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Local bifurcation-branching analysis of global
and “blow-up” patterns for a fourth-order
thin film equation

P. Álvarez-Caudevilla and V. A. Galaktionov

Abstract. Countable families of global-in-time and blow-up similarity sign-
changing patterns of the Cauchy problem for the fourth-order thin film
equation (TFE-4)

ut = −∇ · (|u|n∇Δu) in R
N × R+, where n > 0,

are studied. The similarity solutions are of standard “forward” and “back-
ward” forms

u±(x, t) = (±t)−αf(y), y = x/(±t)β ,

β =
1 − αn

4
, ±t > 0, where f solve

B±
n (α, f) ≡ −∇ · (|f |n∇Δf) ± βy · ∇f ± αf = 0 in R

N , (0.1)

and α ∈ R is a parameter (a “nonlinear eigenvalue”). The sign “+”, i.e.,
t > 0, corresponds to global asymptotics as t → +∞, while “−” (t < 0)
yields blow-up limits t → 0− describing possible “micro-scale” (multiple
zero) structures of solutions of the PDE. To get a countable set of nonlin-
ear pairs {fγ , αγ}, a bifurcation-branching analysis is performed by using
a homotopy path n → 0+ in (0.1), where B±

0 (α, f) become associated
with a pair {B,B∗} of linear non-self-adjoint operators

B=−Δ2+
1

4
y · ∇+

N

4
I and B∗ =−Δ2− 1

4
y · ∇ (so (B)∗

L2 =B∗) ,

which are known to possess a discrete real spectrum, σ(B) = σ(B∗) ={
λγ = − |γ|

4

}
|γ|≥0

(γ is a multiindex in R
N ). These operators occur after

corresponding global and blow-up scaling of the classic bi-harmonic equa-
tion ut = −Δ2u. This allows us to trace out the origin of a countable
family of n-branches of nonlinear eigenfunctions by using simple or semi-
simple eigenvalues of the linear operators {B,B∗} leading to important
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properties of oscillatory sign-changing nonlinear patterns of the TFE,
at least, for small n > 0.

Mathematics Subject Classification (2000). 35K55, 35K40.

Keywords. Thin film equation, Local bifurcation analysis,
Source-type and blow-up similarity solutions, The Cauchy problem,
Finite interfaces, Oscillatory sign-changing behaviour.

1. Introduction: TFE-4 and “adjoint” nonlinear eigenvalue
problems

1.1. The model, two classes of similarity solutions, and main problems

In this paper, we study global asymptotic behaviour (as t → +∞) and finite-
time blow-up behaviour (as t → T− < +∞) of solutions of the fourth-order
semilinear thin film equation (TFE-4)

ut = −∇ · (|u|n∇Δu) in R
N × R+, n > 0, (1.1)

where ∇ = gradx and Δ = ∇ · ∇ stands for the Laplace operator in R
N .

Before describing the main application of such a nonlinear higher-order
PDE model, which has become widely known in the last decades, we state the
main goal of the paper. We study similarity solutions of (1.1) of two “forward”
and Sturm’s “backward” types:

(i) global similarity patterns for t � 1, and
(ii) blow-up similarity ones with the finite-time behaviour as t → T− < ∞.

Both classes of such particular solutions of the TFE-4 (1.1) can be writ-
ten in the joint form as follows (here, the blow-up time T = 0 for solutions in
(ii)):

u±(x, t)=(±t)−αf(y), y=x/(±t)β for ± t > 0, where β=
1 − αn

4
,

(1.2)

and similarity profiles f(y) satisfy the following nonlinear eigenvalue problems,
resp.,

(NEP)± : B±
n (α, f) ≡ −∇ · (|f |n∇Δf) ± βy · ∇f ± αf = 0 in R

N .

(1.3)

Here, α ∈ R is a parameter, which stands in both cases for admitted real
nonlinear eigenvalues. Thus, the sign “+”, i.e., t > 0, corresponds to global
asymptotic as t → +∞, while “−” (t < 0) yields blow-up limits t → T = 0−

describing a “micro-scale” structure of the PDE. In fact, the blow-up patterns
are assumed to describe the structures of “multiple zeros” of solutions of the
TFE-4. This idea goes back to Sturm’s analysis of solutions of the 1D heat
equation performed in 1836 [37]; see [24, Ch. 1] for the whole history and
applications of these fundamental Sturm’s ideas and two zero set Theorems.
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Being equipped with proper “boundary conditions at infinity”, namely,

for global case,B+
n (α, f) : f ∈ C0(RN ) (f is compactly supported), and (1.4)

for blow-up case, B−
n (α, f) : f(y) has a “minimal growth” as y → ∞,

(1.5)

equations (1.3) become two true nonlinear eigenvalue problems to study, which
can be considered as a pair of mutually “adjoint” ones. All related aspects and
notions used above, remaining still somehow unclear, will be properly discussed
and specified.

Our goal is to show by using any means that, for small n > 0, eigenvalue
problems

(NEP)± admit countable sets of solutions Φ±(n) =
{
α±
γ , f

±
γ

}
|γ|≥0

, (1.6)

where γ is a multiindex in R
N to numerate the pairs.

The last question to address is whether these sets

Φ±(n) of nonlinear eigenfunctions are evolutionary complete, (1.7)

i.e., describe all possible asymptotics as t → +∞ and t → 0− (on the corre-
sponding compact subsets in the variable y in (1.2)) in the CP for the TFE-4
(1.1) with bounded compactly supported initial data.

Our main approach is the idea of a “homotopic deformation” of (1.1) as
n → 0+ and reducing it to the classic bi-harmonic equation

ut = −Δ2u in R
N × R+, (1.8)

for which both problems (1.6) and (1.7) are solved positively by rather stan-
dard (but not self-adjoint) spectral theory of linear operators.

1.2. Main TFE applications: nonnegative and oscillatory solutions

It has been well known since the 1980s, when higher-order parabolic models
began to be studied more actively, that the TFEs-4 like (1.1) have many appli-
cations arisen particularly in modeling the spreading of a liquid film along a
surface, where u stands for the height of the film in this context of thin film the-
ory. Other physical related problems come from lubrication theory, nonlinear
diffusion, flame and wave propagation (the Kuramoto–Sivashinsky equation
and the extended Fisher–Kolmogorov equation), phase transition at critical
Lifshitz points and bi-stable systems. We refer to a number of key survey and
other papers on TFE theory such as [3,4,8–10,12,30]; see also Peletier–Troy
[35] as a guide to higher-order ODEs and [19,21] for most recent short surveys
and long lists of references concerning physical derivations of various models,
key mathematical results and applications of TFEs. Concerning mathematics
of TFEs, one has to refer to the pioneering Bernis–Friedman paper [5] and
[7,23,14] for the role of source-type similarity solutions of (1.1). On modern
existence-uniqueness theory for the 1D TFE (for FBP setting), see [29], [20,
Sect. 6], and references therein.

It should be pointed out that most of the results cited above are asso-
ciated with nonnegative solutions of a free-boundary problem (FBP) for the
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TFE-4 (1.1), while currently this equation is written for solutions of changing
sign. Moreover, as mentioned above, the development of general approaches
to nonnegative solutions of the FBP began with the work of Bernis–Friedman
[5] in 1990 with such solutions having a most relevant physical motivation and
applications.

The study of oscillatory solutions of changing sign for the TFE-4 is more
recent; see [13,20,22] and references therein. It was shown in [19–22] (see also
[1] as the most recent publication) that such solutions can be attributed to the
Cauchy problem (CP) in R

N × R+, rather than a FBP, posed in a bounded
domain with moving free boundaries. The study of the Cauchy problem is
interesting from both points of view in some biological applications as well
as its clear mathematical interest in PDE theory. We refer to [1], where more
details on the CP setting are available.

In this connection, another pioneering paper of Bernis–McLeod in 1991
[6] should be mentioned, where existence and uniqueness of first three oscilla-
tory source-type solutions of the Cauchy problem for the fourth-order porous
medium equation (PME–4)

ut = −(|u|nu)xxxx in R × R+, (1.9)

are studied. Here, unlike (1.1), Eq. (1.9) contains a monotone operator in the
metric of H−2(R). By classic theory of monotone operators [33], the CP for
(1.9) with compactly supported initial data u0 admits a unique weak solution
that is oscillatory close to the interfaces for all n > 0 and evidently for n = 0,
where it becomes the bi-harmonic equation (1.8), with an oscillatory kernel of
the fundamental solution; see below.

For n > 0, such classes of the so-called “oscillatory solutions” of TFE-4
(1.1) is difficult to tackle rigorously, and even their ODE representatives (in
the radial geometry) exhibit several surprises in trying to describe sign-chang-
ing features close to interfaces [19]. Indeed, the CP in R

N × R+ shows com-
pactly supported blow-up patterns, which have infinitely many oscillations
near the interfaces and exhibit maximal regularity there (consult [19] for fur-
ther details). It turns out that, for a better understanding of such singularity
oscillatory properties of solutions of (1.1), it is quite fruitful to consider the
homotopic limit n → 0+, thanks to the spectral theory developed for the pair
{B,B∗} in [18] for rescaled operators where n = 0. Thus, here we perform
a homotopic approach, more rigorous than before, in order to obtain such
interplay between the CP for the TFE-4 (1.1) and the bi-harmonic equation
(1.8).

1.3. Our approach, problem setting, and layout of the paper

Before giving a description of our approaches, it is worth mentioning again
that TFE theory for free boundary problems (FBPs) with nonnegative solu-
tions is well understood nowadays (at least in 1D). The FBP setting assumes
posing three standard boundary conditions at the interface, and such a theory
has been developed in many papers since 1990. The mathematical formalities
and general setting of the CP is still not fully developed and a number of prob-
lems remain open. In fact, the concept of proper solutions of the CP is still
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partially obscure, and moreover it seems that any classic or standard notions
of weak-mild-generalized-. . . solutions fail in the CP setting.

Various ideas associated with extensions of smooth order-preserving semi-
groups are well known to be effective for second-order nonlinear parabolic
PDEs, when such a construction is naturally supported by the maximum prin-
ciple. The analysis of higher-order equations such as (1.1) is much harder than
the corresponding second-order equations or those in divergent form (cf. (1.9))
because of the lack of the maximum principle, comparison, order-preserving,
monotone, and potential properties of the quasilinear operators involved.

It is clear that the CP for the bi-harmonic equation (1.8) is well-posed
and has a unique solution given by the convolution

u(x, t) = b(x− ·, t) ∗ u0(·), (1.10)

where b(x, t) is the fundamental solution of the operatorDt+Δ2. By the appar-
ent connection between (1.1) and (1.8) (when n = 0), intuitively at least, this
analysis provides us with a way to understand the CP for the TFE-4 by using
the fact that the proper solution of the CP for (1.1), with the same initial data
u0, is that one which converges to the corresponding unique solution of the
CP for (1.8), as n → 0. Thus, we shall use the patterns occurring for n = 0, as
branching points of nonlinear eigenfunctions, so some extra detailed properties
of this linear flow will be necessary.

In Sect. 3, we, more carefully, introduce two classes of similarity solutions
(the so-called nonlinear eigenfunctions), while Sect. 4 is devoted to necessary
properties of the spectral pair {B,B∗} of linear differential operators that
occur at n = 0.

Our further analysis is as follows:

1.4. Local bifurcation-branching analysis for global solutions (Sect. 4): first
operator theory discussion

In the first part of this work, we perform a local bifurcation-branching
analysis with respect to the continuation parameter n > 0, when that param-
eter is small enough. Thus, we obtain the bifurcation of solutions of the non-
gradient equation (1.3)+ from the branch of the corresponding eigenfunctions
of a rescaled linear operator. This yields some information and properties of
the global in time similarity solutions (1.2)+ of the TFE-4 (1.1).

