalently,

∀n ∈ N ∃xn ∈ ∂B ∩W 1
n

s.t. h(xn)=yn ∈ V and d(yn, V ∩ h(∂B ∩W ))>δ.

Being (yn)n bounded in the finite dimensional subspace V , it converges, up to
subsequences, to a certain ȳ ∈ V and

d(ȳ, V ∩ h(∂B ∩W )) ≥ δ. (2.13)

Then, denoting h−1(ȳ) by x̄, as h is an homeomorphism, it follows that (xn)n
converges to x̄. So, x̄ ∈ ∂B ∩W is such that ȳ = h(x̄) ∈ h(∂B ∩W ) ∩ V while
(2.13) holds, which yields a contradiction and (2.12) is satisfied.

By (2.11), (2.12) and property (i2) it follows that

γ(V ∩ h(∂B ∩Wε)) = γ(V ∩ h(∂B ∩W )). (2.14)

Now, let us set

Rε = X \Wε.

By definition, Rε ∩W = ∅. As codimW < +∞, by property (i7) it must be

γ(Rε) ≤ codimW. (2.15)

Moreover, by the definition of the subset Rε, it is

h(∂B) = h(∂B ∩Wε) ∪ h(∂B ∩Rε),
hence by property (i3) and (2.14) it results

γ(V ∩ h(∂B)) ≤ γ(V ∩ h(∂B ∩W )) + γ(V ∩ h(∂B ∩Rε)). (2.16)

Furthermore by (i6) it is

γ(V ∩ h(∂B)) = dimV ; (2.17)

on the other hand, by (i2), (i4) and (2.15) it follows

γ(V ∩ h(∂B ∩Rε)) ≤ γ(h(∂B ∩Rε)) ≤ γ(∂B ∩Rε) ≤ γ(Rε) ≤ codimW.

(2.18)

Finally, by (2.16)–(2.18), we can conclude that

dimV ≤ γ(V ∩ h(∂B ∩W )) + codimW

and the proof is complete. �

Remark 2.8. Under the assumptions of Theorem 2.7, for every odd bounded
homeomorphism h on X and every open bounded symmetric neighbourhood
B of 0 in X, we have also

γ(W ∩ h(∂B ∩ V )) ≥ dimV − codimW.

Indeed, since h(∂B) = ∂(h(B)) (cf. [7, p. 414]) is the boundary of the open
bounded symmetric neighbourhood h(B) of 0, by property (i4) it results

γ(W ∩ h(∂B ∩ V )) = γ(h−1(W ) ∩ (∂B ∩ V )) = γ(h−1(W ∩ h(∂B)) ∩ V ),

hence the proof follows by Theorem 2.7.
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Starting from the genus we can define the sequence of eigenvalues (μk)k
as in [18]:

μk = inf
A∈Σk

sup
u∈A\{0}

∫
Ω

|∇u|p dx∫
Ω

|u|p dx
,

where Σk is as in (2.8) with X = W 1,p
0 (Ω). Using the properties of the genus

recalled above, we obtain a comparison among (μk)k and the sequences of
quasi-eigenvalues (ηk)k, (νk)k.

Proposition 2.9. For all k ∈ N it results ηk ≤ μk ≤ νk.

Proof. As we have already pointed out, the second inequality follows by [16,
Remark 1.1(4)]. So in order to prove the first one, by contradiction let us
assume that there exists k ∈ N such that μk < ηk. Fix ε > 0 such that
μk + ε < ηk.

