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1. Introduction

In this paper, we deal with the following second order periodic problem:

{−u′′(t) = f(t, u(t)) a.e. on T = [0, b],
u(0) = u(b), u′(0) = u′(b). (1)

In this problem the reaction term f(t, x) is jointly measurable and C1 in the
x-variable. The aim of this work is to prove a multiplicity theorem when the
problem is resonant both at infinity and at zero. Such problems are known in
the literature as “doubly resonant”. Resonant Dirichlet equations, but with the
resonance only at infinity and only with respect to the first two eigenvalues,
were studied by Dancer and Gupta [7], Gupta [10], Iannacci and Nkashama
[11] and Sanchez [18]. Doubly resonant Dirichlet equations of higher parts of
the spectrum were investigated by Su and Li [19] and Zou [22]. For periodic
equations, we have the recent work of Su and Zhao [20]. With the exception
of Su and Li [19], all the other works produce two nontrivial solutions. Su
and Li [19] dealing with Dirichlet equations, produce six nontrivial solutions.
Here under more general hypotheses on the reaction f(t, x), we produce six
nontrivial solutions for the periodic problem (1). Our approach combines varia-
tional techniques based on the critical point theory together with Morse theory.
In the next section, for the convenience of the reader, we recall the main math-
ematical tools that we will use in this paper.
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2. Mathematical background-hypotheses

Let X be a Banach space and X∗ its topological dual. By 〈·, ·〉 we denote the
duality brackets for the pair (X∗,X). Let ϕ : X → R be a C1 function. We
say that ϕ satisfies the “Cerami condition” (the “C-condition” for short), if
every sequence {xn}n≥1 ⊆ X such that

{ϕ(xn)} ⊆ R is bounded and (1 + ‖xn‖)ϕ′(xn) → 0 in X∗as n → ∞,

has a strongly convergent subsequence. Using this compactness type con-
dition, we have the following minimax theorem for the critical values of a
C1-functional, known in the literature as the “mountain pass theorem”.

Theorem 2.1. If X is a Banach space, ϕ : X → R is C1, satisfies the
C-condition, x0, x1 ∈ X, 0 < ρ < ‖x1 − x0‖,max{ϕ(x0), ϕ(x1)} < inf[ϕ(x) :
‖x− x0‖ = ρ] = ηρ, and

c = inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t)) where Γ := {γ ∈ C0([0, 1],X) : γ(0) = x0, γ(1) = x1},

then c ≥ ηρ and c is a critical value of ϕ.

For ϕ ∈ C1(X) and c ∈ R, we introduce the following notation:

ϕc = {x ∈ X : ϕ(x) ≤ c}, Kϕ = {x ∈ X : ϕ′(x) = 0} and
Kϕ

c = {x ∈ Kϕ : ϕ(x) = c}.
If (Y1, Y2) is a topological pair with Y2 ⊆ Y1 ⊆ X, then for every integer k ≥ 0,
by Hk(Y1, Y2) we denote the kth-relative singular homology group for the pair
(Y1, Y2) with integer coefficients. The critical groups of ϕ at an isolated critical
point x0 ∈ X with ϕ(x0) = c (i.e., x0 ∈ Kϕ

c ), are defined by

Ck(ϕ, x0) = Hk(ϕc ∩ U , ϕc ∩ U\{x0}), for all k ≥ 0,

where U is a neighborhood of x0 such that Kϕ
⋂
ϕc

⋂ U = {x0} (see [6,13]).
The excision property of singular homology, implies that the above definition
is independent of the particular choice of neighborhood U of x0. Assume that
ϕ ∈ C1(X) satisfies the C-condition and −∞ < inf ϕ(Kϕ). Let c < inf ϕ(Kϕ).
The critical groups of ϕ at infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕc) for all k ≥ 0, (see [5]).

The second deformation theorem (see, for example [15, p. 274]), implies that
the above definition is independent of the particular choice of the level c <
inf ϕ(Kϕ).
IfKϕ = {x0}, then we have Ck(ϕ,∞) = Ck(ϕ, x0) for all k ≥ 0. The next result
is useful in computing the critical groups at infinity. It is a slight generaliza-
tion of a result of Perera and Schechter [17], suitable for functions ϕ ∈ C1(X)
which satisfy the C-condition (see [12]).

Proposition 2.1. If H is a Hilbert space, {ϕt}t∈[0,1] ⊆ C1(X), ϕ′
t and ∂tϕt both

are locally Lipschitz, ϕ0 and ϕ1 satisfy the C-condition, and there exist a ∈ R

and δ > 0 such that

ϕt(u) ≤ a ⇒ (1 + ‖u‖)‖ϕ′
t(u)‖ ≥ δ for all t ∈ [0, 1]

then Ck(ϕ0,∞) = Ck(ϕ1,∞) for all k ≥ 0.
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Remark 2.1. Note that in particular, if there exists R > 0 such that

inf [(1 + ‖u‖)‖ϕ′
t(u)‖ : t ∈ [0, 1], ‖u‖ > R] > 0,

inf [|ϕt(u)‖ : t ∈ [0, 1], ‖u‖ ≤ R] > −∞,

then Ck(ϕ0,∞) = Ck(ϕ1,∞) for all k ≥ 0.

We set

mk(x) = rank Ck(ϕ, x) for x ∈ Kϕ and βk = rank Ck(ϕ,∞) for all k ≥ 0

and we introduce the polynomials

P (t, x) =
∑
k≥0

mk(x)tk and P (t,∞) =
∑
k≥0

βkt
k for all t ∈ R.

The Morse relation says that there exists a polynomial Q(t) with nonnegative
integer coefficients such that∑

x∈Kϕ

P (t, x) = P (t,∞) + (1 + t)Q(t) for all t ∈ R. (2)

Also, if m̂k =
∑

x∈Kϕ mk(x) (the Morse-type numbers for ϕ) and βk (the
Betti-type numbers for ϕ) are as above, then we have the Morse inequality

q∑
k=0

(−1)q−km̂k ≥
q∑

k=0

(−1)q−kβk, q ∈ N.

Let X = H be a Hilbert space and let x0 ∈ H be an isolated critical point of ϕ.
Let U be a neighborhood of ϕ and assume that ϕ ∈ C2(U). The “Morse index
of x0”, is the supremum of the dimension of the subspaces of H, on which
ϕ′′(x0) is negative definite. The “nullity of x0”, is the dimension of the kernel
of ϕ′′(x0). We say that x0 is “nondegenerate”, if the nullity of x0 is zero (i.e.,
ϕ′′(x0) is invertible). Suppose that ϕ′′(x0) is a Fredholm operator. We have
the following facts about the critical groups of ϕ at x0:
(a) if x0 is “nondegenerate” critical point of ϕ, then

Ck(ϕ, x0) = δk,μ0Z for all k ≥ 0,

where μ0 is the Morse index of x0.
(b) if x0 is possibly degenerate with Morse index μ0 and nullity ν0, then

Ck(ϕ, x0) = 0 for all k /∈ [μ0, μ0 + ν0].

Part (b) is known as the “Gromoll–Meyer Theorem” (see [9]).
Next, consider the linear eigenvalue problem:

− u′′(t) = λu(t) on T = [0, b], u(0) = u(b), u′(0) = u′(b). (3)

It is well known (see, for example, [15, p. 309]), that the eigenvalues of (3)
are {λn =

(
2πn

b

)2}n≥0. All eigenvalues λn for n ≥ 1 have multiplicity equal to
2 and the corresponding eigenfunctions are nodal (i.e., sign changing). Also,
λ0 = 0 has multiplicity 1 and the corresponding eigenspace is R (the space
of constant functions). In what follows, by E(λk) we denote the eigenspace
corresponding to the eigenvalue λk, k ≥ 0.
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In the analysis of problem (1), we will use the space

W 1,2
per(0, b) = {u ∈ W 1,2(0, b) : u(0) = u(b)}.

It is well known that W 1,2
per(0, b) is compactly embedded in C(T ). In what fol-

lows, by ‖·‖ we denote the norm of W 1,2
per(0, b) and by 〈·, ·〉 the duality brackets

for the pair
(
W 1,2

per(0, b)
∗,W 1,2

per(0, b)
)
. Also in the sequel for notational econ-

omy, we set W = W 1,2
per(0, b). For every integer k ≥ 1, we have the orthogonal

direct sum decomposition

W = W k−1 ⊕ E(λk) ⊕ Ŵk+1,

where W k−1 = ⊕k−1
i=0E(λi) and Ŵk+1 = ⊕i≥k+1E(λi). So, every u ∈ W admits

the unique sum decomposition

u = u+ u0 + û, with u ∈ W k−1, u0 ∈ E(λk), û ∈ Ŵk+1.