The linear elliptic equation occurring at n = 0,

BF ≡ −Δ2
yF +

1
4
y · ∇yF +

N

4
F = 0 in R

N ,

∫

RN

F (y) dy = 1, (1.11)

where F is the rescaled kernel of the fundamental solution b(x, t) in (1.10),
will be pivotal in the subsequent analysis. Indeed, the nonlinear operator in
(1.3),

B+
n (α, f) := −∇ · (|f |n∇Δf) +

1 − αn

4
y · ∇f + αf, (1.12)

can be written in the following equivalent form:

B+
n (α, f) ≡ −Δ2f +

1 − αn

4
y · ∇f + αf + ∇ · ((1 − |f |n) ∇Δf). (1.13)
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Then, the solutions of B+
n (α, f) = 0 are regarded as steady states of the non-

linear evolution equation

fτ = B+
n (α, f) in R

N × R+. (1.14)

The bifurcation-branching point from our solutions (for n = 0) will be denoted
by (n, f) = (0, ψk), which is shown to occur for some values of the nonlinear
eigenvalue α written as α = αk (k = |β| is characterized by a multiindex
β in R

N ), and ψk representing the eigenfunctions of the operator B, whose
expressions will be obtained in detail later on.

Firstly, we shall prove that no bifurcation from the branch of trivial solu-
tions (n, f) = (0, 0) occurs when the parameter n approximates 0. Secondly,
an infinite number of branches of solutions is shown to emanate from the
eigenfunctions of the rescaled linear operator B. Consequently, this analysis
provides us with a countable family of solutions pairs (1.6) for the nonlinear
equation (1.3)+ for small n > 0.

According to classic bifurcation theory [15,16,31,38], we denote

B+
n (α, f) ≡ F(n, f) := L(α, n)f + N (n, f), (1.15)

and assume that n is the main continuation parameter. Then, in order to have
a branch of solutions emanating from the branch of trivial solutions (n, f) =
(0, 0) at certain values of the parameter n (bifurcation points), the nonlinearity
in (1.13), denoted by

N (n, f) := ∇ · ((1 − |f |n)∇Δf),

must fulfill the following conditions:

(NL) : N (n, 0) = 0, DfN (n, 0) = 0 for all n ∈ R+. (1.16)

In other words,

N (n, f) = o(‖f‖) as f → 0.

Recall that, here, N (n, f) serves as a perturbation of the operator B+
n defined

as in (1.13). Thus, under the given assumptions (which are not that easy to
pose in a suitable functional setting, to say nothing of the proof), the linear
operator denoted by

L(α, n) := −Δ2 +
1 − αn

4
y · ∇ + αI, (1.17)

defines an analytic semigroup in the space, where the solutions of (1.3)+ are
defined.

Note that, in any case, the necessary assumptions for the nonlinearity of
(1.3)+ are far from clearly specified, when f is very close to zero, so something
else must be imposed. Let us note that the condition (NL) in (1.16), roughly
speaking, assumes that the functions f(y) are sufficiently smooth and have
“transversal” zeros with a possible accumulating point at a finite interface
only. Otherwise, if f(y) exhibits vanishing inside the support at a sufficiently
“thick” nodal set, with many non-transversal zeros, this can undermine the
validity of (1.16), even in any weak sense.
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As customary in nonlinear operator theory, instead of the differential
operators in (1.15), one has to deal with the equivalent integral equation

f = − (L(α, n) − aI)−1 (N (n, f) + af) , (1.18)

where a > 0 is a parameter to be chosen so that the inverse operator (a resol-
vent value) is a compact one in a weighted space L2

ρ(R
N ); see Sect. 3. We will

show therein that the spectrum of L is always discrete and, actually,

σ (L(α, n)) =
{

(1 − αn)
(

−k

4

)
+ α, k = 0, 1, 2, . . .

}
, (1.19)

so that any choice of a > 0 such that a 
∈ σ(L) is suitable in (1.18). Therefore,
in particular, the conditions (1.16) are assumed to be valid in a weaker sense
associated with the integral operator in (1.18).

Let us explain why a certain “transversality” of zeros of possible solutions
f(y) is of key importance. As we see from (1.13), we have to use the expansion
for small n > 0

|f |n − 1 ≡ en ln |f | − 1 = 1 + n ln |f | + · · · − 1 = n ln |f | + · · · , (1.20)

which is true pointwise on any set {|f | ≥ ε0} for an arbitrarily small fixed
constant ε0 > 0. However, in a small neighbourhood of any zero of f(y), the
expansion (1.20) is no longer true. Nevertheless, it remains true in a weak
sense provided that this zero is sufficiently transversal in a natural sense, i.e.,

|f |n − 1
n

⇀ ln |f | as n → 0+ (1.21)

in L∞
loc, since then the singularity ln |f(y)| is not more than logarithmic and,

hence, is locally integrable in (1.18). Equivalently we are dealing with the limit

n ln2 |f | ⇀ 0, as n ↓ 0+,

at least in a very weak sense, since by the expansion (1.20) we have that

|f |n − 1
n

− ln |f | =
1
2
n ln2 |f | + · · · .

Note also that actually we deal, in (1.18), with an easier expansion

(|f |n − 1) ∇Δf = (n ln |f | + · · · ) ∇Δf, (1.22)

so that even if f(y) does not vanish transversally at a zero surface, the extra
multiplier ∇Δf(y) in (1.22), which is supposed to vanish as well, helps to
improve the corresponding weak convergence. Furthermore, it is seen from
(1.13) that, locally in space variables, the operator in (1.18) (with a = 0 for
simplicity) acts like a standard Hammerstein–Uryson compact integral opera-
tor with a sufficiently smooth kernel:

f ∼ (∇Δ)−1 [(|f |n − 1) ∇Δf ] . (1.23)

Therefore, in order to justify our asymptotic branching analysis, one
needs in fact to introduce such a functional setting and a class of solutions

P =
{
f = f(·, n) : f ∈ H4

ρ(R
N )

}
,
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for which:

P : (∇Δ)−1

( |f |n − 1
n

∇Δf
)

→ (∇Δ)−1(ln |f |∇Δf) as n → 0+ (1.24)

a.e. This is the precise statement on the regularity of possible solutions, which
is necessary to perform our asymptotic branching analysis. In 1D or in the
radial geometry in R

N , (1.24) looks rather constructive. However, in general,
for complicated solutions with unknown types of compact supports in R

N ,
functional settings that can guarantee (1.24) are not achievable still. We men-
tion again that, in particular, our formal analysis aims to establish structures
of difficult multiple zeros of the nonlinear eigenfunctions fγ(y), at which (1.24)
can be violated, but hopefully not in the a.e. sense.

To study nonlinear integral operators it is necessary to construct a func-
tion space in which the integral operator possesses favorable properties (conti-
nuity, compactness). Indeed, one can apply the classical fixed point principles
of Schauder’s type to an operator acting between suitable Banach spaces. In
this situation we can assert the existence of such fixed points establishing the
continuity and boundedness of the integral operator. To do so, thanks to clas-
sical nonlinear integral operator theory we should impose the continuity of the
kernel function involved in our integral operator (1.23).

Within the previous context, let us observe that the integral equation
with a Hammerstein–Uryson operator-type (1.23) is equivalent to the integral
equation (1.18), for which we know that the inverse operator (L(α, n) − aI)−1

is compact. Indeed, by the spectral theory described in Sect. 3, we are able
to deduce that the operator L is defined between two exponential weighted
spaces. Hence, it looks like to ascertain the existence of such fixed points for
(1.18) and, equivalently for (1.23), the suitable Banach spaces (that will pro-
vide us with the existence of solutions of the original equation (1.12)) are
precisely those exponential weighted spaces, together with the assumption of
continuity of the kernels involved in the equivalent integral equations (1.18)
and (1.23).

In addition, we would like to mention that for the study of elliptic prob-
lems of order 2m by Schauder’s inversion procedure the suitable Banach spaces
could be the typical pairs consisted of either Hölder spaces

(C2m,α
ρ (RN ), C0,α

ρ (RN )
)
, with 0 < α < 1,

or as remarked in the previous paragraph Sobolev spaces
(
W 2m,p
ρ (RN ), Lpρ(R

N )
)
, with 1 < p < ∞.

The particular weights assumed for those Banach spaces should be con-
sistent with the exponential ones obtained in Sect. 3. Thus, this enables us to
obtain a priori estimates for the solutions of the original nonlinear equation
(1.12) and provides us with the compactness of the integral operators involved
in (1.18) and (1.23).
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1.5. Regularity convention

Overall, we observe that, unlike classic existence bifurcation-branching theory
[16,31,38], where sufficiently smooth expansions are used, the present singu-
lar one (1.20) dictates a special functional setting in a subset P of functions
(admissible solutions), for which (1.24) should be valid a priori. In particular,
such an analysis of the integral equation (1.18) will always require some deep
knowledge of admissible structure of proper solutions f(y) near zero (nodal)
sets (also unknown), which we are still not aware of. Recall that, as our main
goal, the present branching analysis is going to give us a first understanding
of such delicate properties via the known eigenfunctions of the linear rescaled
operators to appear at n = 0+.

Thus, since these necessary nodal properties of possible solutions f(y)
are unknown entirely rigorously, we perform our analysis under the following
regularity convention:
we assume that, regardless of the strong degeneracy of the nonlinear elliptic operator

involved, the problems under consideration in both integral and differential forms
admit sufficiently regular expansions of solutions in small n > 0

in the functional class, for which (1.24) holds.

As usual in bifurcation theory, the hypothesis for this to be valid is for-
mulated for the equivalent integral representation of the operators, though,
for simplicity, we perform the n-expansion analysis in the simpler (but indeed
equivalent) differential form. Overall, currently, we honestly do not think that
our analysis can be justified more rigorously than that: technicalities to arise
can be extreme and a full prove truly illusive. However, in Appendix A, we
show that a suitable justification of the branching is indeed achievable provided
that clear transversality of a.a. zeros of linear eigenfunctions of B is known.
Nevertheless, the problem of the actual existence of nonlinear eigenfunctions
for small n > 0 remains open still.

1.6. Further branching discussion

Now, once we have discussed the principal difficulties, which have arisen, we
carry out a local bifurcation analysis close to n = 0. Then, the change of
stability from the branch of trivial solutions (n, f) = (n, 0) should be deter-
mined by the spectrum of the linearization L(α, n) and the assumptions of the
nonlinearity. Therefore, a bifurcation would take place at some values of the
parameter n if every neighbourhood of (n, f) = (n, 0) in R × C(Ω̄) contains
a nontrivial solution (n, f) of (1.3)+ under the assumptions imposed for the
linear and nonlinear part of the equation. However, as will be proved later,
such a bifurcation from the branch of trivial solutions (n, f) = (n, 0) never
happens at the value of the parameter n = 0. Hence, we obtain a branching
from the points (n, f) = (0, ψk) only; these arguments are fully consistent with
more particular results obtained earlier in [1].

Moreover, since the bifurcation from the branch of trivial solutions
depends on the eigenvalues of the linear operator (1.17), we believe that such
a bifurcation does not exist at all (any proof is also very difficult). Indeed,
after some rescaling of the type y �→ ay, with a = (1 − αn)−1/4, it turns out
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that the spectrum of (1.17) is directly related to the spectrum of the linear
operator B. This suggests that no bifurcation from the branch of trivial solu-
tions ever happens. Therefore, as also discussed in [1], we conjecture that if one
wants to ascertain the global bifurcation analysis for these similarity TFEs-4,
a new, different operator theory approach must be used.

Next, let us obtain the values of the parameter α for which the bifurca-
tion-branching phenomena occurs. The spectrum of the operator B in (1.11),
which appears for n = 0 in (1.3)+, is already well known and will be explained
in detail in the next sections. This has the form

σ(B) =
{
λk =: −k

4
, k = 0, 1, 2, . . .

}
.

Moreover, for k = 0, i.e., for the first eigenvalue-eigenfunction pair {α0(n), f0},
from the conservation of mass condition, denoting by M(t) the mass of the
solutions of (1.1), we have that (here Ω is the rescaled support of f(y), how-
ever, for the CP, one can put Ω = R

N )

M(t) :=
∫

Ω

u(x, t) dx = t−α
∫

Ω

f
( x
tβ

)
dx = t−α+βN

∫

Ω

f(y) dy.

This yields the exact values

− α+ βN = 0 =⇒ α0(n) =
N

4 +Nn
and β0(n) =

1
4 +Nn

. (1.25)

However, the construction of the first eigenfunction f0(y) is not that straight-
forward even in 1D; see [20, Sect. 7], where its oscillatory properties cease to
exist at a heteroclinic bifurcation calculated numerically as

nh = 1.7587 . . . .