Let us consider the even C1 functional

Ψ(u) =
∫

Ω

|∇u|p dx on W 1,p
0 (Ω)

and the manifold Sp = {u ∈ W 1,p
0 (Ω) : |u|p = 1}. Since by [10, Lemmas 5.1

and 5.3] it results

ηk = min
u∈Wk−1∩Sp

Ψ(u),

with Wk−1 such that (2.3)–(2.4) hold for h = k − 1, it follows

Wk−1 ∩ Sp ⊆
(
Ψ

∣∣
Sp

)
ηk

,

thus we get

{u ∈ Sp : Ψ(u) < ηk} ⊆ Sp \Wk−1. (2.19)

As by [12, Lemma 4] the functional Ψ
∣∣
Sp

satisfies the Palais–Smale condition
on ]0,+∞[, by Lemma 2.5 the following characterization holds:

μk = inf
{
c ∈ R : γ

((
Ψ

∣∣
Sp

)c)
≥ k

}
for all k ∈ N.

Then there exists c̄ ∈ R such that

μk ≤ c̄ < μk + ε and γ

((
Ψ

∣∣
Sp

)c̄)
≥ k. (2.20)

On the other hand,(
Ψ

∣∣
Sp

)c̄
⊆

(
Ψ

∣∣
Sp

)μk+ε

⊆ {u ∈ Sp : Ψ(u) < ηk};

hence by (2.19) it results
(
Ψ

∣∣
Sp

)c̄
∩Wk−1 = ∅ and, by property (i7) and (2.3),

it must be

γ

((
Ψ

∣∣
Sp

)c̄)
≤ k − 1,

in contradiction with (2.20). �
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3. The multiplicity results

From (H0) and (H1) we have that for all σ > 0 there exists Aσ > 0 such that

|f(x, t)| ≤ σ|t|p−1 +Aσ for a.e. x ∈ Ω and for all t ∈ R. (3.1)

Thus, the functional

J(u) =
1
p

∫
Ω

|∇u|p dx− l∞
p

∫
Ω

|u|p dx−
∫

Ω

F (x, u) dx on W 1,p
0 (Ω), (3.2)

with F (x, t) =
∫ t
0
f(x, s) ds, is C1 (cf. e.g. [11, Theorem 9 and p. 355]) and

the weak solutions of problem (P∞) are its critical points.
In the next proposition we prove that the functional J satisfies the (CPS)

condition both in the non-resonant case (i.e. under assumption (H3)) and in
the resonant one (but assuming also (H6)). We point out that this property is
proved in [16, Proposition 3.1] by using the continuity of f on Ω × R instead
of (H0) and, at least in the non-resonant case, also hypotheses (H2) and (H5);
here, we remove such assumptions.

Proposition 3.1. Assume that (H0)–(H1) hold. Then

(i) if (H3) holds, the functional J in (3.2) satisfies (CPS) in R;
(ii) if (H ′

3) and (H6) hold, the functional J in (3.2) satisfies (CPS) in R.

Proof. (i) Let c ∈ R and (un)n be a sequence in W 1,p
0 (Ω) such that (2.7)

holds, so

1
p

∫
Ω

|∇un|p dx− l∞
p

∫
Ω

|un|p dx−
∫

Ω

F (x, un) dx = c+ o(1), (3.3)
∫

Ω

|∇un|p dx− l∞
∫

Ω

|un|p dx−
∫

Ω

f(x, un)un dx = o(1), (3.4)
∫

Ω

|∇un|p−2∇un · ∇ϕ dx− l∞
∫

Ω

|un|p−2un ϕ dx

−
∫

Ω

f(x, un)ϕ dx = o(1), (3.5)

for all ϕ ∈ W 1,p
0 (Ω), where o(1) denotes an infinitesimal sequence.