We will also use the space Ĉ(T ) = C1(T )
⋂
W = {u ∈ C1(T ) : u(0) = u(b)}.

Note that Ĉ(T ) is an ordered Banach space with positive cone

C+ = {u ∈ Ĉ(T ) : u(t) ≥ 0 for all t ∈ T}.
This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(t) > 0 for all t ∈ T}.
Finally let A : W → W ∗ be defined by

〈A(u), y〉 =
∫ b

0

u′(t)y′(t)dt for all u, y ∈ W.

Evidently A ∈ L(W,W ∗).
Next let us introduce the hypotheses on the reaction term f(t, x):
H : f : T × R → R is a function such that

(i) for all x ∈ R, t → f(t, x) is measurable;
(ii) for a.a. t ∈ T, x → f(t, x) is C1 and f(t, 0) = 0;
(iii) for a.a. t ∈ T and all x ∈ R, we have

|f ′
x(t, x)| ≤ a(t)(1 + |x|r−2) with a ∈ L∞(T )+, 2 ≤ r < +∞;

(iv) there exist an integer m ≥ 1, α ∈ (0, 1) and θ∞ ∈ L∞(T ), θ∞ ≤ 0 a.e.
on T, θ∞ �= 0 such that

lim
|x|→∞

f(t, x)
x

= λm uniformly for a.a. t ∈ T

and if f∞(t, x) = f(t, x) − λmx, then

lim
|x|→∞

f∞(t, x)
|x|α = 0 and lim sup

|x|→∞

f∞(t, x)x
|x|2α

≤ θ∞(t) uniformly for a.a. t ∈ T ;

(v) there exist an integer i ≥ 1, i �= m,β > 1 and θ0 ∈ L∞(T ), θ0 ≤ 0 a.e.
on T, θ0 �= 0 such that

lim
|x|→0

f(t, x)
x

= λi uniformly for a.a. t ∈ T
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and if f0(t, x) = f(t, x) − λix, then

lim
|x|→0

f0(t, x)
|x|β = 0 and lim sup

|x|→0

f0(t, x)x
|x|2β

≤ θ0(t) uniformly for a.a. t ∈ T ;

(vi) there exist numbers ξ− < 0 < ξ+ such that f(t, ξ+) ≤ 0 ≤ f(t, ξ−) for
a.a. t ∈ T.

Remark 2.2. Hypotheses H(iv) and (v) imply that we have resonance at
infinity and at zero, respectively. These hypotheses classify the problem as
“double resonant”.

Example 2.1. The following function f(x) satisfies hypotheses H (for the sake
of simplicity, we drop the t-dependance)

f(x) =
{
λix− η0|x|q−2x if |x| ≤ 1
λmx− η∞|x|τ−2x+ μ · sgnx if |x| > 1,

where 1 < τ < 2 < q, η0 ≥ λi, μ = η0(q−2)+η∞(2−τ) > 0. For this particular
reaction function we can take α ∈ (τ − 1, 1) (see H(iv)), β ∈ (

q
2 , q − 1

)
(see

H(v)) and ξ− = −1, ξ+ = 1 (see H(vi)).

Let ϕ : W → R be the energy functional for problem (1) defined by

ϕ(u) =
1
2
‖u′‖2

2 −
∫ b

0

F (t, u(t))dt for all u ∈ W,

where F (t, x) =
∫ x

0
f(t, s)ds. Hypotheses H imply ϕ ∈ C2(W ). We will also

need the notion of upper and lower solutions for problem (1).

Definition 2.1. (a) A function u ∈ W 1,2(0, b) is an “upper solution” for prob-
lem (1), if∫ b

0

u′ψ′dt ≥
∫ b

0

f(z, u)ψdt for all ψ ∈ C1
c (0, b), ψ ≥ 0

and u(b) ≥ u(0).
(b) A function u ∈ W 1,2(0, b) is a “lower solution” for problem (1), if∫ b

0

u′ψ′dtz ≤
∫ b

0

f(z, u)ψdt for all ψ ∈ C1
c (0, b), ψ ≥ 0

and u(b) ≤ u(0).

3. C-condition, critical groups

In this section we show the C-condition for the energy functional ϕ ∈ C2(W )
and we compute its critical groups at the origin and at infinity. To this
end we prove some auxiliary results which can be deduced from hypotheses
H(iv), (v).
So, let λi > 0 be the eigenvalue postulated by hypothesis H(v) and consider
the orthogonal direct sum decomposition of the space W corresponding to it,
i.e.,

W = W i−1 ⊕ E(λi) ⊕ Ŵi+1.
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Then for every u ∈ W, we have u = u+ u0 + û, where u ∈ W i−1, u
0 ∈ E(λi),

û ∈ Ŵi+1.

Proposition 3.1. If {un}n≥1 ⊆ W is a sequence such that ‖un‖ → 0 and
ûn+un

‖un‖ → 0 in W, then lim supn→∞
∫ b

0
f0(t,un)un

‖un‖2β dt < 0.

Proof. In what follows, by | · | we denote the Lebesgue measure on R. From
Bartolo et al. [3], we know that given ε > 0, we can find μ1(ε) ∈ (0, 1),
μ2(ε) > 0 large such that

|{t ∈ T : |u0(t)| < μ1‖u0‖}| < ε for all u0 ∈ E(λi)\{0} and

|{t ∈ T : |û(t) + u(t)| > μ2‖û+ u‖}|
< μ2β

1 ε for all û ∈ Ŵi+1, u ∈ W i−1, û+ u �= 0.

For every n ≥ 1, we introduce the following sets

T1 n = {t ∈ T : |u0
n(t)| ≥ μ1‖u0

n‖} and
T2 n = {t ∈ T : |ûn(t) + un(t)| ≤ μ2‖ûn + un‖}.

Evidently we have

|T\T1 n| < ε, |T\T2 n| < ε and |T1 n ∩ T2 n| ≥
|T1 n| − |T\T2 n| = |T | − |T\T1 n| − |T\T2 n| ≥ b− 2ε. (4)

So, if ε ∈ (
0, b

2

)
then from (4) we see that |T1 n ∩ T2 n| > 0, which implies that

T1 n ∩ T2 n �= ∅. If t ∈ T1 n ∩ T2 n, then

|un(t)|
‖un‖ ≥ |u0

n(t)|
‖un‖ − |ûn(t) + un(t)|

‖un‖ ≥ μ1
‖u0

n‖
‖un‖ − μ2

‖ûn + un‖
‖un‖ . (5)

If t ∈ T2 n\T1 n, then

|un(t)|
‖un‖ ≤ |u0

n(t)|
‖un‖ +

|ûn(t) + un(t)|
‖un‖ < μ1

‖u0
n‖

‖un‖ + μ2
‖ûn + un‖

‖un‖ . (6)

Since θ0 ∈ L∞(T ) and yn = |un|
‖un‖ satisfies ‖yn‖ = 1, then we can find c1 > 0

such that ∫ b

0

( |un(t)|
‖un‖

)2β

dt ≤ c1. (7)

By virtue of hypothesis H(v), for the chosen ε > 0, we can find δ = δ(ε) > 0
such that

f0(t, x)x ≤ (θ0(t) + μ2β
1 ε)|x|2β for a.a. t ∈ T, all |x| ≤ δ.

By hypothesis ‖un‖ → 0. From the continuous (in fact compact) embedding of
W into C(T ), we have ‖un‖∞ → 0 as n → ∞. So, we can find n0 = n0(δ) ≥ 1
such that ‖un‖∞ ≤ δ for all n ≥ n0. Therefore

f0(t, un(t))un(t) ≤ (θ0(t) + μ2β
1 ε)|un(t)|2β for a.a. t ∈ T, all n ≥ n0. (8)
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Now, we evaluate the
∫ b

0
f0(t,un)un

‖un‖2β dt for n ≥ n0 by splitting it into two
integrals. To this end, we recall that θ0 ≤ 0 a.e. on T. Then, using (4), (5) and
(8) we obtain
∫

T1 n∩T2 n

f0(t, un)un

‖un‖2β
dt

≤
∫

T1 n∩T2 n

(θ0(t) + μ2β
1 ε)

( |un(t)|
‖un‖

)2β

dt

≤
[
μ2β

1

22β−1

(‖u0
n‖

‖un‖
)2β

− μ2β
2

(‖ûn + un‖
‖un‖

)2β
] ∫

T1 n∩T2 n

θ0dt

+μ2β
1 ε

∫
T1 n∩T2 n

( |un(t)|
‖un‖

)2β

dt

≤
[
μ2β

1

22β−1

(‖u0
n‖

‖un‖
)2β

− μ2β
2

(‖ûn + un‖
‖un‖

)2β
] ∫ b

0

θ0dt

+
μ2β

1

22β−1

(‖u0
n‖

‖un‖
)2β ∫

T\(T1 n∩T2 n)