It is worth mentioning that, fortunately, for all n ∈ (0, 1) (this interval is of
particular interest in what follows), both the existence and the uniqueness of
f0(y) follow from the results of [6], since, rather surprisingly, source-type simi-
larity profiles for (1.1) and (1.9) are reduced to each other with the parameter
change n �→ n

n+1 ; see a precise statement in [20, Prop. 9.1].
Thus, it turns out that, when the parameter n approximates zero, we

obtain according to (1.25)

α0(0) =
N

4
,

so the solutions of (1.3)+ seem to approach the first eigenfunction ψ0 associated
with the first eigenvalue of the operator B, i.e., corresponding to λ0 = 0. How-
ever, that approximation for the solutions of (1.3)+ should also be extended
to the eigenfunctions ψk, for any k ≥ 1, when the parameter α reaches the
following values:

αk(0) := −λk +
N

4
for any k = 1, 2, . . . , (1.26)

where λk are the eigenvalues of the operator B, so that

α0(0) =
N

4
, α1(0) =

N + 1
4

, α2(0) =
N + 2

4
, . . . , αk(0) =

N + k

4
. . . .
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Then, we introduce the next expression for the parameter α

αk(n) :=
N

4 +Nn
− λk. (1.27)

Hence, due to the necessary assumptions, the structure of the bifurcating-
branching set emanating at (n, f) = (0, ψk) depends on the spectral theory
for the operator (1.11). For the first eigenvalue, since λ0 = 0 is simple, we can
ascertain accurately the local bifurcation-branching. Then, at least for suffi-
ciently small n’s, the bifurcation-branching is locally a C1 curve, which can be
parameterized as s �→ (n0(s), f(s)) in R × C(Ω̄) with

(n0(0), f(0)) = (0, ψ0), f ′(0) = Φ0, Φ0 ∈ Y0,

where ′ := d
ds , emanating from the eigenfunction ψ0 at the n = 0 in the direc-

tion of the space Y0 orthogonal to the eigenspace ker B, with ψ0 = F (the
rescaled fundamental kernel of b(x, t)) being the eigenfunction associated with
the eigenvalue λ0 = 0.

However, in the case when the multiplicity of the eigenvalues λk with
k ≥ 1 is higher (bigger than 1), we obtain that the continua emanating at
(n, f) = (0, ψk) are tangent to the manifolds Yk, orthogonal to ker

(
B + k

4 I
)
.

And, hence, we might have more than one direction of bifurcation-branching,
depending on certain values related to the eigenfunctions which generate the
eigenspace. This certainly agrees with the work of Rabinowitz [36], in which
for potential operators and bifurcation from the branch of trivial solutions,
one of the next alternatives for the bifurcation structure must be obtained:

(i) for the value of the parameter where the bifurcation takes place, the trivial
solution is not isolated; or
(ii) for any other value of the parameter in one-sided neighbourhood of the
bifurcation point, there are at least two nontrivial solutions; or
(iii) for any other value of the parameter in a neighbourhood of the bifurcation
point, at least one nontrivial solution exists.

In general, the question about how many precise branches bifurcates for
any k ≥ 1 remains an open problem, though we think it is very related to
the dimensions of the eigenspaces. As far as we know, only partial and very
specific results have been obtained for non-variational problems with higher
multiplicities.

1.7. Blow-up patterns via branching theory (Sect. 5)

This is a natural counterpart of the global similarity analysis of PDEs in the
limits as t → ∞. We next consider blow-up limits as t → T− < ∞, or t → 0−

as in (1.2)−, where T = 0. We thus perform a detailed and systematic analysis
of the blow-up similarity solutions. This is done again by using the homotopic
approach as n → 0+ via branching theory, but this time based on the Lyapu-
nov–Schmidt methods in order to obtain relevant results and properties for
the solutions of the self-similar equation (1.3)−. This homotopic-like approach
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is based upon the spectral properties of the adjoint (to the B above) operator

B∗ = −Δ2 − 1
4
y · ∇, with σ(B∗) =

{
λβ = −|β|

4
, |β| = 0, 1, 2, . . .

}
,

(1.28)

which occurs after blow-up scaling of the linear counterpart (1.8) of the TFE-4
(1.1) for n = 0. Note that (1.28) admits a complete and closed set of eigenfunc-
tions being generalized Hermite polynomials, which exhibit finite oscillatory
properties.

It is curious that, in [19], blow-up similarity analysis of the related unsta-
ble TFE-4 did not detect any stable oscillatory behaviour of solutions near the
interfaces of the radially symmetric associated equation. All the blow-up pat-
terns turned out to be nonnegative, which is a specific feature of the PDE under
consideration therein. This does not mean that blow-up similarity solutions of
the CP do not change sign near the interfaces or inside the support. Actually,
it was pointed out that local sign-preserving property could be attributed only
to the blow-up ODE and not to the whole PDE (1.1). Hence, the possibility of
having oscillatory solutions cannot be ruled out for every case. Indeed, thanks
to the polynomial expressions of the eigenfunctions for the operator B∗, we
have, in particular, that the first eigenfunction ψ∗(y) = 1 is not oscillatory,
but for some other eigenfunctions we shall expect sign-changing behaviour.

Then, this homotopy study exhibits a typical difficulty concerning the
desired structure of the transversal zeros of solutions, at least for small n > 0.
Proving such a transversality zero property is still a difficult open problem,
though qualitatively, this was rather well understood in 1D and radial geom-
etry [19].

1.8. TFE: FBP and CP problem settings

We recall that, for both the FBP and the CP of (1.1), the solutions are assumed
to satisfy standard free-boundary conditions:⎧

⎨
⎩
u = 0, zero-height,
∇u = 0, zero contact angle,
−n · ∇ (|u|n Δu) = 0, conservation of mass (zero-flux)

(1.29)

at the singularity surface (interface) Γ0[u] ≡ ∂Ω, which is the lateral bound-
ary of

supp u ⊂ R
N × R+, N ≥ 1,

where n stands for the unit outward normal to Γ0[u], which is assumed to be
sufficiently smooth (the treatment of such hypotheses is not any goal of this
paper).

For smooth interfaces, the condition on the flux can be read as

lim
dist(x,Γ0[u])↓0

−n · ∇(|u|nΔu) = 0.

For the FBP, dealing with nonnegative solutions, this setting is assumed
to define a unique solution. However, this uniqueness result is known in 1D
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only; see [29], where the interface equation was included into the problem set-
ting. We also refer to [20, Sect. 6.2], where a “local” uniqueness is explained
via von Mises transformation, which fixes the interface point. For more diffi-
cult, non-radial geometries in R

N , there is no hope of getting any uniqueness
for the FBP, in view of possible very complicated shapes of supports leading
to various “self-focusing” singularities of interfaces at some points, which can
dramatically change the required regularity of solutions.

For the CP, the assumption on nonnegativity is got rid of, and solutions
become oscillatory close to interfaces. It is then key that the solutions are
expected to be “smoother” at the interface than those for the FBP, i.e., (1.29)
are not sufficient to define their regularity. These maximal regularity issues for
the CP, leading to oscillatory solutions, are under scrutiny in [20]; see also [1],
as the most recent source of such a study.

Next, denote by

M(t) :=
∫
u(x, t) dx

the mass of the solution, where integration is performed over smooth support
(RN is allowed for the CP only). Then, differentiating M(t) with respect to
t and applying the divergence theorem (under natural regularity assumptions
on solutions and free boundary), we have that

J(t) :=
dM
dt

= −
∫

Γ0∩{t}
n · ∇(|u|nΔu).

The mass is conserved if J(t) ≡ 0, which is assured by the flux condition in
(1.29).

The problem is completed with bounded, smooth, integrable, compactly
supported initial data

u(x, 0) = u0(x) in Γ0[u] ∩ {t = 0}. (1.30)

In the CP for (1.1) in R
N × R+, one needs to pose bounded compactly

supported initial data (1.30) prescribed in R
N . Then, under the same zero flux

condition at finite interfaces (to be established separately), the mass is pre-
served; however smoother regularity properties of solutions require a separate
study/understanding; see [20] for some results.

2. Self-similar solutions: two nonlinear eigenvalue problems

2.1. Global similarity solutions

We now more carefully derive the problem for global self-similar solutions of
(1.1), which occur due to its natural scaling-invariant nature.

Namely, using the following scaling in (1.1):

x := μx̄, t := λt̄, u := νū, with

∂u

∂t
=
ν

λ

∂ū

∂t̄
,

∂u

∂xi
=
ν

μ

∂ū

∂x̄i
,

∂2u

∂x2
i

=
ν

μ2

∂2ū

∂x̄2
i

,
(2.1)
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and substituting those expressions in (1.1) yields

ν

λ

∂ū

∂t̄
= −νn+1

μ4
∇ · (|ū|n∇Δū) .

To keep this equation invariant, the following equalities must be fulfilled:
ν
λ = νn+1

μ4 =⇒ μ := λβ =⇒ ν := λ
4β−1

n , so that

u(x, t) := λ
4β−1

n ū(x̄, t̄) = λ
4β−1

n ū
(
x
μ

)
, where t = λ.

(2.2)

Consequently, we have to rescale in the following way:

u+(x, t)= t−αv(y, τ), y :=
x

tβ
, τ=ln t : R+ → R, where β=

1 − αn

4
,

(2.3)

such that f(y, τ) = ū( x
tβ
, τ), we obtain, after substituting (2.3) into (1.1) and

rearranging terms, that f solves a quasilinear evolution equation given by

vτ =B+
n (α, v)≡−∇ · (|v|n ∇Δv)+

1 − αn

4
y · ∇v+αv in R

N×R+. (2.4)

Consider the steady-states of the parabolic equation (2.4). Thus, we
analyze the local bifurcation-branching behaviour of the nonlinear eigenvalue
problem:

B+
n (α, f) ≡ −∇ · (|f |n∇Δf) + 1−αn

4 y · ∇f + αf = 0, f ∈ C0(RN ).

(2.5)

Here, the “boundary conditions at infinity” stated as f ∈ C0(RN ) are nat-
urally associated with the known properties of finite propagation for TFEs,
which have been mathematically justified about two decades ago at least; see
a survey on energy methods in PDE theory in [28]. Then, any assumption
stating that f(y) is “sufficiently small” at infinity, e.g.,

f ∈ H4(RN ) or H4
ρ(R

N ) (2.6)

(the last space is a domain of the linear operator B in (1.11); see the next
section), would lead to compactly supported solutions. In fact, such a conclu-
sion entirely depends on asymptotic (i.e., local, not any global) properties of
the nonlinear elliptic operators involved, so will not be a main concern in our
study.

2.2. Blow-up similarity solutions

The blow-up similarity solutions of the TFE-4 (1.1) correspond to completely
different limits and then describe a “micro-scale” structure of its solutions at
any given point. For convenience, we reduce the blow-up time to T = 0. Then,
similar to the global solutions, replacing t �→ (−t), we obtain the patterns

u−(x, t) :=(−t)−αf(y), y=
x

(−t)β , with the same parameter β=
1 − αn

4
.

(2.7)
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Hence, substituting that expression into (1.1) and rearranging terms, we arrive
at the following quasilinear elliptic equation:

B−
n (α, f) ≡ −∇ · (|f |n∇Δf) − βy · ∇f − αf = 0 in R

N . (2.8)

In order to get the corresponding second “adjoint” nonlinear eigenvalue prob-
lem, one needs to specify a “minimal growth” of admissible nonlinear eigen-
functions f(y) as y → ∞. This will be done in Sect. 5. Note that, by obvious
and straightforward reasons, (2.8) does not admit compactly supported solu-
tions. Indeed, the nature of blow-up scaling (2.7) would then mean disappear-
ance of a such a solution in finite time, contradicting uniqueness and other
easy asymptotic issues for the TFE-4.

In general, for solutions with finite blow-up time T ∈ R, the full self-sim-
ilar scaling

u(x, t)=(T − t)−αw(y, τ), y :=
x

(T − t)β
, τ=− ln(T − t) : (−∞, T )→R,

(2.9)

yields the parabolic equation

wτ = B−
n (α,w) ≡ −∇ · (|w|n ∇Δw) − 1 − αn

4
y · ∇w − αw in R

N × R+.

(2.10)

3. Spectral properties of the linear operator B

In this section, we describe the spectrum σ(B) of the linear operator B
obtained from the rescaling of the bi-harmonic equation (1.8). This spectral
theory will be essentially used in ascertaining the direction of the branches
bifurcating from the trivial (actually nonexistence) and other eigenfunctions
and the number of branches for the blow-up solutions.