In order to prove the statement, it is enough to show that (‖un‖)n is
bounded (see e.g. [11, Lemma 2]). Then, arguing by contradiction, assume
that

‖un‖ → +∞ as n → +∞. (3.6)

Hence, without loss of generality, we can assume that ‖un‖ > 0 for all n ∈ N

and set wn = un

‖un‖ ; of course (wn)n is bounded in W 1,p
0 (Ω) and there exists

w ∈ W 1,p
0 (Ω) such that, up to subsequences, it results

wn ⇀ w weakly in W 1,p
0 (Ω), (3.7)

wn → w strongly in Ls(Ω), for all s ∈ [p, p∗[. (3.8)
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Dividing (3.3) and (3.4) by ‖un‖p and (3.5) by ‖un‖p−1 respectively, we get

1 =
∫

Ω

|∇wn|p dx = l∞|wn|pp + p

∫
Ω

F (x, un)
‖un‖p dx+ o(1),

1 =
∫

Ω

|∇wn|p dx = l∞|wn|pp +
∫

Ω

f(x, un)un
‖un‖p dx+ o(1), (3.9)

∫
Ω

|∇wn|p−2∇wn · ∇ϕ dx = l∞
∫

Ω

|wn|p−2wn ϕ dx

+
∫

Ω

f(x, un)
‖un‖p−1

ϕ dx+ o(1), (3.10)

for all ϕ ∈ W 1,p
0 (Ω).

Next, we claim that w �= 0. In fact, if w = 0, by (3.8) and (3.9) it follows

1 =
∫

Ω

f(x, un)un
‖un‖p dx+ o(1); (3.11)

on the other hand, by (3.1) we have∣∣∣∣
∫

Ω

f(x, un)un
‖un‖p dx

∣∣∣∣ ≤ σ|wn|pp +
Aσ

‖un‖p−1
|wn|1;

thus (3.6) and again (3.8) imply

lim
n→+∞

∫
Ω

f(x, un)un
‖un‖p dx = 0,

in contradiction with (3.11).
Now, subtracting by (3.9) equation (3.10) evaluated in ϕ = w, it follows∫

Ω

|∇wn|p−2∇wn · (∇wn − ∇w) dx

= l∞
∫

Ω

|wn|p−2wn(wn − w) dx

+
∫

Ω

f(x, un)
‖un‖p−1

(wn − w) dx+ o(1). (3.12)

We observe that (3.8) implies∣∣∣∣
∫

Ω

|wn|p−2wn(wn − w) dx
∣∣∣∣ ≤ |wn|p−1

p |wn − w|p = o(1),

while by (3.1), (3.6) and (3.8) it follows∣∣∣∣
∫

Ω

f(x, un)
‖un‖p−1

(wn − w) dx
∣∣∣∣ ≤ σ|wn|p−1

p |wn − w|p +
Aσ

‖un‖p−1
|wn − w|1 = o(1).

Hence, by (3.12)∫
Ω

|∇wn|p−2∇wn · (∇wn − ∇w) dx = o(1);

thus, by [11, Theorem 10] it follows

wn → w strongly in W 1,p
0 (Ω). (3.13)
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Finally, by using (3.1), (3.6) and (3.8), it follows

lim
n→+∞

∫
Ω

f(x, un)
‖un‖p−1

ϕ dx = 0 for all ϕ ∈ W 1,p
0 (Ω). (3.14)

So, by (3.13) and (3.14), passing to the limit in (3.10), we get∫
Ω

|∇w|p−2∇w · ∇ϕ dx = l∞
∫

Ω

|w|p−2wϕ dx for all ϕ ∈ W 1,p
0 (Ω);

this means that l∞ is an eigenvalue of −Δp in W 1,p
0 (Ω), against assumption

(H3), thus the proof is complete.
(ii) The proof is word by word as in [16, Proposition 3.1(ii)]. �

Proof of Theorem 1.1. By Proposition 3.1(i) the functional J in (3.2) satisfies
(CPS) in R and by assumption (H5) it is even. Moreover, (H4) implies l0 �= 0.
In order to have a control on F near to t = 0, let us point out that from (H1)
and (H2) it follows that there exist

lim
|t|→+∞

F (x, t)
|t|p = 0 uniformly with respect to a.e. x ∈ Ω

and

lim
t→0

F (x, t)
|t|p =

l0
p

uniformly with respect to a.e. x ∈ Ω;

hence for any σ > 0 there exist Rσ, δσ > 0 (without loss of generality Rσ ≥ 1)
such that

|F (x, t)| ≤ σ

p
|t|p if |t| > Rσ, for a.e. x ∈ Ω, (3.15)