− θ0dt+ μ2β
1 ε

∫
T1 n∩T2 n

( |un(t)|
‖un‖

)2β

dt

≤
[
μ2β

1

22β−1

(‖u0
n‖

‖un‖
)2β

− μ2β
2

(‖ûn + un‖
‖un‖

)2β
] ∫ b

0

θ0dt

+
μ2β

1

22β−1
‖θ0‖∞2ε+ μ2β

1 ε

∫
T1 n∩T2 n

( |un(t)|
‖un‖

)2β

dt (9)

For the evaluation of the second integral we simply use (8):
∫

T\(T1 n∩T2 n)

f0(t, un)un

‖un‖2β
dt ≤ μ2β

1 ε

∫
T\(T1 n∩T2 n)

( |un(t)|
‖un‖

)2β

dt (10)

Therefore, finally for n ≥ n0, owing to (7), and adding (9) and (10) we have

∫ b

0

f0(t, un)un

‖un‖2β
dt ≤

[
μ2β

1

22β−1

(‖u0
n‖

‖un‖
)2β

− μ2β
2

(‖ûn + un‖
‖un‖

)2β
] ∫ b

0

θ0dt

+
μ2β

1

22(β−1)
‖θ0‖∞ε+ μ2β

1 ε

∫ b

0

( |un(t)|
‖un‖

)2β

dt

≤
[
μ2β

1

22β−1

(‖u0
n‖

‖un‖
)2β

− μ2β
2

(‖ûn + un‖
‖un‖

)2β
]

×
∫ b

0

θ0dt+
μ2β

1 ε

22β−2

(‖θ0‖∞ + c122β−2
)

(11)

In (11) we pass to the limit as n → ∞ and use the fact that by hypothesis

‖u0
n‖

‖un‖ → 1 and
‖ûn + un‖

‖un‖ → 0 as n → ∞.
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We obtain

lim sup
n→∞

∫ b

0

f0(t, un)un

‖un‖2β
dt ≤ μ2β

1

22β−1

∫ b

0

θ0dt+
μ2β

1 ε

22β−2

(‖θ0‖∞ + c122β−2
)
.

Recall that ε > 0 was arbitrary. So, choosing ε ∈ (0, 1) small we obtain

lim sup
n→∞

∫ b

0

f0(t, un)un

‖un‖2β
dt < 0.

�
We have a similar result for f∞(t, x).

Proposition 3.2. If {un}n≥1 ⊆ W is a sequence such that ‖un‖ → +∞ and
ûn+un

‖un‖ → 0 in W, then lim supn→∞
∫ b

0
f∞(t,un)un

‖un‖2α dt < 0.

Proof. For this proposition, we consider the following orthogonal direct sum
decomposition

W = Wm−1 ⊕ E(λm) ⊕ Ŵm+1.

Again from Bartolo et al. [3], we know that given ε > 0, we can find
μ1(ε), μ2(ε) > 0 such that

|{t ∈ T : |u0(t)| < μ1‖u0‖}| < ε for all u0 ∈ E(λm)\{0} and

|{t ∈ T : |û(t) + u(t)| > μ2‖û+ u‖}|
< μ2α

1 ε for all û ∈ Ŵm+1, u ∈ Wm−1, û+ u �= 0.

For every n ≥ 1, we consider the sets

I1 n = {t ∈ T : |u0
n(t)| ≥ μ1‖u0

n‖} and
I2 n = {t ∈ T : |ûn(t) + un(t)| ≤ μ2‖ûn + un‖}.

We have

|T\I1 n| < ε, |T\I2 n| < ε and |I1 n ∩ I2 n| ≥ |T | − 2ε = b− 2ε. (12)

So, if we choose ε ∈ (
0, b

2

)
then from (12) we see that |I1 n ∩ I2 n| �= ∅. For

t ∈ I1 n ∩ I2 n, we have

|un(t)|
‖un‖ ≥ μ1

‖u0
n‖

‖un‖ − μ2
‖ûn + un‖

‖un‖ . (13)

For t ∈ I2 n\I1 n, we have

|un(t)|
‖un‖ ≤ μ1

‖u0
n‖

‖un‖ + μ2
‖ûn + un‖

‖un‖ . (14)

By virtue of hypothesis H(iii), (iv), given ε > 0, we can find aε ∈ L1(T )+ such
that

f∞(t, x)x ≤ (θ∞(t) + μ2α
1 ε)|x|2α + aε(t) for a.a. t ∈ T, all x ∈ R. (15)

Now, we can find c2 > 0 such that:∫ b

0

( |un(t)|
‖un‖

)2α

dt ≤ c2. (16)
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Then, arguing as for (9) and (10), recalling that θ∞ ≤ 0 and using firstly (13)
and (15), then only (15), we obtain∫

I1 n∩I2 n

f∞(t, un)un

‖un‖2α
dt

≤
[
μ2α

1

c3

(‖u0
n‖

‖un‖
)2α

− μ2α
2

(‖ûn + un‖
‖un‖

)2α
] ∫ b

0

θ∞dt

+
μ2α

1

c3

(‖u0
n‖

‖un‖
)2α ∫

T\I1 n∩I2 n

− θ∞dt

+μ2α
1 ε

∫
I1 n∩I2 n

( |un(t)|
‖un‖

)2α

dt+
∫

I1 n∩I2 n

aε(t)
‖un‖2α

dt (17)

for some c3 ≥ 1 and∫
T\(I1 n∩I2 n)

f∞(t, un)un

‖un‖2α
dt ≤ μ2α

1 ε

∫
T\(I1 n∩I2 n)

( |un(t)|
‖un‖

)2α

dt

+
∫

T\(I1 n∩I2 n)

aε(t)
‖un‖2α

dt. (18)

Adding (17) and (18) and using (12) and (16), we have∫ b

0

f∞(t, un)un

‖un‖2α
dt

≤
[
μ2α

1

c3

(‖u0
n‖

‖un‖
)2α

− μ2α
2

(‖ûn + un‖
‖un‖

)2α
] ∫ b

0

θ∞dt+
μ2α

1

c3

(‖u0
n‖

‖un‖
)2α

×
∫

T\I1 n∩I2 n

− θ∞dt+ μ2α
1 ε

∫ b

0

( |un(t)|
‖un‖

)2α

dt+
∫ b

0

aε(t)
‖un‖2α

dt

≤
[
μ2α

1

c3

(‖u0
n‖

‖un‖
)2α

− μ2α
2

(‖ûn + un‖
‖un‖

)2α
] ∫ b

0

θ∞dt

+
μ2α

1

c3
‖θ∞‖∞2ε+ μ2α

1 εc2 +
‖aε‖1

‖un‖2α
. (19)

In (19) we pass to the limit as n → ∞ and use the fact that

‖un‖ → +∞ ,
‖u0

n‖
‖un‖ → 1 and

‖ûn + un‖
‖un‖ → 0.

So, in the limit we have

lim sup
n→∞

∫ b

0

f∞(t, un)un

‖un‖2α
dt ≤ μ2α

1

c3

∫ b

0

θ∞dt+
εμ2α

1

c3
(2‖θ∞‖∞ + c2c3).

Recall that
∫ b

0
θ∞dt < 0. So choosing ε > 0 small we obtain

lim sup
n→∞

∫ b

0

f∞(t, un)un

‖un‖2α
dt < 0.

�
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Let R > 0 and η, α ∈ (0, 1) (α as in hypothesis H(iv)). We introduce the set

C∞(R, η, α) = {u ∈ W : ‖u‖ ≥ R, ‖û+ u‖ ≤ η‖u‖α}.
Proposition 3.3. If hypotheses H hold, then there exist R > 0, η ∈ (0, 1) and
δ0 > 0 such that 〈ϕ′(u), u0〉 ≥ δ0 for all u ∈ C∞(R, η, α).