3.1. Relation to a linear eigenvalue problem

Let u(x, t) be the unique solution of the CP for the linear parabolic bi-harmonic
equation (1.8) with the initial data

u0 ∈ L2
ρ

(
R
N
)
, where ρ(y) = ea|y|4/3

, a > 0 small, (3.1)

given by the convolution Poisson-type integral

u(x, t) = b(x, t) ∗ u0 ≡ t−
N
4

∫

RN

F
(
(x− z)t−

1
4

)
u0(z) dz. (3.2)

Here, by scaling invariance of the problem, the unique fundamental solution
of the operator ∂

∂t + Δ2 has the self-similar structure

b(x, t) = t−
N
4 F (y), y :=

x

t1/4
(x ∈ R

N ). (3.3)

Substituting b(x, t) into (1.8), we obtain that the rescaled fundamental
kernel F in (3.3) solves the linear elliptic problem (1.11). B is a non-symmetric
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linear operator, which is bounded from H4
ρ(R

N ) to L2
ρ(R

N ) with the exponen-
tial weight given in (3.1). Here, more precisely, a ∈ (0, 2d) is any positive
constant, depending on the parameter d > 0 characterizing the exponential
decay of the rescaled kernel:

|F (y)| ≤ De−d|y|4/3
in R

N (D > 0), (3.4)

Later on, by F we denote the oscillatory rescaled kernel as the only solution
of (1.11), which has exponential decay, oscillates as |y| → ∞, and satisfies the
standard pointwise estimate (3.4).

Thus, we need to solve the corresponding linear eigenvalue problem:

Bψ = λψ in R
N , ψ ∈ L2

ρ(R
N ). (3.5)

It seems clear that the nonlinear problem (1.1) formally reduces to (3.5) at
n = 0 with the following shifting of the corresponding eigenvalues:

λ = −α(0) +
N

4
. (3.6)

It is another reason to call (2.5) a nonlinear eigenvalue problem, since for n = 0
it reduces to the classic eigenvalue one for a linear differential operator. More-
over, crucially, the discreteness of the real spectrum of the linear problem (3.5)
can be apparently inherited by the nonlinear one, but a complete justification
of this issue is far from being clear.

3.2. Functional setting and semigroup expansion

Thus, we solve (3.5) and calculate the spectrum of σ(B) in the weighted space
L2
ρ(R

N ). We then need the following Hilbert space:

H4
ρ

(
R
N
) ⊂ L2

ρ

(
R
N
) ⊂ L2

(
R
N
)
.

The Hilbert space H4
ρ(R

N ) has the following inner product:

〈v, w〉ρ :=
∫

RN

ρ(y)
4∑

k=0

Dkv(y)D̄kw(y) dy,

where Dkv stands for the vector {Dβv, |β| = k}, and the norm

‖v‖2
ρ :=

∫

RN

ρ(y)
4∑

k=0

|Dkv(y)|2 dy.

Next, introducing the rescaled variables

u(x, t) = t−
N
4 w(y, τ), y :=

x

t1/4
, τ = ln t : R+ → R, (3.7)

we find that the rescaled solution w satisfies the evolution equation

wτ = Bw, (3.8)

since, substituting the representation of u(x, t) (3.7) into (1.8) yields

−Δ2
yw +

1
4
y · ∇yw +

N

4
w(y, τ) = t

∂w

∂t

∂τ

∂t
.
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Thus, to keep this invariant it must be satisfied that t∂τ∂t = 1 =⇒ τ = ln t.
Hence, w(y, τ) is the solution of the Cauchy problem for the Eq. (3.8) and
with the following initial condition at τ = 0, i.e., at t = 1:

w0(y) = u(y, 1) ≡ b(1) ∗ u0 = F ∗ u0. (3.9)

Thus, the linear operator ∂
∂τ −B is a rescaled version of the standard parabolic

one ∂
∂t + Δ2. Therefore, the corresponding semigroup eBτ admits an explicit

integral representation. This helps to establish some properties of the operator
B and describes other evolution features of the linear flow. From (3.2), we find
the following explicit representation of the semigroup:

w(y, τ) =
∫

RN

F
(
y − ze− τ

4
)
u0(z) dz ≡ eBτw0, where x = t

1
4 y, τ = ln t.

(3.10)

Subsequently, consider Taylor’s power series of the analytic kernel

F
(
y − ze− τ

4
)

=
∑
(β)

e− |β|τ
4

(−1)|β|

β!
DβF (y)zβ ≡

∑
(β)

e− |β|τ
4

1√
β!
ψβ(y)zβ ,

(3.11)

for any y ∈ R
N , where

zβ := zβ1
1 · · · zβN

N ,

and ψβ are the normalized eigenfunctions of the operator B. The series in
(3.11) converges uniformly on compact subsets in z ∈ R

N . Indeed, estimating
coefficients for |β| = l,

∣∣∣∣∣∣
∑
β=l

(−1)l

β!
DβF (y)zβ1

1 · · · zβN

N

∣∣∣∣∣∣
≤ bl|z|l,

by Stirling’s formula we have that, for l � 1,

bl =
N l

l!
sup

y∈RN ,|β|=l
|DβF (y)| ≈ N l

l!
l−l/4el/4 ≈ l−3l/4cl = e−l ln 3l/4+l ln c.

(3.12)

Note that the series
∑
bl|z|l has its radius of convergence R = ∞.

Thus, we obtain the following representation of the solution:

w(y, τ) =
∑
(β)

eλβτMβ(u0)ψβ(y), where λβ =: −|β|
4

(3.13)

and {ψβ} are the eigenvalues and eigenfunctions of the operator B, respec-
tively, and

Mβ(u0) :=
1√
β!

∫

RN

zβ1
1 · · · zβN

N u0(z) dz

are the corresponding moments of the initial datum w0 defined by (3.9).
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3.3. Main spectral properties of the pair {B, B∗}
Thus, the next results hold [18]:

Theorem 3.1. (i) The spectrum of B comprises real eigenvalues only with
the form,

σ(B) :=
{
λβ =: −|β|

4
, |β| = 0, 1, 2, . . .

}
. (3.14)

Eigenvalues λβ have finite multiplicity with eigenfunctions,

ψβ(y) :=
(−1)|β|

√
β!

DβF (y) ≡ (−1)|β|
√
β!

(
∂

∂y1

)β1

· · ·
(

∂

∂yN

)βN

F (y). (3.15)

(ii) The subset of eigenfunctions Φ = {ψβ} is complete in L2(RN ) and in
L2
ρ(R

N ).
(iii) For any λ /∈ σ(B), the resolvent (B − λI)−1 is a compact operator in

L2
ρ(R

N ).

Then, the adjoint operator B∗ of B (in the dual metric of L2
ρ(R

N ) takes
the form (1.28) and is defined in the weighted space L2

ρ∗(RN ), with the domain
H4
ρ∗(RN ), where the (dual) weight function is exponentially decaying:

ρ∗(y) ≡ 1
ρ(y)

= e−a|y|α > 0.

It is a bounded linear operator [18],

B∗ : H4
ρ∗

(
R

N
) →L2

ρ∗(RN ), so 〈Bv, w〉 = 〈v,B∗w〉 , v ∈ H4
ρ(RN ), w ∈ H4

ρ∗(RN ).

Moreover, the following theorem establishes the spectral properties of the
adjoint operator which will be very similar to those shown in Theorem3.1 for
the operator B.

Theorem 3.2. (i) The spectrum of B∗ consists of eigenvalues of finite mul-
tiplicity,

σ(B∗) = σ(B) :=
{
λβ =: −|β|

4
, |β| = 0, 1, 2, . . .

}
, (3.16)

and the eigenfunctions ψ∗
β(y) are polynomials of order |β|.

(ii) The subset of eigenfunctions Φ∗ = {ψ∗
β} is complete and closed L2

ρ∗(RN ).
(iii) For any λ /∈ σ(B∗) the resolvent (B∗ − λI)−1 is a compact operator in

L2
ρ∗(RN ).

It should be pointed out that, since ψ0 = F ,∫

RN

ψ0 dy =
∫

RN

F (y) dy = 1.

However, thanks to (3.15) we have that∫

RN

ψβ = 0 for any |β| 
= 0.

This expresses the orthogonality property to the adjoint eigenfunctions in
terms of the dual inner product. Due to Theorem3.2 the adjoint eigenfunctions
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are polynomials which form a complete subset in L2
ρ∗(RN ) with exponential

decaying weight ρ∗(y) = e−a|y|4/3
.

Note that [18], for the eigenfunctions {ψβ} of B denoted by (3.15), the
corresponding adjoint eigenfunctions are generalized Hermite polynomials of
the form

ψ∗
β(y) :=

1√
β!

⎡
⎣yβ +

[β/4]∑
j=1

1
j!

Δ2jyβ

⎤
⎦ . (3.17)

Hence, the orthogonality condition holds:

〈ψβ , ψγ〉 = δβ,γ for any β, γ, (3.18)

where 〈·, ·〉 is the duality product in L2(RN ) and δβ,γ is the Kronecker’s delta.
Operators B and B∗ have zero Morse index (no eigenvalues with positive real
parts are available).

The main spectral results are extended [18] to 2mth-order linear poly-
harmonic flows

ut = −(−Δ)mu in R
N × R+, (3.19)

where the elliptic equation for the rescaled kernel F (y) takes the form

BF ≡ −(−Δy)mF +
1

2m
y · ∇yF +

N

2m
F = 0 in R

N ,

∫

RN

F (y) dy = 1.

(3.20)

In particular, if m = 1 and N = 1, we find the classic second-order Hermite
operator B (see [11] for further information)

BF ≡ F ′′ +
1
2
F ′y +

1
2
F = 0,

whose name is associated with the work of Charles Hermite of 1870,
although such equations and polynomial eigenfunctions of the adjoint operator
B∗ = D2

y − 1
2 yDy were obtained earlier by Sturm in 1836 [37]; see [24, Ch. 1]

for history and references.

4. (NEP)+: local bifurcation-branching analysis via a formal
approach

In this section, we show the nonexistence of local bifurcations points from the
trivial solution (n, f) = (n, 0) for the nonlinear operator (1.13), and, hence,
the existence of branching from the eigenfunctions of the linear operator B
when n is sufficiently close to zero. This analysis allows us to show locally the
existence of non-zero solutions of (1.3)+ in the proximity of n = 0.

Throughout this section, we write the operator (1.13) in the form F(n, f),
denoted by (1.15), where L(α, n) and N (n, f) are the corresponding linear and
nonlinear parts of the operator (1.13) under the abstract framework already
explained above (first section). This operator is of class Cr, with r sufficiently
big to make all the subsequent derivatives exist. Moreover, when n = 0 we
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have the operator B defined by (1.11), for which we showed in the previous
section its complete spectral theory. It is apparent that its eigenvalues λk and
eigenfunctions ψk, with k ≥ 0, will determine the precise number of branches
from (n, f) = (0, ψk).

Let us note that the nonlinearity condition assumes that the functions f
are sufficiently smooth and have “transversal” zeros with a possible accumu-
lating point at a finite interface only. Also, for each k ≥ 0, denoting n0,k = 0,
we find that

ker [L (n0,k)]=ker
(
B+

k

4
I

)
=span {ψβ , |β| = k} for any k=0, 1, 2, 3, . . . ,

(4.1)

where L(n0,k) := L(αk(0), n0,k). Then, due to Fredholm’s alternative (see e.g.,
[16]),

R [L (n0,k)] =
{
u ∈ C(Ω̄) :

∫

Ω

uψk = 0
}
, such that

ker
(
B +

k

4
I

)
⊕R [L (n0,k)] = L2

ρ

(
R
N
)

for any k = 0, 1, 2, . . . .

Thus, ψk /∈ R[L(n0,k)] for any k ≥ 0. It is clear that the operator L(n0,k) =
B + k

4 I is Fredholm, i.e., R[L(α, n)] is a closed subspace of L2
ρ(R

N ) and

dim ker (L(α, n)) < ∞, codimR [L(α, n)] < ∞,

at least for each n ≈ 0+. Then, the operators L(n0,k) are Fredholm of index
zero. Indeed, we already know that the first eigenvalue λ0 = 0 is a simple
one of the operator L(n0,0) = B, so its algebraic multiplicity is 1. Hence, we
will apply the classical results of Crandall–Rabinowitz [15] about bifurcation
for simple eigenvalues in order to prove the nonexistence of bifurcation points
from the branch of trivial solutions at the value n0 = 0.