∣∣∣∣F (x, t) − l0
p

|t|p
∣∣∣∣ ≤ σ

p
|t|p if |t| < δσ, for a.e. x ∈ Ω. (3.16)

Moreover, by (H0), taking any s ∈ [0, p∗ − p[ (p∗ − p = +∞ if p ≥ N),
there exists aRσ

> 0 such that, if δσ ≤ |t| ≤ Rσ and for a.e. x ∈ Ω, we have

|F (x, t)| ≤ aRσ
|t|s+p. (3.17)

At first we restrict to the case l0 < 0, so that (H4) becomes

l0 + l∞ < ηh ≤ νk < l∞. (3.18)

Therefore, (3.15)–(3.17) imply that for any σ > 0 there exists aσ > 0 large
enough such that for a.e. x ∈ Ω and for all t ∈ R

− (σ − l0)
p

|t|p − aσ|t|s+p ≤ F (x, t) ≤ (σ + l0)
p

|t|p + aσ|t|s+p,
which in particular implies∫

Ω

F (x, u) dx ≤ (σ + l0)
p

|u|pp + aσ|u|s+ps+p for all u ∈ W 1,p
0 (Ω).

By the Sobolev inequalities for all u ∈ W 1,p
0 (Ω) it results

J(u) ≥ 1
p
‖u‖p − l∞ + l0 + σ

p
|u|pp − a′

σ‖u‖s+p (3.19)
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for a suitable a′
σ > 0. Now let us consider ηh as in (3.18); by (2.3) it is

W 1,p
0 (Ω) = Vh−1 ⊕Wh−1, where Vh−1 = span{ψ1, . . . , ψh−1} and Wh−1 is its

complement.
Thus by (3.19) and (2.4) for all u ∈ Wh−1 it results

J(u) ≥ 1
p

(
1 − l∞ + l0 + σ

ηh

)
‖u‖p − a′

σ‖u‖s+p (3.20)

hence, by (3.18) and for σ small enough, there exists a′′
σ > 0 such that

J(u) ≥ a′′
σ‖u‖p − a′

σ‖u‖s+p for all u ∈ Wh−1.

So, if ρ is small enough there exists c0 > 0 such that

J(u) ≥ c0 for all u ∈ Sρ ∩Wh−1.

On the other hand we notice that by (3.1), (3.2) and the Cauchy–Schwarz
inequality, fixing any σ > 0, Bσ > 0 exists such that

J(u) ≤ 1
p
‖u‖p − l∞

p
|u|pp +

σ

2p
|u|pp +Bσ|u|p for all u ∈ W 1,p

0 (Ω).

Let us consider νk as in (3.18) and take σ > 0 such that νk + σ < l∞. From
definition (2.6), for such a fixed σ > 0 there exists a subspace V σk in Wk (see
(2.5)), with dimV σk ≥ k, such that

νk ≤ sup
u∈V σ

k \{0}

‖u‖p
|u|pp < νk +

σ

2
.

Hence,

J(u) ≤ 1
p

(νk + σ − l∞) |u|pp +Bσ|u|p for all u ∈ V σk

and, as without loss of generality we can assume that V σk is a k-dimensional
subspace, the functional J tends to −∞ as ‖u‖ diverges in V σk , so there exists
c∞ > c0 such that

J(u) ≤ c∞ for all u ∈ V σk .

Now, considering the pseudo-index theory (Sρ ∩Wh−1,H∗, γ∗) related to
the genus, Sρ ∩ Wh−1 and J , by Theorem 2.7 (applied to V = V σk , ∂B = Sρ
and W = Wh−1) we get

γ (V σk ∩ h (Sρ ∩Wh−1)) ≥ dimV σk − codim Wh−1 for all h ∈ H∗,

hence (2.9) implies

γ∗(V σk ) ≥ k − h+ 1.