Proof. We proceed by contradiction. Assuming that the proposition is not true,
then for every n ≥ 1 and η = δ0 = 1

n , we can find un ∈ W such that

‖un‖ ≥ n, ‖ûn + un‖ ≤ 1
n

‖un‖α and 〈ϕ′(un), u0
n〉 < 1

n
for all n ≥ 1. (20)

From (20) we have

‖un‖ → ∞,
‖ûn + un‖

‖un‖α
→ 0 and since α ∈ (0, 1), also

‖ûn + un‖
‖un‖ → 0. (21)

Moreover, exploiting the orthogonality of the component spaces in (20), we
have

〈ϕ′(un), u0
n〉 = 〈A(un), u0

n〉 − λm‖u0
n‖2

2 −
∫ b

0

f∞(t, un)u0
ndt

= ‖(u0
n)′‖2

2 − λm‖u0
n‖2

2 −
∫ b

0

f∞(t, un)u0
ndt

= −
∫ b

0

f∞(t, un)u0
ndt <

1
n
,

so

lim inf
n→∞

1
‖un‖2α

∫ b

0

f∞(t, un)u0
ndt ≥ 0. (22)

By virtue of hypotheses H(iii),(iv), given ε > 0, we can find âε ∈ L1(T )+ such
that

|f∞(t, x) ≤ ε|x|α + âε(t) for a.a. t ∈ T, all x ∈ R. (23)

Let c0 be the constant of the embedding of W in C(T ). From (23) we have∣∣∣∣∣
∫ b

0

f∞(t, un(t))(ûn(t) + un(t))
‖un‖2α

dt

∣∣∣∣∣
≤

∫ b

0

(ε|un(t)|α + âε(t)) |ûn(t) + un(t)|
‖un‖2α

dt

≤ bε

(
c0‖un‖
‖un‖

)α

· c0 ‖ûn + un‖
‖un‖α

dt+ c0‖âε‖1
‖ûn + un‖

‖un‖2α

≤ (
bεc1+α

0 + c0‖âε‖1

) ‖ûn + un‖
‖un‖α

for all n ≥ 1,

so

lim
n→∞

∫ b

0

f∞(t, un(t))(ûn(t) + un(t))
‖un‖2α

dt = 0. (24)
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From this last equality and Proposition 3.2 it follows that

lim sup
n→∞

∫ b

0

f∞(t, un(t))u0
n(t)

‖un‖2α
dt

= lim sup
n→∞

[∫ b

0

f∞(t, un(t))un(t)
‖un‖2α

dt−
∫ b

0

f∞(t, un(t))(ûn(t) + un(t))
‖un‖2α

dt

]

≤ lim sup
n→∞

∫ b

0

f∞(t, un(t))un(t)
‖un‖2α

dt < 0. (25)

Comparing (22) and (25), we reach a contradiction. This proves the
proposition. �
Now we are ready to prove that the energy functional ϕ satisfies the
C-condition.

Proposition 3.4. If hypotheses H hold, then the functional ϕ satisfies the
C-condition.

Proof. Let {un}n≥1 ⊆ W be a sequence such that {ϕ(un)}n≥1 ⊆ R is bounded
and

(1 + ‖un‖)ϕ′(un) → 0 in W ∗ as n → ∞. (26)

We will show that the sequence {un}n≥1 ⊆ W is bounded. If this is not the
case, by passing to a suitable subsequence if necessary, we may assume that
‖un‖ → ∞. From (26) we have

|〈ϕ′(un), h〉| ≤ εn‖h‖
1 + ‖un‖ for all h ∈ W, with εn → 0+. (27)

In (27) we choose h = ûn ∈ W. Exploiting the orthogonality of the component
spaces, we have

〈ϕ′(un), ûn〉 = 〈A(un), ûn〉 − λm

∫ b

0

unûndt−
∫ b

0

f∞(t, un)ûndt

= ‖û′
n‖2

2 − λm‖ûn‖2
2 −

∫ b

0

f∞(t, un)ûndt ≤ εn for all n ≥ 1,

and from this, using (23) and bearing in mind that ûn ∈ Ŵm+1, we can find a
number ξ̂0 > 0 such that

ξ̂0‖ûn‖2 ≤ εn +
∫ b

0

f∞(t, un)ûndt ≤ εn +
∫ b

0

(ε|un|α + âε(t)) ûndt for all n≥1,

so, for all n ≥ 1, we have

ξ̂0‖ûn‖2 ≤ εn + bεc1+α
0 ‖un‖α‖ûn‖ + c0‖âε‖1‖ûn‖,

hence

ξ̂0

( ‖ûn‖
‖un‖α

)2

≤ εn

‖un‖2α
+

(
bεc1+α

0 +
c0‖âε‖1

‖un‖α

) ‖ûn‖
‖un‖α

for all n ≥ 1, (28)

and
{
σn = ‖ûn‖

‖un‖α

}
n≥1

is bounded.



314 G. Barletta and N. S. Papageorgiou NoDEA

We may assume that σn → σ ≥ 0 as n → ∞. So, if in (28) we pass to the limit
as n → ∞, then

ξ̂0σ
2 ≤ bεc1+α

0 σ.

Since ε > 0 was arbitrary, we let ε → 0+ to conclude that σ = 0. Therefore

‖ûn‖
‖un‖α

→ 0 in W as n → ∞. (29)

Next, in (27) we choose h = −un ∈ Wm−1. Then we can find ξ̂1 > 0 such that

ξ̂1‖un‖2 ≤ εn +
∫ b

0

|f∞(t, un)||un|dt for all n ≥ 1,

hence (see (23)), for all n ≥ 1 we have

ξ̂1

( ‖un‖
‖un‖α

)2

≤ εn

‖un‖2α
+

(
bεc1+α

0 +
c0‖âε‖1

‖un‖α

) ‖un‖
‖un‖α

, (30)

and, as above we deduce that ‖un‖
‖un‖α → 0 in W as n → ∞.

Let R > 0, η ∈ (0, 1) and δ0 > 0 be as postulated in Proposition 3.3. Since
‖un‖ is not bounded, from (29) and (30) it follows that un ∈ C∞(R, η, α) for
all n ≥ n0 and so by virtue of Proposition 3.3

〈ϕ′(un), u0
n〉 ≥ δ0 for all n ≥ n0. (31)

On the other hand, if in (27) we choose h = u0
n ∈ E(λm), then

〈ϕ′(un), u0
n〉 ≤ εn for all n ≥ n0 and εn → 0+. (32)

Comparing (31) and (32), we reach a contradiction. This proves that {un} ⊆ W
is bounded. Hence we may assume that

un ⇀ u in W and un → u in C(T ) as n → ∞. (33)

In (27) we choose h = un − u ∈ W. Then∣∣∣∣∣〈A(un), un − u〉 −
∫ b

0

f(t, un)(un − u)dt

∣∣∣∣∣ ≤ εn‖un − u‖
1 + ‖un‖ ;

from this, using (33), we deduce that limn→∞〈A(un), un − u〉 = 0; since
A(un) ⇀ A(u) in W ∗, we have that ‖u′

n‖2 → ‖u′‖2. Finally, from the Kadec–
Klee property of Hilbert spaces, we have u′

n → u′ in L2(T ). Hence un → u in
W and ϕ satisfies the C-condition. �

Next we will compute the critical groups of ϕ at the origin and at infinity.
First we consider the critical groups at the origin. For this purpose let β > 1
be as in hypothesis H(v) and introduce the following set

C0(ρ, η, β) = {u ∈ W, : ‖u‖ ≤ ρ, ‖û+ u‖ ≤ η‖u‖β} with ρ > 0, η ∈ (0, 1).

Recall that since we are dealing with ϕ near the origin, we use the following
direct sum decomposition

W = W i−1 ⊕ E(λi) ⊕ Ŵi+1.
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Proposition 3.5. If hypotheses H hold then Ck(ϕ, 0) ≡ δk,di
Z for all k ≥ 0,

where di = dimW i−1.

Proof. First we show that there exists ρ > 0 and η ∈ (0, 1) such that

〈ϕ′(u), u0〉 ≥ 0 for all u ∈ C0(ρ, η, β). (34)

We argue by contradiction. So, we may assume that for every n ≥ 1 and
ρ = η = 1

n we can find un ∈ W such that

‖un‖ ≤ 1
n
, ‖ûn + un‖ ≤ 1

n
‖un‖β and 〈ϕ′(un), u0

n〉 < 0 for all n ≥ 1. (35)

From (35) we have

‖un‖ → 0,
‖ûn + un‖

‖un‖β
→ 0 as n → ∞, (36)

and

〈ϕ′(un), u0
n〉 = 〈A(un), u0

n〉 − λi

∫ b

0

unu
0
ndt−

∫ b

0

f0(t, un)u0
ndt

= ‖(u0
n)′‖2

2 − λi‖u0
n‖2

2 −
∫ b

0

f0(t, un)u0
ndt

= −
∫ b

0

f0(t, un)u0
ndt < 0 (since u0

n ∈ E(λi)),

so

lim inf
n→+∞

∫ b

0

f0(t, un)u0
n

‖un‖2β
dt ≥ 0. (37)

Hypotheses H(iii), (v), imply that given ε > 0, we can find ãε ∈ L1(T )+ such
that

|f0(t, x)| ≤ ε|x|β + ãε(t)|x|γ for a.a. t ∈ T, all x ∈ R with γ > β. (38)

Then ∣∣∣∣∣
∫ b

0

f0(t, un)(ûn + un)
‖un‖2β

dt

∣∣∣∣∣
≤

∫ b

0

(
ε|un|β + ãε(t)|un|γ) |ûn + un|

‖un‖2β
dt

≤
(
bεc1+β

0 + c1+γ
0 ‖âε‖1‖un‖γ−β

) ‖ûn + un‖
‖un‖β

for all n ≥ 1,

so

lim
n→∞

∫ b

0

f0(t, un)(ûn + un)
‖un‖2β

dt = 0. (39)

It follows that

lim inf
n→∞

∫ b

0

f0(t, un)u0
n

‖un‖2β
dt = lim inf

n→∞

∫ b

0

f0(t, un)un

‖un‖2β
dt ≥ 0

This last inequality contradicts Proposition 3.1. Therefore, we can find ρ > 0
and η ∈ (0, 1) such that (34) holds.
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Now let λ ∈ (0, λi − λi−1) (recall i ≥ 1, see H(v)) and consider the following
homotopy

ht(u) = ϕ(u) + t
λ

2
‖u0‖2 for all (t, u) ∈ [0, 1] ×W.