Note that, due to Theorems 3.1 and 3.2, for any k ≥ 1, the algebraic mul-
tiplicity is equal to the geometric ones, so we are not dealing with the problem
of introducing the generalized eigenfunctions (no Jordan blocks are necessary
for restrictions to eigenspaces).

On the other hand, when dealing with essentially non-analytic functions
of n, at n = 0 as in (1.13), we cannot use standard apparatus of bifurca-
tion-branching theory even in the case of finite regularity; cf. [16,31,38]. This
reflects the main partially technical but often principal difficulties of such a
branching study.

Once the assumptions are established, we introduce the following concept,
which will play a role in the forthcoming analysis. In dynamical system theory,
such concepts are typical for characterizing various types of bifurcations.

Definition 4.1. (n0,k, 0), with n0,k = 0 for any k = 0, 1, 2 · · ·, is a bifurcation
point for equation (2.5) from the curve of trivial solutions (n, 0), if there exists
a sequence

(nkm
, fm) ∈ R × (H4

ρ(R
N )\{0}),
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where m ≥ 1, such that

lim
m→∞(nkm

, fm) = (0, 0) and F(nkm
, fm) = 0 for each m ≥ 1.

Since B + k
4 I is Fredholm, and

DfF (n0,k, 0) f =
(
B +

k

4
I

)
f (4.2)

for any k, on the whole, as was discussed in [34], it is clear that the condition

Mk = ker
(
B +

k

4
I

)
≥ 1,

is necessary for any (n, f) = (n0,k, 0) to be a bifurcation point of (2.5) from
(n, 0), the trivial solution. However, the bifurcation does not occur depend-
ing only on the linear part. Therefore, as was shown in [34] through simple
algebraic examples, the nature of the nonlinearity determines the sufficiency
condition in order to have such a bifurcation. To be more precise, the nonlinear
part of the operator (1.13) must fulfill the assumptions established in the first
section of this paper.

Therefore, according to bifurcation theory, the points, where a bifurca-
tion from the branch of trivial solutions occurs, must depend on the spectrum
associated with the linear part and assuming some conditions on the nonlinear
part. Here, we prove the nonexistence of bifurcation from the branch of trivial
solutions at the value of the parameter n = 0. Moreover, due to the rescaled
relation between the linear operators B (1.11) and L(α, n) defined by (1.17), it
turns out that there is no bifurcation point from the branch of trivial solutions
at any n ≥ 0.

4.1. Bifurcation-branching for simple eigenvalues

Firstly, we present a result that provides us with the nonexistence of the branch
emanating from the trivial solutions at the point (n, f)=(n0,k, 0), with n0,k=0,
when λk is a simple eigenvalue. Secondly, consistent with some recent findings
[1], we also show that there exists a branching from the eigenfunction ψ0 at
the value of the parameter n0,0 = 0. We actually know that λ0 = 0 is a simple
eigenvalue of B in a general setting in R

N , but we cannot assure that it is
the only such one in other geometries. For instance, in 1D and in the radial
setting, all eigenvalues are simple, so we can apply this simplified analysis.

Thus, the calculus below will be valid for any k such that λk is simple
(under suitable restrictions). However, to avoid excessive notation, we make
all the computations for the case k = 0, which is always special and simpler.

Lemma 4.1. Under the regularity convention and assumptions in Sect. 1.4:
(i) (n, f) = (n0,0, 0), with n0,0 = 0, is not a bifurcation point for the station-

ary equation

F(n, f) = 0
(
f ∈ C0(RN ) or H4

ρ(R
N ); cf. (2.6)

)
.
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(ii) (n, f) = (n0,0, ψ0) is a branching point for the stationary solutions of the
functional F(n, f). Furthermore, let Y0 be a subspace of H4

ρ(R
N ),

Y0 := {u ∈ C(RN ) :
∫

RN

uψ0 = 0}, such that ker(L0,0) ⊕ Y0 = H4
ρ(R

N ).

Then, there exists ε > 0 and two maps of the class Cr−1,

n0 : (−ε, ε) → R, Φ0 : (−ε, ε) → Y0, n0(0) = 0, Φ0(0) = 0,

such that, for n0,0 = 0 and for each s ∈ (−ε, ε),
F (n0(s), f0(s)) = 0, f0(s) := ψ0 + sΦ0(s), (4.3)

where ψ0 is the eigenfunction associated with the simple eigenvalue λ0 of B, so
that dim ker[L(n0)] = 1. Moreover, there exists ρ > 0 such that if F(n, f) = 0
and (n, f) ∈ Br(0, ψ0), then either f = ψ0, or (n, f) = (n0(s), f0(s)) for some
s ∈ (−ε, ε), where Br(0, ψ0) is the a ball of the radius r centered as (0, ψ0) in
R

2 × L2(RN ). Furthermore, if F is analytic, so are n0(s), α0(s), and f0(s)
near 0.

Proof. (i) To show that (n, f) = (n0,0, 0), with n0,0 = 0, is not a bifurcation
point, we check that the transversality condition of Crandall–Rabinowitz [15]
is not satisfied. Under the regularity assumptions and convention of Sect. 1.4
imposed on the linear and nonlinear parts, we obtain that L(n) := DfF(n, 0),
where standard calculations of the derivative are allowed:

Df F(n, f)g := lim
h→0

F(n, f+hg) − F(n, f)

h

= lim
h→0

−∇ · (|f+hg|n∇Δ(f+hg))+ 1−αn
4 y · ∇(f+hg)+α(f+hg) − F(n, f)

h

= lim
h→0

F(n, f)+h
[−∇ · (n|f |n−1g∇Δf

)−∇ · (|f |n∇Δg)+ 1−αn
4 y · ∇g+αg]+o(h)−F(n, f)

h

= −∇ ·
(
n|f |n−1

g∇Δf
)

− ∇ · (|f |n∇Δg)+
1 − αn

4
y · ∇g+αg,

for any g ∈ C0(RN ), or H4
ρ(R

N ); cf. (2.6). Moreover, owing to the spectral
theory shown in Sect. 3, we find that there exists a singular value λ0, the
eigenvalue of the operator L(n0,0), with n0,0 = 0, associated with the eigen-
function ψ0. Set L0,0 := L(n0,0) and L1,0 := d

dnL(n0,0) where

d
dn

L(n) :=
(

−N(4 +Nn) −N2n

4(4 +Nn)2
+
λk
4

)
y · ∇ − N2

(4 +Nn)2
I.

Then, ker(L0,0) = span {ψ0} and the following transversality condition does
not hold:

L1,0ψ0 /∈ R[L0,0]. (4.4)

Indeed, suppose

L1,0ψ0 = −N

16
y · ∇ψ0 − N2

16
ψ0 ∈ R [L0,0] , so

− N

16
y · ∇ψ0 − N2

16
ψ0 = −Δ2v +

1
4
y · ∇v +

N

4
v, (4.5)
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for any v ∈ R[L0,0]. Hence, multiplying (4.5) by the adjoint eigenfunction ψ∗
0

and integrating by parts yields

−N2

16

∫
ψ0ψ

∗
0 − N

16

∫
ψ∗

0y · ∇ψ0 = −N2

16

∫
ψ0ψ

∗
0 +

N

16

∫
div (ψ∗

0y)ψ0

= −N2

16

∫
ψ0ψ

∗
0 +

N

16

∫
ψ0y · ∇ψ∗

0 +
N2

16

∫
ψ0ψ

∗
0

= −N2

16

∫
ψ0ψ

∗
0 +

N2

16

∫
ψ0ψ

∗
0 = 0,

which implies the nonexistence of bifurcation at n0,0 = 0 from the trivial
solution.

(ii) We now prove the final statement of Lemma 4.1. Then, under the
same necessary regularity assumptions and the convention in Sect. 1.4, we
define the auxiliary operator

G (s, n0,Φ0) :=
{ F(n0, ψ0+sΦ0)

s , if s 
= 0,
DfF (n0, ψ0) Φ0, if s = 0,

(4.6)

for s ∈ R, s ≈ 0, n0 ∈ R, and Φ0 ∈ Y0. Since F is Cr in both variables, G is
Cr−1 in all its arguments. The number r is sufficiently large ensuring that the
derivatives employed in the sequel exist. Moreover, by the definition, we have
that

G(0, 0, 0) = 0, (4.7)

sinceDfF(n0, 0)Φ0 = 0 by construction. Then, if the zeros of the eigenfunction
ψ0 are transversal a.e.,1 we find that

1 − |ψ0|n0(s) ≈ 0

in the weak sense (or even “a.e.”) for a sufficiently small s. Hence,

D(n0,Φ0)G(0, 0, 0) (n0,Φ0) = lim
h→0

G (0, n0h, hΦ0) − G(0, 0, 0)
h

= lim
h→0

DfF (n0, ψ0) (hΦ0)
h

= lim
h→0

(L0,0 + hn0L1,0) Φ0 + o(h) = L0,0Φ0.

(4.8)

Thus, owing to

Y0 ⊕ ker (L0,0) = H4
ρ(R

N ),

the operator

D(n0,Φ0)G(0, 0, 0) : R × Y → L2
ρ(R

N )

is an isomorphism. Then applying the implicit function theorem, we deduce
the existence and uniqueness of two Cr−1 functions

1For ψ0(y) which is a radial function, this is very probable; however we do not have a fully
convincing proof.
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n0 : (−ε, ε) → R, Φ0 : (−ε, ε) → Y0, such that
n0(0) = 0, Φ0(0) = 0, G(s, n0(s),Φ0(s)).

�

Throughout the rest of this section, we calculate the possible types of
local bifurcations. According to our formal analysis above, it follows that (2.5)
has a local curve of solutions

(n0(s), f0(s)), f0(s) := ψ0 + sΦ0(s),

emanating from (n, f) = (n, ψ0) at n = 0. This shows in some natural sense
that the component emanating at (n, f) = (0, ψ0) consists of two subcon-
tinua, C+

0 and C−
0 in the direction of Φ0 and −Φ0, respectively, where Φ0

belongs to the orthogonal space Y0 to the eigenspace spanned by the eigenfunc-
tion associated with the simple eigenvalue λ0 = 0. Moreover, those functions
(n0(s), f0(s)) admit the next expansions of the form: as s → 0,

n0(s) := sγ0,1 + s2γ0,2 + o(s2),

f0(s) := ψ0 + sΦ0,1 + s2Φ0,2 + o(s2), (4.9)

for certain real numbers γ0,l and some functions Φ0,l ∈ Y0, with l = 1, 2. In
addition, since we are assuming that α is dependent on n, this eventually yields

α0(s) =
N

4
+ sη0,1 + s2η0,2 + o(s2),

where η0,i ∈ R for any i = 1, 2, . . ..
Now, substituting the expansions defined by (4.9) and the corresponding

expansion for the parameter α0(n) into the nonlinear elliptic equation (2.5)
yields

−∇ ·
(
|ψ0 + sΦ0,1|(sγ0,1+o(s)) ∇Δψ0

)
− s∇ · (|ψ0 + sΦ0,1|(sγ0,1+o(s)) ∇ΔΦ0,1)

−s2∇ · (|ψ0 + sΦ0,1|(sγ0,1+o(s)) ∇ΔΦ0,2) +
1
4
y · ∇(ψ0 + sΦ0,1 + o(s))

−s
(
N
4 + sη0,1 + s2η0,2 + o(s2)

)
γ0,1

4
y · ∇(ψ0 + sΦ0,1 + o(s))

+
(
N

4
+ sη0,1 + s2η0,2 + o(s2)

)
(ψ0 + sΦ0,1 + o(s)) = 0.

Next, passing to the limit as s → 0, by the regularity convention (in particular,
this assumes the transversality condition for the zeros of the eigenfunction ψ0),
we have that |ψ0|sγ0,1 = 1 + sγ0,1 ln |ψ0| + o(s), and according to the spectral
theory shown in Sect. 3 we find that

Bψ0 ≡
(

−Δ2 +
1
4
y · ∇ +

N

4
I

)
ψ0 = 0.