So, Theorem 2.6 applies with Ã := V σk and S := Sρ ∩ Wh−1 and J has
at least k − h + 1 distinct pairs of critical points corresponding to at most
k − h+ 1 distinct critical values ci, where ci is as in (2.10).

Next, let us consider the case l0 > 0, so that (H4) becomes

l∞ < ηh ≤ νk < l0 + l∞.

Then, fixing σ > 0 such that

l∞ + σ < ηh ≤ νk + σ < l0 + l∞,
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arguments similar to those ones used before imply that

J(u) ≥ 1
p

(
1 − l∞ + σ

ηh

)
‖u‖p −Bσ‖u‖ for all u ∈ Wh−1

and

J(u) ≤ −1
p

(l∞ + l0 − νk − σ) |u|pp + aσ|u|s+ps+p for all u ∈ V σk , (3.21)

for suitable positive constants Bσ and aσ. Thus, Theorem 2.6 applies to the
functional −J , with Ã := Wh−1 and S := Sρ ∩ V σk , by using Remark 2.8. �
Proof of Theorem 1.2. By Proposition 3.1(ii) the functional J satisfies (CPS)
and we can proceed as in the proof of Theorem 1.1. �

Remark 3.2. If (H2) and (H4) are replaced by
(H ′

2) there exists

lim
t→0

f(x, t)
|t|p−2t

= −∞ uniformly with respect to a.e. x ∈ Ω;

(H ′
4) νk < l∞ for some k ∈ N,

then by Proposition 3.1 (P∞) has at least k distinct pairs of non-trivial solu-
tions, choosing in Theorem 2.6 Ã = V σk and S = Sρ.

On the other hand, if (H2) and (H4) are replaced by
(H ′′

2 ) there exists

lim
t→0

f(x, t)
|t|p−2t

= +∞ uniformly with respect to a.e. x ∈ Ω,

then (P∞) has infinitely many pairs of non-trivial solutions. Indeed, by Prop-
osition 3.1, fixing h such that ηh > l∞, for any k > h we can apply Theorem
2.6 to the functional −J with Ã = Wh−1 and S = Sρ ∩ Ṽ σk , where Ṽ σk is any
k-dimensional subspace of W 1,p

0 (Ω), thus obtaining k−h+1 pairs of solutions.
The conclusion follows by the arbitrariness of k.

Remark 3.3. The arguments in Remark 3.2 still work in the resonant case.

4. The existence results

Proof of Theorem 1.4. By Proposition 3.1(i) the functional J in (3.2) satisfies
(CPS) in R. At first we restrict to the case l0 < 0, so that (H7) becomes

νk−1 < l0 + l∞ < ηk ≤ νk < l∞. (4.1)

Let us fix σ ∈]0, ε0[, with ε0 as in (H8), such that νk+2σ < l∞ and l0+l∞+σ <
ηk. From (2.6) there exists a subspace V σk−1 in Wk−1 (see (2.5)), which can be
chosen with dim V σk−1 = k − 1, such that

νk−1 ≤ sup
u∈V σ

k−1\{0}

‖u‖p
|u|pp < νk−1 + σ. (4.2)
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Hence, recalling that (νk)k is an increasing sequence, so in particular νk−1+σ <
l∞, by (4.2) and (H8) for all u ∈ V σk−1 it results

J(u) ≤ 1
p

(νk−1 + σ − l∞) |u|pp −
∫

Ω

F (x, u) dx ≤ 0 (4.3)

On the other hand, since by (2.4)

ηk

∫
Ω

|u|p dx ≤
∫

Ω

|∇u|p dx for all u ∈ Wk−1, (4.4)

proceeding as in the proof of Theorem 1.1, by using (3.20) (with h = k) and
(4.1), for a suitable ρ we get the existence of β > 0 such that