Claim. There exists r0 > 0 small such that u ≡ 0 is the only critical point of
{ht(·)}t∈[0, 1] in Br0(0).

To prove the Claim, we argue indirectly. So, suppose we can find
{tn}n≥1 ⊆ [0, 1]\{0} and {un}n≥1 ⊆ W such that

tn → t ∈ [0, 1], ‖un‖ → 0 and h′
tn

(un) = ϕ′(un) + tnλu
0
n = 0 ∀ n ≥ 1. (40)

From the last equation in (40), we have

〈ϕ′(un), u0
n〉 = −tnλ‖u0

n‖2
2 for all n ≥ 1. (41)

Suppose that u0
n ≡ 0 for all n ≥ n0 ≥ 1. Then, for n ≥ n0, we have

A(un) −N(un) = ϕ′(un) = 0, whereN(y)(·) = f(·, y(·)) ∀y ∈ W. (42)

If we set yn = un

‖un‖ , n ≥ 1, then we may assume that

yn ⇀ y in W and yn → y in C(T ) as n → +∞. (43)

From (42) we have

A(yn) =
N(un)
‖un‖ for all n ≥ n0. (44)

Evidently
{

N(un)
‖un‖

}
n≥1

⊆ L1(T ) is uniformly integrable (see H(iii) and (40)).

So, by virtue of the Dunford–Pettis theorem, we may assume that N(un)
‖un‖ ⇀ g

in L1(T ) as n → ∞. Using hypothesis H(v) and reasoning as in the proof of
Proposition 5 of [14], we obtain g = λiy. Hence, if in (44) we pass to the limit
as n → ∞, and we take into account (43), then we obtain A(y) = λiy, that is

−y′′(t) = λiy(t) a.e. on T, y(0) = y(b), y′(0) = y′(b),

so y ∈ E(λi). In fact, acting in (44) with yn − y and arguing as in the proof
of Proposition 3.4, from (43) we deduce that yn → y in W, ‖y‖ = 1 and
y ∈ E(λi)\{0}. Bearing in mind the decomposition adopted for W, we can
write y = y0. Then y0

n = u0
n

‖un‖ → y0 �= 0, which contradicts the hypothesis
that u0

n = 0 for all n ≥ n0. Therefore by passing to a suitable subsequence if
necessary, we may assume that u0

n �= 0 for all n ≥ 1.
Let ρ > 0 and η ∈ (0, 1) be as in (34). Suppose that un ∈ C0(ρ, η, β) for all
n ≥ n̂0. Then from (34) we have

〈ϕ′(un), u0
n〉 ≥ 0 for all n ≥ n̂0,

which contradicts (41). Hence, by passing to a suitable subsequence if neces-
sary, we may assume that un /∈ C0(ρ, η, β) for all n ≥ 1. Then

‖ûn + un‖ > η‖un‖β for all n ≥ 1. (45)
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From the orthogonality of the component spaces and (40), we have

0 = 〈h′
tn

(un), ûn − un〉 = 〈ϕ′(un), ûn − un〉

= ‖û′
n‖2

2 − λi‖ûn‖2
2 − ‖u′

n‖2
2 + λi‖un‖2

2 −
∫ b

0

f0(t, un)(ûn − un)dt

≥ ξ̂0‖ûn‖2 + ξ̂1‖un‖2 −
∫ b

0

f0(t, un)(ûn − un)dt for all n ≥ 1.

Now, owing to (38) and the fact that ‖ûn − un‖ = ‖ûn + un‖, if we choose
c3 = max{c1+β

0 , c1+γ
0 ‖âε‖1}, then we obtain

ξ̂0‖ûn‖2 + ξ̂1‖un‖2 −
∫ b

0

f0(t, un)(ûn − un)dt

≥ ξ̂0‖ûn‖2 + ξ̂1‖un‖2 − c3‖ûn + un‖(ε‖un‖β + ‖un‖γ) for all n ≥ 1.

Finally, if we choose ξ̂2 = min{ξ̂0, ξ̂1}, use (45) and put together the previous
inequalities, then we obtain

0 ≥ ξ̂2‖ûn + un‖2 − c3‖ûn + un‖(ε‖un‖β + ‖un‖γ)

= ‖ûn + un‖2

[
ξ̂2 − c3

(
ε‖un‖β

‖ûn + un‖ +
‖un‖γ

‖ûn + un‖
)]

≥ ‖ûn + un‖2

[
ξ̂2 − c3

η

(
ε+ ‖un‖γ−β

)]
. (46)

Since γ > β and ‖un‖ → 0, we can have ‖un‖γ−β < ε, hence (see (46))
ξ̂2 ≤ 2εc3

η . Choosing ε > 0 small we obtain ξ̂2 >
2εc3

η and this leads to a con-
tradiction. This proves the Claim.
The orthogonality of the component spaces, implies

〈h′
t(u), û〉 = 〈ϕ′(u), û〉 and 〈h′

t(u), u〉 = 〈ϕ′(u), u〉 for all (t, u) ∈ [0, 1] ×W.

Using these facts and reasoning as in the proof of Proposition 3.4, we show
that for all t ∈ [0, 1], ht(·) satisfies the C-condition. Then by virtue of the ho-
motopy invariance of the critical groups (see [6, p. 332]) and being h0 ≡ ϕ, we
have

Ck(ϕ, 0) = Ck(h1, 0) for all k ≥ 0. (47)

Note that h1(u) = ϕ(u) + λ
2 ‖u0‖2 for all u ∈ W. Clearly h1 ∈ C2(W ) and

u = 0 is a critical point of h1. We claim that u = 0 is a nondegenerate critical
point of h1. To this end, let y ∈ kerh′′

1(0). Then

h′′
1(0)y = ϕ′′(0)y + λy = 0,

hence

A(y) − λiy − (f0)′
x(·, 0)y + λy = 0. (48)

Note that f0(t, 0) = 0 for a.a. t ∈ T (see H(ii)), and f0(t,x)
x = f(t,x)

x −λi, hence
limx→0

f0(t,x)
x = 0 uniformly for a.a. t ∈ T (see H(v)), so (f0)′

x(t, 0) = 0 for
a.a. t ∈ T. Using this in (48), we have A(y) = (λi − λ)y, hence

− y′′(t) = (λi − λ)y(t) a.e. on T, y(0) = y(b), y′(0) = y′(b). (49)
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Proposition 2 of Aizicovici et al. [1] and (49), imply that y = 0 (recall that
λ ∈ (λi −λi−1). Hence kerh′′

1(0) = {0} and so u = 0 is a nondegenerate critical
point of h1 and its Morse index is di = dimW i−1. From (47) and Mawhin and
Willem [13, p. 188], we have

Ck(ϕ, 0) = Ck(h1, 0) = δk, di
Z for all k ≥ 0.

�
Next we will compute the critical groups of ϕ at infinity. Now we are dealing
with the orthogonal direct sum decomposition

W = Wm−1 ⊕ E(λm) ⊕ Ŵm+1.

Proposition 3.6. If hypotheses H hold, then Ck(ϕ,∞) ≡ δk,dm
Z for all k ≥ 0,

where dm = dimWm−1.

Proof. In this case, we consider the following homotopy

ht(u) = ϕ(u) +
t

2
‖u0‖2 for all (t, u) ∈ [0, 1] ×W.

Note that for all t ∈ [0, 1], ht ∈ C2(W ) and h′
t, ∂tht are both locally Lipschitz.