Hence, dividing the rest of the terms by s and passing to the limit as s → 0
gives

BΦ0,1 = γ0,1

[
N

16
y · ∇ψ0 + ∇ · (ln |ψ0|∇Δψ0)

]
+ η0,1ψ0. (4.10)
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Now, applying Fredholm’s theory [16] to (4.10) yields that there exists a func-
tion Φ0,1, which solves (4.10) if and only if the right hand side is orthogonal
to kerB, i.e., to the eigenfunction ψ∗

0 = 1 of the adjoint operator B∗. This
uniquely defines the coefficient:

γ0,1 :=
η0,1 〈ψ∗

0 , ψ0〉
N
16 〈ψ∗

0 , y · ∇ψ0〉 + 〈ψ∗
0 ,∇ · (ln |ψ0|∇Δψ0)〉

=
η0,1

N
16 〈1, y · ∇ψ0〉 + 〈1,∇ · (ln |ψ0|∇Δψ0)〉

, (4.11)

provided that the denominator does not vanish (notably, a difficult property to
prove or even to verify numerically). Therefore, any different branching-type
in the vicinity of n = 0 from the first eigenfunction ψ0 of the operator B will
depend on the values of the coefficients γ0,1 and η0,1 related by (4.11).

4.2. Bifurcation-branching for semisimple eigenvalues

Hereafter, in this section, we focus on the case when the kernel is multidi-
mensional. Note that, the question of local bifurcation at the value of the
parameter, for which the corresponding eigenvalue is simple has been exten-
sively studied in literature. In particular, as was shown above, for (2.5), under
some assumptions over the nonlinearity, we proved that no bifurcation takes
place at n = 0 from the branch of the trivial solution, and when the eigenvalue
is simple. However, for any neighbourhood around n = 0, a branch of solutions
emanates from the associated eigenfunction in the direction of the orthogonal
subspace Y0.

On the other hand, for eigenvalues with higher multiplicity, we prove that
the nontrivial solutions emanating from the eigenfunctions ψk at the value of
the parameter n0,k = 0, for any k ≥ 1, are tangent to a manifold Yk.

Also, in general, it is not completely understood how many branches ema-
nate from the trivial solution, which remains an open problem and it can only
be obtained for some specific examples.

For the case of bifurcation from the branch of trivial solutions (n, f) =
(n, 0), there exist some results supposing that the operators are potential (see
[17,36]) and very few for non-gradient, non-self-adjoint operators [32].

Here, we provide a number of possible branches of bifurcation-branching
when n is close to 0+ from the eigenfunctions ψk under some conditions
imposed over certain values.

Similarly to the case of simple eigenvalues, we already know that

Mk = dim ker
(
B +

k

4
I

)
≥ 1, (4.12)

for any k ≥ 1, and the inequality is strict in dimensions N ≥ 1. Note that
λk = −k

4 is not a simple eigenvalue and (4.1) is fulfilled by ψk as the eigen-
functions associated with those semisimple eigenvalues of B, λk, such that
ψk :=

∑
|β|=k cβψ̂β , for every k ≥ 1 and under the natural “normalizing”
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constraint ∑
|β|=k

cβ = 1. (4.13)

Subsequently, under the circumstances imposed for the nonlinearity, it is
apparent that

dim ker
(
B +

k

4
I

)
= codimR

(
B +

k

4
I

)
= Mk,

for any k ≥ 1. Thus, as was discussed above, the operator (4.2) is Fredholm of
index zero since it is a compact perturbation of the identity.

It should be pointed out that the odd crossing number condition might
fail, so we are not distinguishing between odd or even multiplicities (see the
works Ambrosetti [2] for gradient operators and by Krömer–Healey–Kielhöfer
[32] for more general operators). It is classically known that, when the multi-
plicity is odd, there is always a bifurcation. However, when the multiplicity is
even, the bifurcation depends strongly on the nonlinearity.

The next theorem is one of the main results of this paper.

Theorem 4.1. Let the assumptions for the linear and nonlinear part of the
functional F be satisfied, together with the regularity convention in Sect. 1.4,
and (4.12) hold. Then:

(i) (n0,k = 0, 0), for any k ≥ 0, is not a bifurcation point, and;
(ii) if

ker
(
B +

k

4
I

)
⊕ Yk = H4

ρ(R
N ),

where the subspace Yk is defined by

Yk :=
{
u ∈ C(RN ) :

∫

RN

uψk = 0
}
,

there exists ε > 0 and two maps of class Cr−1,

nk : (−ε, ε) → R, Φk : (−ε, ε) → Yk,

such that, for n = 0 and for each s ∈ (−ε, ε),
F(nk(s), fk(s)) = 0, fk(s) := ψk + sΦk(s). (4.14)

Furthermore, if F(n, f) is analytic in a neighbourhood of (0, ψk), k = 1, 2, . . .,
so are nk(s), αk(s), and fk(s) near s = 0, a countable number of branches
emanate from ψk for n ≈ 0+.

Note that our earlier result for simple eigenvalues, k = 0, is included
here, with similar conclusions.

Proof. Firstly, we consider the following auxiliary operator:

G(s, nk,Φk) :=
{ F(nk,ψk+sΦk)

s , if s 
= 0,
DfF(nk, ψk)Φk, if s = 0,

(4.15)

for s ∈ R and close to zero, nk ∈ R and Φk ∈ Yk. Since F is Cr in both vari-
ables, G is Cr−1 in all its arguments. As customary, we impose some regularity
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conditions making sure that all the derivatives in the sequel exist. Moreover,
by definition we have that

G(0, 0, 0) = 0, (4.16)

for every k ≥ 1. Thus, similarly as done for the case of simple eigenvalues
(4.8),

D(nk,Φk)G(0, 0, 0)(nk,Φk) = lim
h→0

G(0, nkh, hΦk) − G(0, 0, 0)
h

= lim
h→0

DfF(nk, ψk)hΦk
h

= lim
h→0

(L0,k + hnkL1,k)Φk + o(h)

= L0,kΦk.

(4.17)

Hence, if the following condition

Yk ⊕ ker(L0,k) = H4
ρ(R

N )

holds, then the operator D(nk,Φk)G(0, 0, 0) : R × Yk → L2
ρ(R

N ) is an isomor-
phism. Consequently, we can apply the implicit function theorem. Therefore,
the existence and uniqueness of the following two Cr−1 functions are guaran-
teed:

nk : (−ε, ε) → R, Φk : (−ε, ε) → Yk, such that

Now, in order to conclude the proof, we must show that if (n, f) =
(n0,k, 0), with n0,k = 0, is not a bifurcation point, for any k ≥ 0, then the
following condition, providing us with the bifurcation from the branch of triv-
ial solutions at the value of the parameter n0,k = 0, must not be satisfied

span {L1,kψ̂1, . . . ,L1,kψ̂Mk
} ⊕R

(
B +

k

4
I

)
= L2

ρ(R
N ),

where L1,k := d
dnL(n0,k), with n0,k = 0, and {ψ̂1, . . . , ψ̂Mk

} a basis of the
subspace ker

(
B + k

4 I
)

such that

ψk = c1ψ̂1 + · · · + cMk
ψ̂Mk

,

with the “normalizing” constraint (4.13). Thus, we suppose that

L1,kψk=
Mk∑
j=1

cjL1,kψ̂j=
(
−N

16
+
λk
4

)
y ·

Mk∑
j=1

cj∇ψ̂j−N2

16

Mk∑
j=1

cjψ̂j ∈R [L0,k] , so

Mk∑
j=1

cjL1,kψ̂j =
(

−N

16
+
λk
4

)
y ·

Mk∑
j=1

cj∇ψ̂j − N2

16

Mk∑
j=1

cjψ̂j

= −Δ2v +
1
4
y · ∇v +

N

4
v, (4.18)

for any v ∈ R[L0,k]. Now, we restrict ourselves to the case when k = 1 and
Mk = 2 (i.e., N = 2) to avoid excessive calculations. Hence, multiplying (4.18)
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by the associated adjoint eigenfunctions ψ̂∗
1 and ψ̂∗

2 and integrating by parts,
we obtain the following system:{

N+1
16

∫
ψ̂∗

1y · (c1∇ψ̂1 + c2∇ψ̂2) + N2

16

∫
ψ̂∗

1(c1ψ̂1 + c2ψ̂2) = 0,
N+1
16

∫
ψ̂∗

2y · (c1∇ψ̂1 + c2∇ψ̂2) + N2

16

∫
ψ̂∗

2(c1ψ̂1 + c2ψ̂2) = 0,

and, hence,⎧
⎪⎨
⎪⎩
c1

[
N+1
16

∫
ψ̂∗

1y · ∇ψ̂1+N2

16

∫
ψ̂∗

1ψ̂1

]
+c2

[
N+1
16

∫
ψ̂∗

1y · ∇ψ̂2)+N2

16

∫
ψ̂∗

1ψ̂2

]
=0,

c1

[
N+1
16

∫
ψ̂∗

2y · ∇ψ̂1+N2

16

∫
ψ̂∗

2ψ̂1

]
+c2

[
N+1
16

∫
ψ̂∗

2y · ∇ψ̂2+N2

16

∫
ψ̂∗

2ψ̂2

]
=0.

(4.19)

Consequently, if the determinant of the system (4.19) for the unknowns c1 and
c2 is different from zero,∣∣∣∣
(N + 1)

∫
ψ̂∗

1y · ∇ψ̂1 +N2
∫
ψ̂∗

1ψ̂1 (N + 1)
∫
ψ̂∗

1y · ∇ψ̂2) +N2
∫
ψ̂∗

1ψ̂2

(N + 1)
∫
ψ̂∗

2y · ∇ψ̂1 +N2
∫
ψ̂∗

2ψ̂1 (N + 1)
∫
ψ̂∗

2y · ∇ψ̂2 +N2
∫
ψ̂∗

2ψ̂2

∣∣∣∣ 
= 0,

we arrive at the desired result with the normalizing constraint (4.13). Similar
computations can be done for any finite k and Mk; see below. �

Furthermore, as was performed for the case with simple eigenvalues, we
ascertain the conditions that provide us with how the branching from the
eigenfunctions at n = 0 is and how many branches we actually have. Hence,
by Theorem 4.1, for any k ≥ 1, the local curve of solutions

(nk(s), fk(s)), fk(s) := ψk + sΦk(s),

emanates from the branch of solutions (n, f) = (0, ψk), for any k ≥ 1. That
curve of solutions is defined locally by two maps of class Cr−1,

nk : (−ε, ε) → R, Φk : (−ε, ε) → Yk,

such that, for s = 0,

nk(0) = 0, Φk(0) = 0,

and the eigenfunction ψk of the subspace ker
(
B + k

4 I
)
, as well as the expan-

sion of the parameter α(n) depending on n.
Moreover, since the eigenvalues associated with the eigenfunctions ψk are

semisimple, the dimension of the kernel Mk will be greater than 1. Thus, the
component emanating at n = 0 will do it in the direction of the orthogo-
nal manifold to the one generated by {ψ̂1, . . . , ψ̂Mk

}, in such a way that ψk =
c1ψ̂1+ · · ·+cMk

ψ̂Mk
. In other words, depending on the coefficients c1, . . . , cMk

,
we shall obtain different directions of the bifurcation-branching. Then, those
functions (nk(s), fk(s)) admit the following expansions of the form: as s → 0,

nk(s) := sγk,1 + s2γk,2 + o(s2),
fk(s) := ψk + sΦk,1 + s2Φk,2 + o(s2),

for certain real numbers γk,l and some functions Φk,l ∈ YK , with l = 1, 2,
and k ≥ 1. Furthermore, we set αk(s) = N+k

4 + sηk,1 + s2ηk,2 + o(s2), where
ηk,i ∈ R for any i = 1, 2, . . . and any k ≥ 0.
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Hence, substituting those expansions into the Eq. (2.5) and dividing by s
gives

−∇ · (|ψk + sΦk,1|(sγk,1+o(s)) ∇Δψk) − s∇ · (|ψk + sΦk,1|(sγk,1+o(s)) ∇ΔΦk,1)

−s2∇ · (
∣∣sψk + s2Φk,1

∣∣(sγk,1+o(s)) ∇ΔΦk,2) +
1
4
y · ∇(ψk + sΦk,1 + o(s))

−s
(
N+k

4 + sηk,1 + s2ηk,2 + o(s2)
)
γk,1

4
y · ∇(ψk + sΦk,1 + o(s))

+
(
N + k

4
+ sηk,1 + s2ηk,2 + o(s2)

)
(ψk + sΦk,1 + o(s)) = 0.