J(u) ≥ β for all u ∈ Sρ ∩Wk−1. (4.5)

We claim that

W 1,p
0 (Ω) = V σk−1 ⊕Wk−1, (4.6)

which means that under our assumptions Vk−1 = span{ψ1, . . . , ψk−1} in (2.3)
is indeed V σk−1. To this aim we prove that V σk−1 ∩ Wk−1 = {0}: otherwise, if
there exists ū ∈ (

V σk−1 ∩Wk−1

) \ {0}, choosen ρ as in (4.5), ρ ū
‖ū‖ ∈ V σk−1 ∩

(Sρ ∩Wk−1), thus (4.3) and (4.5) yield a contradiction.
Now, again, from definition (2.6) there exists a subspace V σ in Wk, which

can be chosen with dimV σ ≥ k̄, being k̄ as in (1.3), such that

νk ≤ sup
u∈V σ\{0}

‖u‖p
|u|pp < νk + σ. (4.7)

Next we show that dimV σ = k̄ and

V σ = V σk−1 ⊕ span{ψk, . . . , ψk̄} = span{ψ1, . . . , ψk̄}, (4.8)

where by [10, Lemma 5.1], (ψi)i ⊂ W 1,p
0 (Ω) is a sequence such that for all

i ∈ N: |ψi|p = 1 and ηi = ‖ψi‖p. Let us consider the quasi-eigenvalue ηk̄+1,
thus, from (1.3) we can also choose σ so that νk + σ < ηk̄+1. Assume by con-
tradiction that ψj belongs to V σ for some j ≥ k̄ + 1; then by (4.7) and the
monotonicity of the sequence (ηk)k (see Sect. 2) it follows

ηj ≥ ηk̄+1 > νk + σ > sup
u∈V σ\{0}

‖u‖p
|u|pp ≥ ‖ψj‖p = ηj ,

which is a contradiction, so (4.8) is proved.
By (3.1) it results

J(u) ≤ 1
p

(νk + 2σ − l∞) |u|pp +Bσ|u|p for all u ∈ V σ;

thus, by our choice of σ the functional J tends to −∞ as ‖u‖ diverges in V σ

and both there exists R2 > 0 such that

J(u) ≤ 0 if u ∈ V σ, ‖u‖ ≥ R2

and there exists γ ∈ R such that

J(u) ≤ γ for all u ∈ V σ. (4.9)
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Let us remark that by Example 2.3, (4.6) and (4.8), setting V := V σk−1, S :=
Sρ ∩Wk−1, e := ψk

‖ψk‖ , it results that S and ∂Q = V σk−1 ∩ SR1 link for R1 > ρ.
Then by (4.3), (4.5) and (4.9), Theorem 2.4 applies for R1 > R2, so there exists
a critical level c ≥ β > 0 corresponding to a non-trivial solution of (P∞).

Now, let us consider the case l0 > 0, so that (H7) becomes

l∞ < ηk ≤ νk < l0 + l∞.

As νk−1 < l∞ (see (H8) and Remark 1.7), let us fix σ ∈]0, ε0[ such that
νk−1 + σ < l∞, l∞ + σ < ηk, νk + 2σ < l0 + l∞ and consider V σk−1 in Wk−1

such that dim V σk−1 = k − 1 and (4.2) holds.
By (3.1), (4.4) and the choice of σ, there exists β ∈ R such that

J(u) ≥ β for all u ∈ Wk−1.

Furthermore, by (H8) and the choice of σ there exists δ1 > 0 such that

J(u) ≤ (σ − ε0)
p

|u|pp ≤ −δ1‖u‖p for all u ∈ V σk−1, (4.10)

then not only

sup
u∈V σ

k−1

J(u) < +∞,

but also there exist R > 0 large enough and α < β such that

J(u) ≤ α for all u ∈ V σk−1 ∩ SR. (4.11)

Hence, setting Q = V σk−1 ∩ BR and S = Wk−1, from α < β it follows
(4.6), then by Example 2.2 and Theorem 2.4 there exists a critical level c of J
such that

β ≤ c ≤ sup
u∈Q

J(u) = 0.