Claim. There exists a ∈ R and δ > 0 such that if ht(u) ≤ a then

(1 + ‖u‖)‖h′
t(u)‖ ≥ δ for all t ∈ [0, 1].

We proceed by contradiction. Note that (t, u) → ht(u) maps bounded sets to
bounded ones. So, if the Claim is not true, then we can find {tn}n≥1 ⊆ [0, 1]
and {un}n≥1 ⊆ W such that

tn → t, ‖un‖ → ∞, htn
(un) → −∞ and

×(1 + ‖un‖)h′
tn

(un) → 0 inW ∗ asn → ∞. (50)

From the last convergence in (50), we have
∣∣〈h′

tn
(un), v〉∣∣ ≤ εn‖v‖

1 + ‖un‖ for all v ∈ W, with εn → 0+,

so∣∣∣∣∣〈A(un), v〉 −
∫ b

0

N(un)vdt+ tn

∫ b

0

u0
nvdt

∣∣∣∣∣ ≤ εn‖v‖
1 + ‖un‖ for all n ≥ 1. (51)

If we set yn = un

‖un‖ , n ≥ 1, then we may assume that

yn ⇀ y in W and yn → y in C(T ) as n → ∞. (52)

From (51) we have∣∣∣∣∣〈A(yn), v〉 −
∫ b

0

N(un)
‖un‖ vdt+ tn

∫ b

0

y0
nvdt

∣∣∣∣∣ ≤ εn‖v‖
(1 + ‖un‖)‖un‖ ∀ n ≥ 1. (53)

As before, using H(v), the Dunford–Pettis theorem and reasoning as in [14],
we have

N(un)
‖un‖ ⇀ λmy in L1(T ). (54)
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If in (53) we pass to the limit as n → ∞, and use (52) and (54), then

〈A(y), v〉 = λm

∫ b

0

yvdt− t

∫ b

0

y0vdt for all v ∈ W. (55)

Moreover, if in (53) we choose v = yn − y and pass to the limit as n → ∞,
then, bearing in mind (52) and (54), we obtain limn→∞〈A(yn), yn − y〉 = 0,
hence

yn → y in W and so ‖y‖ = 1. (56)

Next in (55), we choose first v = ŷ ∈ Ŵm+1 and then v = y ∈ Wm−1. We
obtain ‖ŷ′‖2

2 = λm‖ŷ‖2
2 and ‖y′‖2

2 = λm‖y‖2
2, and so ŷ = y = 0. Hence

y = y0 ∈ E(λm)\{0}. (57)

From (55) and (57) it follows that A(y) = (λm − t)y, so ‖y′‖2
2 = (λm − t)‖y‖2

2,
hence t‖y‖2

2 = 0; bearing in mind that ‖y‖ = 1 we deduce that t = 0.
Reasoning as in the proof of Proposition 3.4 (see (29) and (30)), we show that
‖ûn‖

‖un‖α → 0 and ‖un‖
‖un‖α → 0 in W, hence ‖ûn+un‖

‖un‖α → 0 in W as n → ∞. Then,
if R > 0 and η ∈ (0, 1) are as postulated by Proposition 3.3, we have

un ∈ C∞(R, η, α) = {u ∈ W : ‖u‖ ≥ R, ‖û+ u‖ ≤ η‖u‖α} for all n ≥ n0,

hence 〈ϕ′(un), u0
n〉 ≥ δ0 for all n ≥ n0. As tn → 0+, we obtain

〈h′
tn

(un), u0
n〉 ≥ δ0

2
> 0 for all n ≥ n1 ≥ n0,

which contradicts (50). So, the Claim is true.
Note that h0 = ϕ which satisfies the C-condition (see Proposition 3.4). In a
similar way, exploiting the orthogonality of the component spaces, we check
that h1 too satisfies the C-condition. So, we can apply Proposition 2.1 and
have

Ck(ϕ,∞) = Ck(h1,∞) for all k ≥ 0. (58)

From a slight modification of the proof of Proposition 3.10 of Bartsch and Li
[5], we have

Ck(h1,∞) = δk,dm
Z for all k ≥ 0,

hence

Ck(ϕ,∞) = δk,dm
Z for all k ≥ 0.

�

4. Multiple nontrivial solutions

In this section we prove the full multiplicity theorem for problem (1). First we
show the existence of two constant sign solutions which are local minimizers
of the energy functional ϕ.
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Proposition 4.1. If hypotheses H hold, then problem (1) has two nontrivial
constant sign solutions

u0 ∈ intC+, v0 ∈ −intC+, ξ− < v0(t) < 0 < u0(t) < ξ+ for all t ∈ T

and both are local minimizers of the energy functional ϕ.

Proof. Let θ ∈ (0, 1) and consider the following truncation–perturbation of
f(t, x):

fθ
+(t, x) =

⎧⎨
⎩

0 if x ≤ 0
f(t, x) + θx if 0 < x < ξ+
f(t, ξ+) + θξ+ if ξ+ ≤ x.

(59)

We set F θ
+(t, x) =

∫ x

0
fθ
+(t, s)ds and consider the functional ϕθ

+ : W → R

defined by

ϕθ
+(u) =

1
2
‖u′‖2

2 +
θ

2
‖u‖2

2 −
∫ b

0

F θ
+(t, u)dt for all u ∈ W.

We see that ϕθ
+ ∈ C1,1(W ) and exploiting the compact embedding of W

into C(T ) we can check that ϕθ
+ is sequentially weakly semicontinuous. Also,

because of (59), clearly ϕθ
+ is coercive. Therefore, invoking the Weierstrass

theorem, we can find u0 ∈ W such that

ϕθ
+(u0) = inf

W
ϕθ

+ = mθ
+. (60)

First we show that u0 �= 0. Indeed, hypotheses H(v) implies that given ε > 0,
we can find δ = δ(ε) ∈ (0, ξ+) such that

f(t, x) ≥ (λi − ε)x for almost all t ∈ T, all x ∈ [0, δ],

so

F (t, x) ≥ 1
2
(λi − ε)x2 for almost all t ∈ T, all x ∈ [0, δ]. (61)

Hence for ξ ∈ [0, δ] ⊂ [0, ξ+[ and ε ∈ (0, λi) (recall that i ≥ 1 and so λi > 0),
we have

ϕθ
+(ξ) =

θξ2

2
b−

∫ b

0

F θ
+(t, ξ)dt = −

∫ b

0

F (t, ξ)dt

≤ −1
2
(λi − ε)x2b < 0,

and from this we deduce

ϕθ
+(u0) = inf

W
ϕθ

+ = mθ
+ < 0 = ϕθ

+(0),

so

u0 �= 0. (62)

From (60), we have

(ϕθ
+)′(u0) = A(u0) + θu0 −Nθ

+(u0) = 0 (63)

where Nθ
+(u)(·) = fθ

+(·, u(·)) for all u ∈ W, namely

− u′′
0(t) + θu0(t) = fθ

+(t, u0(t)) a.e. on T, u0(0) = u0(b), u′
0(0) = u′

0(b). (64)
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From (64) it follows that u0 ∈ Ĉ(T )\{0}. In (63) we act with (u0 − ξ+)+ ∈ W
and obtain

〈A(u0), (u0 − ξ+)+〉 + θ

∫ b

0

u0(u0 − ξ+)+dt =
∫ b

0

fθ
+(t, u0)(u0 − ξ+)+dt

=
∫ b

0

(f(t, ξ+)+θξ+) (u0−ξ+)+dt;

owing to hypothesis H(vi) we achieve

〈A(u0) −A(ξ+), (u0 − ξ+)+〉 + θ

∫ b

0

u0(u0 − ξ+)+dt ≤ 0,

hence θ‖(u0 − ξ+)+‖2 ≤ 0, so

(u0 − ξ+)+ = 0, i.e., u0(t) ≤ ξ+ for all t ∈ T. (65)

Also, on (64) we act with −u−
0 ∈ W, use (60) and obtain ‖(u−

0 )′‖2
2 +θ‖(u−

0 ‖2
2 =

0, so θ‖u−
0 ‖ ≤ 0, and finally

u0(t) ≥ 0 for all t ∈ T, u0 �= 0 (see (62)). (66)

From the last two equations we see that u0(t) ∈ [0, ξ+] for all t ∈ T and in this
case (60) yields

−u′′
0(t) = f(t, u0(t)) a.e. on T, u0(0) = u0(b), u′

0(0) = u′
0(b),

hence u0 ∈ C+\{0} and solves problem (1).
Hypotheses H(ii), (iii) imply that there is σ0 > 0 such that for a.a. t ∈ T, x →
f(t, x) + σ0x is nondecreasing on [ξ−, ξ+]. Hence