Then, passing to the limit as s → 0 in a similar way as was done for the case of
simple eigenvalues (assuming a “sufficient transversality” of a.a. zeros of the
eigenfunctions ψk and, hence, the expansion |ψk|sγk,1 = 1+sγk,1 ln |ψk|+o(s)),
we have that(

B +
k

4
I

)
ψk ≡

(
−Δ2 +

1
4
y · ∇ +

N + k

4
I

)
ψk = 0,

which is true by Sect. 3. Dividing the rest by s and letting s → 0 give(
B +

k

4
I

)
Φk,1 = γk,1

[
N + k

16
y · ∇ψk + ∇ · (ln |ψk|∇Δψk)

]
+ ηk,1ψk ,

(4.20)

where ψk = c1ψ̂1 + · · ·+cMk
ψ̂Mk

. Hence, multiplying by the associated adjoint
eigenfunctions {ψ̂∗

1 , . . . , ψ̂
∗
Mk

}, integrating over R
N and applying the Fredholm

alternative [16], we obtain an algebraic system with the coefficients {cj , j =
1, . . . ,Mk}, γk,1, and ηk,1 as the unknowns. Again, to avoid excessive calcu-
lations, we will restrict ourselves to the simplest case in which k = 1 and
M1 = 2(N = 2). Then we arrive at the following algebraic system:⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1

[
γ1,1(N + k)

16

∫
ψ̂∗

1 y · ∇ψ̂1 + γ1,1

∫
ψ̂∗

1 ∇ · (ln |c1ψ̂1 + c2ψ̂2|∇Δψ̂1)

+η1,1
∫
ψ̂∗

1 ψ̂1

]
+ c2

[
γ1,1(N+k)

16

∫
ψ̂∗

1 y · ∇ψ̂2

+γ1,1

∫
ψ̂∗

1 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2|∇Δψ̂2

)
+ η1,1

∫
ψ̂∗

1 ψ̂2

]
= 0,

c1

[
γ1,1(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂1 + γ1,1

∫
ψ̂∗

2 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2|∇Δψ̂1

)

+η1,1
∫
ψ̂∗

2 ψ̂1

]
+ c2

[
γ1,1(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂2

+γ1,1

∫
ψ̂∗

2 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2|∇Δψ̂2

)
+ η1,1

∫
ψ̂∗

2 ψ̂2

]
= 0,

c1 + c2 = 1.
(4.21)

We will achieve the existence of solutions due to standard fixed point theory
arguments (see [1] for further details). Then, in order to ascertain how many
possible solutions we might have, one can fix the value of ηk,1 and solve the
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nonlinear algebraic system (4.21) for the remaining unknowns. Thus, from the
third equation of (4.21) we find that c1 = 1 − c2. Then, setting c1ψ̂1 + c2ψ̂2 =
ψ̂1 + c2(ψ̂2 − ψ̂1), substituting it in the other two equations, and integrating
by parts in some of the terms (the ones with the logarithm), we obtain

γ1,1

[
(N + k)

16

∫
ψ̂∗

1 y · ∇ψ̂1 +
∫

∇ψ̂∗
1 h1

]
+ η1,1

∫
ψ̂∗

1 ψ̂1

+c2

[
γ1,1(N + k)

16

∫
ψ̂∗

1 y · (∇ψ̂2 − ∇ψ̂1) + γ1,1

×
∫

∇ψ̂∗
1 (h2 − h1) + η1,1

∫
ψ̂∗

1 (ψ̂2 − ψ̂1)
]

= 0,

γ1,1

[
(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂1 +
∫

∇ψ̂∗
2 h1

]
+ η1,1

∫
ψ̂∗

2 ψ̂1

+c2

[
γ1,1(N + k)

16

∫
ψ̂∗

2 y · (∇ψ̂2 − ∇ψ̂1) + γ1,1

×
∫

∇ψ̂∗
2 (h2 − h1) + η1,1

∫
ψ̂∗

2 (ψ̂2 − ψ̂1)
]

= 0,

where h1 := ln |ψ̂1 + c2(ψ̂2 − ψ̂1)|∇Δψ̂1, h2 := ln |ψ̂1 + c2(ψ̂2 − ψ̂1)|∇Δψ̂2.

Hence, we next solve the system without considering the extra perturbation
terms, which h1 and h2 are involved in, i.e.,

ωi(γ1,1, c2) := γ1,1

∫
∇ψ̂∗

i h1 + c2γ1,1

∫
∇ψ̂∗

i (h2 − h1), with i = 1, 2.

Hence, we need to solve the system,

c2

[
γ1,1(N + k)

16

∫
ψ̂∗

1 y · (∇ψ̂2 − ∇ψ̂1) + η1,1

∫
ψ̂∗

1 (ψ̂2 − ψ̂1)
]

+γ1,1
(N + k)

16

∫
ψ̂∗

1 y · ∇ψ̂1 + η1,1

∫
ψ̂∗

1 ψ̂1 = 0,

c2

[
γ1,1(N + k)

16

∫
ψ̂∗

2 y · (∇ψ̂2 − ∇ψ̂1) + η1,1

∫
ψ̂∗

2 (ψ̂2 − ψ̂1)
]

+γ1,1
(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂1 + η1,1

∫
ψ̂∗

2 ψ̂1 = 0.

(4.22)

At this point it is quite easy to prove that, for example, after substituting the
expression for c2, obtained from the first equation, into the second equation,
we arrive at a quadratic form which depends on the unknown γ1,1,

F(γ1,1) := A1γ
2
1,1 +B1γ1,1 + C1 = 0,

with at most two possible solutions. Note we are assuming that at least one of
the following conditions is fulfilled:
γ1,1(N + k)

16

∫
ψ̂∗
i y · (∇ψ̂2−∇ψ̂1)+η1,1

∫
ψ̂∗
i (ψ̂2−ψ̂1) 
= 0 with i = 1, 2.

(4.23)

Those solutions will correspond to two possible values of c2 which are the roots
of the following quadratic form:

G(c2) := A2c
2
2 +B2c2 + C2 = 0.
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Moreover, owing to the “normalizing” constraint (4.13), we have that c2 ∈
[0, 1]. Hence, for that quadratic form the following is ascertained:

(i) c2 = 0 ⇒ G(0) = C2;
(ii) c2 = 1 ⇒ G(1) = A2 +B2 + C2;
(iii) Differentiating G with respect to c2, we obtain that G′(c2) = 2c2A2 +B2.

Then, the critical point of the function G is c∗2 = − B2
2A2

and G(c∗2) =
− B2

4A2
+ C2.

Once the solutions for c2 are established, that we know they are between 0
and 1 according to the “normalizing” constraint, we are able to ascertain the
solutions for γ2,1. Although, they can reach any value in the real line, and not
only values between 0 and 1, they must fulfill the quadratic form F as well, so
that, we will have at most two solutions corresponding to this unknown γ2,1.
Therefore, going back to (4.23) and supposing it is true, we shall obtain two
solutions after imposing the following conditions:

(a) C(A2 +B2 + C2) > 0;
(b) C

(
− B2

4A2
+ C2

)
< 0; and

(c) 0 < − B2
2A2

< 1.

On the other hand, if − B2
4A2

+ C2 = 0 then we have just one solution of the
quadratic form.

However, in the case when condition (4.23) is not fulfilled, we obtain a
single unique solution for γ2,1, which satisfies the following equality:

γ1,1 = − η1,1
∫
ψ̂∗

1 ψ̂1

(N+k)
16

∫
ψ̂∗

1 y · ∇ψ̂1

= − η1,1
∫
ψ̂∗

2 ψ̂1

(N+k)
16

∫
ψ̂∗

2 y · ∇ψ̂1

.

Unfortunately, in this case nothing can be said about the number of solutions
for c2 and, hence, for the other unknowns appearing in the system (4.21),
unless just one of them is satisfied, in which case we ascertain one unique solu-
tion for all the unknowns. Observe that, for any solution pair (γ1,1, c2), there
corresponds a value of η1,1, that we fixed above.

Therefore, we will obtain at most two solutions of the system (4.22), and,
eventually, imposing some conditions on the extra nonlinear terms ωi(γ1,1, c2)
such as

‖ωi(γ1,1, c2)‖L∞ ≤ min{F(γ∗
1,1),G(c∗2)}, for any i = 1, 2,

where, γ∗
1,1, c

∗
2 are the values where the quadratic forms catch the critical

points, we finally obtain at most two solutions for the original nonlinear alge-
braic system (4.21).

For the sake of completion, we extend these results to the case in which
k = 2 and the dimension of the kernel is M2 = 3 (again, N = 2). In other
words, the kernel will be generated by {ψ̂∗

1 , ψ̂
∗
2 , ψ̂

∗
3} such that ψ2 = c1ψ̂

∗
1 +

c2ψ̂
∗
2 + c3ψ̂

∗
3 . Hence, for this particular case, multiplying again (4.20) by the

adjoint eigenfunctions ψ̂∗
i , with i = 1, 2, 3, and imposing the “normalizing”
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constraint (4.13), the following algebraic system is obtained:

c1

[
γ2,1(N + k)

16

∫
ψ̂∗

1 y · ∇ψ̂1 + γ2,1

∫
ψ̂∗

1 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2+c3ψ̂3|∇Δψ̂1

)

+η2,1
∫
ψ̂∗

1 ψ̂1

]
+ c2

[
γ2,1(N + k)

16

∫
ψ̂∗

1 y · ∇ψ̂2

+γ2,1

∫
ψ̂∗

1 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2 + c3ψ̂3|∇Δψ̂2

)
+ η2,1

∫
ψ̂∗

1 ψ̂2

]

+c3

[
γ2,1(N + k)

16

∫
ψ̂∗

1 y · ∇ψ̂3

+γ2,1

∫
ψ̂∗

1 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2 + c3ψ̂3|∇Δψ̂3

)
+ η2,1

∫
ψ̂∗

1 ψ̂3

]
= 0,

c1

[
γ2,1(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂1 + γ2,1

∫
ψ̂∗

2 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2+c3ψ̂3|∇Δψ̂1

)

+η2,1
∫
ψ̂∗

2 ψ̂1

]
+ c2

[
γ2,1(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂2

+γ2,1

∫
ψ̂∗

2 ∇ · (ln |c1ψ̂1 + c2ψ̂2 + c3ψ̂3|∇Δψ̂2) + η2,1

∫
ψ̂∗

2 ψ̂2

]

+c3

[
γ2,1(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂3 (4.24)

+γ2,1

∫
ψ̂∗

2 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2 + c3ψ̂3|∇Δψ̂3

)
+ η2,1

∫
ψ̂∗

2 ψ̂3

]
= 0,

c1

[
γ2,1(N + k)

16

∫
ψ̂∗

3 y · ∇ψ̂1 + γ2,1

∫
ψ̂∗

3 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2+c3ψ̂3|∇Δψ̂1

)

+η2,1
∫
ψ̂∗

3 ψ̂1

]
+ c2

[
γ2,1(N + k)

16

∫
ψ̂∗

3 y · ∇ψ̂2

+γ2,1

∫
ψ̂∗

3 ∇ · (ln |c1ψ̂1 + c2ψ̂2 + c3ψ̂3|∇Δψ̂2) + η2,1

∫
ψ̂∗

3 ψ̂2

]

+c3

[
γ2,1(N + k)

16

∫
ψ̂∗

3 y · ∇ψ̂3

+γ2,1

∫
ψ̂∗

3 ∇ ·
(
ln |c1ψ̂1 + c2ψ̂2 + c3ψ̂3|∇Δψ̂3

)
+ η2,1

∫
ψ̂∗

3 ψ̂3

]
= 0,

c1 + c2 + c3 = 1.