Next we show that c < 0, so (P∞) admits a non-trivial solution. To this aim we
prove that there exists a function φ̄ ∈ C(W 1,p

0 (Ω),W 1,p
0 (Ω)), with φ̄

∣∣
∂Q

= id,
such that

sup
u∈Q

J(φ̄(u)) < 0. (4.12)

At first we observe that, reasoning as before, by (1.3) there exists V σ in Wk,
such that dimV σ = k̄ and (4.7)–(4.8) hold; so, without loss of generality, (2.2)
is verified by a suitable L > 1.

Then, by (3.21) and the choice of σ, there exist ρ ∈]0, R[ and δ2 > 0 such
that

J(u) ≤ −δ2 for all u ∈ V σ with
ρ

L
≤ ‖u‖ ≤

√
2ρ. (4.13)

Now, we can define φ̄ : V σk−1 → W 1,p
0 (Ω) (which can be continuously

extended to W 1,p
0 (Ω)) as follows:

φ̄(u) =
{
u if ‖u‖ > ρ,
1
ηk

√
ρ2 − ‖u‖2 ψk + u if ‖u‖ ≤ ρ.
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We notice that φ̄ satisfies the required assumptions; indeed if u ∈ V σk−1 and
‖u‖ > ρ, then by (4.10) it is J(φ̄(u)) = J(u) ≤ −δ1ρp < 0; on the other hand,
if u ∈ V σk−1 and ‖u‖ ≤ ρ, then by (4.8) it results φ̄(u) ∈ V σ; moreover direct
computations imply that ‖φ̄(u)‖ ≤ √

2ρ, while by (2.2) we obtain ‖φ̄(u)‖ ≥ ρ
L ,

thus by (4.13) it follows J(φ̄(u)) ≤ −δ2. Summing up, (4.12) holds, so c < 0
and the proof is complete. �
Proof of Theorem 1.5. By Proposition 3.1(ii) the functional J satisfies (CPS)
and we can proceed as in the proof of Theorem 1.4. �

Remark 4.1. Existence results still hold if the limit in assumption (H2) is infi-
nite. More precisely, if the assumptions (H0), (H1) and (H3) hold and moreover
we assume (H ′

2) and (H ′
4) as in Remark 3.2, then (P∞) has at least a non-

trivial solution. Indeed, by Proposition 3.1, arguments similar to those in the
proof of Theorem 1.1 show that we can apply the Mountain Pass Theorem (cf.
[21, Theorem 2.2]), as by (H ′

2) it follows J(u) ≥ β > 0 for any u ∈ Sρ, ρ > 0,
and by (H ′

4), for a suitable k-dimensional V σk , J tends to −∞ as ‖u‖ diverges
on V σk , getting the existence of a solution corresponding to a critical level c
such that c ≥ β > 0.

On the other hand, if (H2) and (H4) are replaced by (H ′′
2 ), then fixing

k ∈ N such that ηk > l∞ (recall that (ηk)k diverges), there exists β < 0 such
that J(u) ≥ β for all u ∈ Wk−1. Moreover, for any finite dimensional subspace
V and any ρ > 0, it results J(u) ≤ α for all u ∈ V ∩ Sρ for a suitable α < 0,
hence by Example 2.2, Proposition 3.1 and Theorem 2.4 applied to S = Wk−1

and Q = Vk−1∩Bρ (see (2.3)), we get the existence of a critical level c, which a
priori could be 0, since sup

u∈Q
J(u) = 0. But, considering again φ̄ as in the proof

of Theorem 1.4, we get that (4.12) holds, thus c < 0 and (P∞) has at least a
non-trivial solution.

Remark 4.2. The arguments in Remark 4.1 still work in the resonant case.
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