−u′′
0(t) + σ0(u0(t)) = f(t, u0(t)) + σ0(u0(t)) ≥ 0 a.e. on T,

so u′′
0(t) ≤ σ0(u0(t)) a.e. on T and from this we infer (see [21])

u0 ∈ intC+. (67)

Similarly, using hypotheses H(vi) and the fact that u0 ≤ ξ+ we obtain

−(ξ+ − u0)′′(t) + σ0(ξ+ − u0(t)) = f(t, ξ+) + σ0(ξ+) − f(t, u0(t)) − σ0(u0(t))
≥ 0 a.e. on T,

so (ξ+ − u0)′′(t) ≤ σ0(ξ+ − u0(t)) a.e. on T and from this we deduce

ξ+ − u0 ∈ intC+. (68)

Hence from (67) and (68) it follows that 0 < u0(t) < ξ+ for all t ∈ T, so

u0 ∈ intĈ(T )[0, ξ+] = intĈ(T ){u ∈ Ĉ(T ) : 0 ≤ u0(t) ≤ ξ+ for all t ∈ T}.
(69)

Note that ϕ|[0,ξ+] = ϕθ
+ |[0,ξ+]. So, from (69) we infer that u0 is a local Ĉ(T )-

minimizer of ϕ. Then from Proposition 5 of Papageorgiou and Papalini [16], it
follows that u0 is also a local W -minimizer of ϕ.
Similarly, if we truncate x → f(t, x)+θx at {ξ−, 0}, as above we obtain another
constant sign solution v0 ∈ intC+, ξ− < v0(t) < 0 for all t ∈ T, which is also
a local minimizer of the energy functional ϕ. �
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The next lemma, can be found in Aizicovici et al. [2], where it was proved for
Neumann partial differential equations driven by the p-Laplacian differential
operator.

Lemma 4.1.

(a) If u1, u2 ∈ W are lower solutions for problem (1), then u =
max{u1, u2} ∈ W is a lower solution too.

(b) If u1, u2 ∈ W are upper solutions for problem (1), then u =
max{u1, u2} ∈ W is an upper solution too.

This lemma leads to the existence of extremal solutions in the order inter-
vals [0, ξ+] = {u ∈ Ĉ(T ) : 0 ≤ u(t) ≤ ξ+ for all t ∈ T} and [ξ−, 0] = {u ∈
Ĉ(T ) : ξ− ≤ u(t) ≤ 0 for all t ∈ T}.
Proposition 4.2. If hypotheses H hold, then problem (1) has a biggest solution
u∗ ∈ intC+ in [0, ξ+] and a smallest solution v∗ ∈ −intC+ in [ξ−, 0].

Proof. Let

S+ = {u ∈ W : u �= 0, u solves (1), 0 ≤ u(t) ≤ ξ+ for all t ∈ T}.
From Proposition 4.1, we know that S+ �= ∅. Next we show that S+ is upward
directed, i.e., if u1, u2 ∈ S+, then we can find u ∈ S+ such that u1 ≤ u, u2 ≤ u.
So, let u1, u2 ∈ S+. Then by virtue of Lemma 4.1 (a), we have that u =
max{u1, u2} ∈ W is a lower solution for problem (1). Because of hypothesis
H(vi) u ≡ ξ+ is an upper solution for (1) and u ≤ u. As before, let θ ∈ (0, 1)
and consider the truncation of x → f(t, x) + θx at {u(t), u = ξ+} for a.a.
t ∈ T. Then via the direct method, we obtain a solution û0 ∈ [u, u] = {u ∈
W : u(t) ≤ u(t) ≤ ξ+ for all t ∈ T} (see [2]). This proves that S+ is outward
directed.
Now, we show that S+ has a maximal element for the pointwise ordering on W.
To this end, let C ⊆ S+ be a chain (i.e., a totally ordered subset of S+). From
Dunford and Schwartz [8, p. 336], we know that we can find {un}n≥1 ⊆ C
such that supC = supn≥1 un. we have

A(un) = N(un) for all n ≥ 1. (70)

As, 0 ≤ un(t) ≤ ξ+ for all t ∈ T, we can find c4 > 0 such that ‖u′
n‖ ≤ c4 for

all n ≥ 1, hence {un}n≥1 ⊆ w is bounded. So, we may assume that

un ⇀ u in W, and un → u in C(T ) as n → ∞. (71)

Passing to the limit as n → ∞ in (70) and using (71), we obtain A(u) = N(u),
so u = supC ∈ S+.
Invoking the Kuratowski–Zorn lemma, we infer that S+ has a maximal element
u∗ ∈ S+. This is the biggest solution of problem (1) in the ordered interval
[0, ξ+]. Indeed, let u ∈ S+. Since S+ is upward directed, we can find û ∈ S+

such that u∗ ≤ û, u ≤ û. The maximality of u∗ implies that û = u∗. Hence
u ≤ u∗ and since u ∈ S+ was arbitrary, we conclude the extremality of u∗.



Vol. 19 (2012) Periodic problems with double resonance 323

Similarly, if we consider the set

S− = {v ∈ W : v �= 0, v solves (1), ξ− ≤ v(t) ≤ 0 for all t ∈ T},
then reasoning as above, we produce v∗ ∈ −intC+ the smallest element of S.

�

Now we are ready for the full multiplicity theorem for problem (1). Our proof
combines variational methods with truncation techniques and Morse theory.

Theorem 4.1. If hypotheses H hold, then problem (1) has at least six non-
trivial smooth solutions u0, û ∈ intC+, û − u0 ∈ intC+, u0(t) < ξ+ for all
t ∈ T, v0, v̂ ∈ −intC+, v0 − v̂ ∈ intC+, ξ− < v0(t) for all t ∈ T, and y0,
ŷ ∈ C1(T ).

Proof. Proposition 4.1 guarantees the existence of two smooth solutions of
constant sign u0 ∈ intC+, v0 ∈ −intC+ and ξ− < v0(t) < 0 < u0(t) < ξ+ for
all t ∈ T.
In fact, invoking Proposition 4.2, we may assume that u0 (respectively v0) is
the biggest (respectively smallest) solution of (1) in the ordered interval [0, ξ+]
(respectively [ξ−, 0]). Let θ ∈ (0, 1) and consider the following truncation–
perturbation of f(t, x)

f̂θ
+(t, x) =

{
f(t, u0(t)) + θu0(t) if x ≤ u0(t)
f(t, x) + θx if u0(t) < x.

(72)

We set F̂ θ
+(t, x) =

∫ x

0
f̂θ
+(t, s)ds and define the functional ϕ̂θ

+ : W → R by

ϕ̂θ
+(u) =

1
2
‖u′‖2

2 +
θ

2
‖u‖2

2 −
∫ b

0

F̂ θ
+(t, u(t))dt for all u ∈ W.

Note that ϕ̂θ
+ ∈ C2−0(W ). Moreover, reasoning as in the proof of

Proposition 3.4, we can check that ϕ̂θ
+ satisfies the C-condition.

Claim. u0 ∈ intC+ is a local minimizer of ϕ̂θ
+. We truncate f̂θ

+(t, ·) as follows

f
θ

+(t, x) =

{
f̂θ
+(t, x) if x ≤ ξ+
f̂+(t, ξ+) if ξ+ < x.

(73)

Set F
θ

+(t, x) =
∫ x

0
f

θ

+(t, s)ds and consider the functional ϕθ
+ : W → R defined

by

ϕθ
+(u) =

1
2
‖u′‖2

2 +
θ

2
‖u‖2

2 −
∫ b

0

F
θ

+(t, u(t))dt for all u ∈ W.

Clearly ϕθ
+ ∈ C2−0(W ) and from (73) it is clear that ϕθ

+ is coercive. It is also
sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we
can find û0 ∈ W such that ϕθ

+(û0) = infW ϕθ
+ = mθ

+, hence
(
ϕθ

+

)′
(û0) = A(û0) + θû0 −N

θ

+(û0) = 0, (74)
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where N
θ

+(u)(·) = f
θ

+(·, u(·)) for all u ∈ W. On (74), first we act with
(u0 − û0)

+ ∈ W. Bearing in mind (72), (73) and recalling that u0 solves (1),
we obtain

〈A(û0), (u0 − û0)+〉 + θ

∫ b

0

û0(u0 − û0)+dt =
∫ b

0

f(t, u0)(u0 − û0)+dt

+ θ

∫ b

0

u0(u0 − û0)+dt = 〈A(u0), (u0 − û0)+〉 + θ

∫ b

0

u0(u0 − û0)+dt,

so

〈A(u0) −A(û0), (u0 − û0)+〉 + θ

∫ b

0

(u0 − û0)(u0 − û0)+dt = 0,

hence θ‖(u0 − û0)+‖2 ≤ 0, so

u0 ≤ û0. (75)

Next, on (74) we act with (û0 − ξ+)+ ∈ W. Using (73), (72) and hypothesis
H(vi), we obtain

〈A(û0), (û0 − ξ+)+〉 + θ

∫ b

0

û0(û0 − ξ+)+dt =
∫ b

0

(f(t, ξ+)+θξ+) (û0 − ξ+)+dt

≤ θ

∫ b

0

ξ+(û0 − ξ+)+dt,

so

〈A(û0) −A(ξ+), (û0 − ξ+)+〉 + θ

∫ b

0

(û0 − ξ+)(û0 − ξ+)+dt ≤ 0,

hence θ‖(û0 − ξ+)+‖2 ≤ 0, so

û0 ≤ ξ+. (76)

From (75) and (76) it follows that u0(t) ≤ û0(t) ≤ ξ+ for all t ∈ T and so
(74) becomes A(û0) = N(û0), hence −û′′

0(t) = f(t, û0(t)) a.e. on T, û0(0) =
û0(b), û′

0(0) = û′
0(b), so û0 ∈ intC+ solves (1) and û0 ∈ [u0, ξ+]. From this,

due to the extremality of u0 we deduce û0 = u0. From (73) it is clear that
ϕ̂θ

+|[0,ξ+] = ϕθ
+|[0,ξ+], while, from the proof of Proposition 4.1, we know that

u0 ∈ intĈ(T )[0, ξ+]; so, it follows that û0 = u0 is a local Ĉ(T )-minimizer of ϕ̂θ
+,

hence it is also a local W -minimizer of ϕ̂θ
+ (see [16]). This proves the Claim.

We may assume that u0 is an isolated critical point of ϕ̂θ
+. Indeed, suppose

that we can find {un}n≥1 ⊆ W such that un → u0 in W as n → ∞ and(
ϕ̂θ

+

)′ (un) = 0 for all n ≥ 1. Then, as above, we can check that u0 ≤ un for
all n ≥ 1 and {un}n≥1 ⊆ intC+. Then (72) implies that un is a smooth solu-
tion of (1) for all n ≥ 1 and so we have produced a whole sequence of distinct
positive solutions of (1) and we are done. Then as in the proof of Proposition 6
of Motreanu et al. [14], we can find ρ̂θ > 0 small such that

ϕ̂θ
+(u0) < inf

[
ϕ̂θ

+(u) : ‖u− u0‖ = ρ̂θ

]
= m̂θ. (77)
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Let ξ ∈ R+ = [0,+∞) with ξ > ‖u0‖∞. Then, owing to (72), we can find
c5 > 0 such that

ϕ̂θ
+(ξ) =

θ

2
ξ2b−

∫ b

0

F̂ θ
+(t, ξ)dt ≤ c5 −

∫ b

0

F (t, ξ)dt. (78)

Since λm > 0, given ε ∈ (0, λm), we can find M̂ > 0 such that F (t, x) ≥
1
2 (λm −ε)x2 for a.a. t ∈ T, all |x| ≥ M̂, so F (t, x) → +∞ uniformly for almost
all t ∈ T as |x| → ∞. Hence from (78) we conclude that

ϕ̂θ
+(ξ) → −∞ as ξ → +∞, ξ > 0. (79)

Because of (77), (79) and recalling that ϕ̂θ
+ satisfies the C-condition, we see

that we can apply Theorem 2.1 and obtain û ∈ W such that

ϕ̂θ
+(u0) = m̂θ ≤ ϕ̂θ

+(û), and
(
ϕ̂θ

+

)′
(û) = 0. (80)

From (80) we have that û �= u0 and

A(û) + θû = N̂θ
+(û), where N̂θ

+(u)(·) = f̂θ
+(·, u(·)) for all u ∈ W. (81)

On (81) we act with (u0 − û)+ ∈ W and as before show that u0 ≤ û and
û ∈ intC+. Hence û ∈ intC+ is a smooth solution of (1) (see 72). Hypoth-
eses H(ii), (iii) imply the existence of a σ̂ > 0 such that for almost all t ∈
T, x → f(t, x)+σ̂x is nondecreasing on [−‖û‖∞, ‖û‖∞]. Hence − (û− u0)

′′ (t)+
σ̂ (û− u0) (t) = f(t, û(t)) + σ̂û(t) − f(t, u0(t)) − σ̂u0(t) ≥ 0 a.e. on T, so
(û− u0)

′′ (t) ≤ σ̂ (û− u0) (t) a.e. on T, hence û− u0 ∈ intC+ (see [21]).
Similarly, if we use the other solution v0 ∈ −intC+ and the following trunca-
tion–perturbation of f(t, x)

f̂θ
−(t, x) =

{
f(t, x) + θx if x < v0(t)
f(t, v0(t)) + θv0(t) if v0(t) ≤ x,

(82)

then working as above, using this time (82), we obtain a second negative
smooth solution v̂ ∈ −intC+ such that v0 − v̂ ∈ intC+.
From Proposition 4.1 we know that u0 and v0 are both local minimizers of ϕ.
Hence (see [13, p. 175])

Ck(ϕ, u0) = Ck(ϕ, v0) = δk,0Z for all k ≥ 0. (83)

From the previous arguments, we know that û ∈ intC+ is a critical point
of mountain pass type for the functional ϕ̂θ

+, hence Ck(ϕ̂θ
+, û) �= 0 (see [6]).

Moreover, from (72) we have for every u ∈ W,u ≥ u0

ϕ̂θ
+(u) =

1
2
‖u′‖2

2 − θ

2
‖u0‖2

2 −
∫ b

0

F (t, u)dt+
∫ b

0

(F (t, u0) − f(t, u0)) dt

= ϕ(u) + c6, where c6 = −θ

2
‖u0‖2

2 +
∫ b

0

(F (t, u0) − f(t, u0)) dt.

Hence, since û ≥ u0 we have

Ck(ϕ̂θ
+, û) = Ck(ϕ+ c6, û) = Ck(ϕ, û) for all k ≥ 0, (84)

so,

Ck(ϕ, û) �= 0.
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Recall that ϕ ∈ C2(W ) and

〈ϕ′′(û)y, v〉 =
∫ b

0

y′v′dt−
∫ b

0

f ′
x(t, û)yvdt for all y, v ∈ W.

So, we can apply Proposition 25 of Bartsch [4] (see also [13, p. 195]) and have
that

Ck(ϕ, û) = δk,1Z for all k ≥ 0. (85)

Similarly, we show that

Ck(ϕ, v̂) = δk,1Z for all k ≥ 0. (86)

From Proposition 3.5, we have

Ck(ϕ, 0) = δk,di
Z for all k ≥ 0 (di = 2i+ 1) (87)

and from Proposition 3.6, we have

Ck(ϕ,∞) = δk,dm
Z for all k ≥ 0 (dm = 2m+ 1). (88)

Then (88) implies that we can find a critical point y0 ∈ C1(T ) (regularity
theory) of ϕ that solves problem (1) and such that

Cdm
(ϕ, y0) �= 0. (89)

Because m ≥ 1, dm ≥ 3 and since i �= m we also have di �= dm. Hence (89),
together with (83), (85)–(87) implies y0 /∈ {0, u0, v0, û, v̂}.
Let μ̂ be the Morse index of y0 and ν̂ the nullity of y0. From (89) and the
Gromoll–Meyer theorem (see Sect. 2), we have dm ∈ [μ̂, μ̂ + ν̂] and ν̂ ≤ 2
(recall that dm = 2m + 1 and μ̂, ν̂ ∈ N0). If ν̂ = 0, then y0 is nondegenerate
and so Ck(ϕ, y0) = δk,dm

Z for all k ≥ 0. Also, if ν̂ = 1, then by virtue of the
shifting theorem (see [6, p. 333]) and Corollary 8.4(v), p. 194, of Mawhin and
Willem [13], again we have Ck(ϕ, y0) = δk,dm

Z for all k ≥ 0. Finally, if ν̂ = 2,
then for dm = μ̂ or dm = μ̂+ 2, we have Ck(ϕ, y0) = δk,dm

Z for all k ≥ 0 (see
[13]). So, assuming that {0, u0, v0, û, v̂, y0} are the only critical points, from
the Morse theory with t = −1, we obtain (−1)di = 0, a contradiction. Finally,
for dm = μ̂+ 1, from the Morse inequality (with q = dm + d1 = 2(m+ i+ 1))
, we obtain (−1)di ≥ 0, hence −1 ≥ 0, a contradiction again. Therefore, there
is a critical point ŷ of ϕ such that ŷ /∈ {0, u0, v0, û, v̂, y0}. Then ŷ ∈ C1(T )
and solves problem (1). �
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