As mentioned above, for the case k = 1, the existence of non-degenerate solu-
tions is guaranteed by standard fixed point theory. Moreover, since by the
third equation c1 = 1 − c2 − c3, substituting it into the other three equations
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of the system (4.24) yields

γ2,1

[
(N + k)

16

∫
ψ̂∗

1 y · ∇ψ̂1 +
∫

∇ψ̂∗
1 h1

]
+ η2,1

∫
ψ̂∗

1 ψ̂1

+c2

[
γ2,1(N + k)

16

∫
ψ̂∗

1 y · (∇ψ̂2 − ∇ψ̂1) + γ2,1

∫
∇ψ̂∗

1 (h2 − h1)

+η2,1
∫
ψ̂∗

1 (ψ̂2 − ψ̂1)
]

+ c3

[
γ2,1(N + k)

16

∫
ψ̂∗

1 y · (∇ψ̂3 − ∇ψ̂1)

+γ2,1

∫
∇ψ̂∗

1 (h3 − h1) + η2,1

∫
ψ̂∗

1 (ψ̂3 − ψ̂1)
]

= 0,

γ2,1

[
(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂1 +
∫

∇ψ̂∗
2 h1

]
+ η2,1

∫
ψ̂∗

2 ψ̂1

+c2

[
γ2,1(N + k)

16

∫
ψ̂∗

2 y · (∇ψ̂2 − ∇ψ̂1) + γ2,1

∫
∇ψ̂∗

2 (h2 − h1)

(4.25)

+η2,1
∫
ψ̂∗

2 (ψ̂2 − ψ̂1)
]

+ c3

[
γ2,1(N + k)

16

∫
ψ̂∗

2 y · (∇ψ̂3 − ∇ψ̂1)

+γ2,1

∫
∇ψ̂∗

2 (h3 − h1) + η2,1

∫
ψ̂∗

2 (ψ̂3 − ψ̂1)
]

= 0,

γ2,1

[
(N + k)

16

∫
ψ̂∗

3 y · ∇ψ̂1 +
∫

∇ψ̂∗
2 h1

]
+ η2,1

∫
ψ̂∗

3 ψ̂1

+c2

[
γ2,1(N + k)

16

∫
ψ̂∗

3 y · (∇ψ̂2 − ∇ψ̂1) + γ2,1

∫
∇ψ̂∗

2 (h2 − h1)

+η2,1
∫
ψ̂∗

3 (ψ̂2 − ψ̂1)
]

+ c3

[
γ2,1(N + k)

16

∫
ψ̂∗

3 y · (∇ψ̂3 − ∇ψ̂1)

+γ2,1

∫
∇ψ̂∗

2 (h3 − h1) + η2,1

∫
ψ̂∗

3 (ψ̂3 − ψ̂1)
]

= 0,

where,

h1 := ln |ψ̂1 + c2(ψ̂2 − ψ̂1) + c3(ψ̂3 − ψ̂1)|∇Δψ̂1,

h2 := ln |ψ̂1 + c2(ψ̂2 − ψ̂1) + c3(ψ̂3 − ψ̂1)|∇Δψ̂2,

h3 := ln |ψ̂1 + c2(ψ̂2 − ψ̂1) + c3(ψ̂3 − ψ̂1)|∇Δψ̂3.

Subsequently, as previously done for the particular case k = 1, we solve the
nonlinear algebraic system (4.25) without including complicated nonlinear per-
turbations, which the terms h1, h2, and h3 are involved in:

ωi(γ2,1, c2, c3) := γ2,1

∫
∇ψ̂∗

i h1 + c2γ2,1

∫
∇ψ̂∗

i (h2 − h1) + c3γ2,1

×
∫

∇ψ̂∗
i (h3 − h1),
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with i = 1, 2. Thus, ascertaining the number of possible solutions for the
system

γ2,1
(N + k)

16

∫
ψ̂∗

1 y · ∇ψ̂1 + η2,1

∫
ψ̂∗

1 ψ̂1

+c2

[
γ2,1(N + k)

16

∫
ψ̂∗

1 y · (∇ψ̂2 − ∇ψ̂1) + η2,1

∫
ψ̂∗

1 (ψ̂2 − ψ̂1)
]

+c3

[
γ2,1(N + k)

16

∫
ψ̂∗

1 y · (∇ψ̂3 − ∇ψ̂1) + η2,1

∫
ψ̂∗

1 (ψ̂3 − ψ̂1)
]

= 0,

γ2,1
(N + k)

16

∫
ψ̂∗

2 y · ∇ψ̂1 + η2,1

∫
ψ̂∗

2 ψ̂1

+c2

[
γ2,1(N + k)

16

∫
ψ̂∗

2 y · (∇ψ̂2 − ∇ψ̂1) + η2,1

∫
ψ̂∗

2 (ψ̂2 − ψ̂1)
]

+c3

[
γ2,1(N + k)

16

∫
ψ̂∗

2 y · (∇ψ̂3 − ∇ψ̂1) + η2,1

∫
ψ̂∗

2 (ψ̂3 − ψ̂1)
]

= 0,

γ2,1
(N + k)

16

∫
ψ̂∗

3 y · ∇ψ̂1 + η2,1

∫
ψ̂∗

3 ψ̂1

+c2

[
γ2,1(N + k)

16

∫
ψ̂∗

3 y · (∇ψ̂2 − ∇ψ̂1) + η2,1

∫
ψ̂∗

3 (ψ̂2 − ψ̂1)
]

+c3

[
γ2,1(N + k)

16

∫
ψ̂∗

3 y · (∇ψ̂3 − ∇ψ̂1) + η2,1

∫
ψ̂∗

3 (ψ̂3 − ψ̂1)
]

= 0,

and controlling the oscillations of the extra nonlinear perturbations
ωi(γ2,1c2, c3), for any i = 1, 2, 3, as above for k = 1, we achieve the desired
results imposing the conditions

γ1,1(N + k)
16

∫
ψ̂∗
i y · (∇ψ̂j − ∇ψ̂1) + η1,1

×
∫
ψ̂∗
i (ψ̂j − ψ̂1) 
= 0, with i = 1, 2, 3 and j = 2, 3.

Our system can be reduced to the study of two perturbed quadratic forms.
Therefore, we arrive at the problem of studying the number of intersections of
two conic surfaces, which provides us with the number of solutions between
zero and four. We postpone explaining how this approach works until Sect. 5.5,
where it is applied to the blow-up nonlinear eigenvalue problem (1.3)−. This
approach is quite similar for both the cases.

As a preliminary but a key conclusion, it is worth mentioning now that we
believe that, since we are dealing with a kernel of the dimension 3, in this case,
we have four solutions. It seems then that two of them should coincide. This
is a principal issue, owing to the fact that, somehow, the number of solutions
depends on the coefficients we have for the system and, at the same time, on
the eigenfunctions that generate the subspace ker

(
B + k

4 I
)
, so its dimension.

However, a full justification is not proved here and, due to the difficult nature
of the problem, perhaps it will never be possible to justify it completely.
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4.3. A short discussion on global behaviour of n-branches

After performing a very precise analysis about the bifurcation-branching anal-
ysis in the proximity of n = 0, we intend to explain how the global behaviour
of the branch of solutions that emanates from the eigenfunction ψ0 at the value
of the parameter n = 0 can be. It is well known that the existence of solutions
is not guaranteed for any n. Indeed, it was discussed in [20] that the existence
of oscillatory solutions ends when n = 1.7587 . . . . The value where the exis-
tence of oscillatory solutions ceases obviously depends on the type of the thin
film equation we are dealing with (the pure TFE, with extra absorption terms,
stable, unstable, etc).

Due to the analysis performed in this section, we already know that there
is no bifurcation from the branch of trivial solutions at n = 0 for the TFE
(1.3)+,

B+
n (α, f) ≡ −∇ · (|f |n∇Δf) + βy · ∇f + αf = 0 in R

N .

Moreover, after some rescaling the spectrum of the linear counterpart of (1.3)+
is directly related with the spectrum of the operator B denoted by (1.11)

BF ≡ −Δ2
yF +

1
4
y · ∇yF +

N

4
F = 0 in R

N ,

∫

RN

F (y) dy = 1.

Therefore, according to this, we believe that there is no bifurcation from
the branch of trivial solutions at any value of the parameter n > 0. How-
ever, a rigorous proof of this fact is difficult, since our nonlinear operators are
not monotone and, hence, the main techniques usually used in the analysis
of second-order operators are not applicable here. However, if that was the
situation, we could obtain the existence of certain turning points, or even a
connection with another branch among the ones emanating from some other
eigenfunction ψk, with k ≥ 1; cf. Fig. 1. We plan to carry out this work in a
subsequent paper.

5. Blow-up similarity profiles for the Cauchy problem
via n-branching

5.1. Preliminaries: homotopy and nodal sets

In this section, we describe the behaviour of the blow-up similarity solutions
(1.2)− of the TFE-4 (1.1) through the same homotopic approach by setting
n ↓ 0 in (1.3)− and, hence, arriving at the linear adjoint operator (1.28).
Then, we shall use the eigenfunction patterns occurring for n = 0 (those
are generalized Hermite polynomials (3.17)) as branching points for nonlinear
eigenfunctions providing us with a straightforward and practical n-continuity
approach to the self-similar Eq. (2.8) associated with the TFE-4 (1.1) from
the Eq. (1.11) associated with the bi-harmonic equation (1.8).

It is worth recalling now that homotopic approaches are well-known in the
theory of vector fields and nonlinear operator theory (see [16,31] for details).
In our case, a “homotopic path” just declares the existence of a continuous
connection (a curve) of some nonlinear eigenfunctions f = f−

k (y) satisfying
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n

ψ

ψ
k

0

f(x)

Figure 1. A formal global branching n-diagram

(2.8) that ends up at n = 0+ at the linear adjoint polynomials ψ∗
k(y) given

in (3.17). Due to Sect. 3, we already know that those profiles correspond to
generalized Hermite polynomials given by (3.17), which have finite oscillatory
properties. For instance, for any even |β|, the polynomials (3.17) do not have
any zero nodal surface at all. However, for k ≥ 1, linear combinations of such
eigenfunctions do have nodal sets of known and relatively simple structure.

For odd |β| (or on multi-dimensional eigenspaces), arbitrary linear com-
binations of Hermite polynomials for such a fixed k = |β| ≥ 1 explain all
possible structures of nodal sets and (see [26] for a full formulation)

multiple zeros of solutions of the bi-harmonic equation (1.8). (5.1)

Furthermore, it turns out that, using classical branching theory, “non-
linear eigenfunctions” fk(y) of changing sign, which satisfies the nonlinear
eigenvalue problem (2.8) (with an extra “radiation-minimal-like” condition at
infinity to be specified shortly), at least, for sufficiently small n > 0, can be
connected with the adjoint polynomials ψ∗

k(y) in (3.17), or their linear combi-
nations from the eigenspace. We are capable of justify this through the corre-
sponding Lyapunov–Schmidt branching equation, trying to be as rigorous as
possible in supporting and deriving the critical nonlinear eigenvalues αk(n).

5.2. Towards “minimal growth at infinity”

This is about the “minimal” (a “radiation-like”) condition at infinity,
announced in (1.5), which makes the Eq. (2.8) to be a nonlinear eigenvalue
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problem. We recall that, for n = 0, the (NEP)− in (1.3) reduces to the linear
one for the operator B∗ in (1.28), with the straightforward correspondence

αk(0) = λk ≡ −k

4
, k = 0, 1, 2, . . . . (5.2)

Equation (2.8) admits two kinds of asymptotics at infinity. The first one
is nonlinear and is given by the first two operators: assuming simple radial
behaviour (f = yγ) yields

− ∇ · (|f |n∇Δf) − 1 − αn

4
y · ∇f+· · ·=0 =⇒ f(y) ∼ |y| 4

n as y→∞.

(5.3)

Note that, as n → 0+, precisely this behaviour leads to an exponentially
growing bundle, which is prohibited in Theorem 3.2 by specifying the proper
weighted space L2

ρ∗(RN ) and eventually leading to the polynomial eigenfunc-
tions (3.17).

The second asymptotics is linear: as y → ∞,

− 1 − αn

4
y · ∇f−αf+· · ·=0 =⇒ f(y)∼|y|γ where γ=− 4α

1 − αn
>0,

(5.4)

since by (5.2) we have to assume that αk(n) < 0 (the first eigenvalue α0(n) = 0
is not of particular interest; see below) and always αk(n) < 1

n . Note that then

γ ≡ 4|α|
1 + |α|n <

4
n
, (5.5)

so that the linear behaviour (5.4) is the actual minimal one in comparison
with (5.3).

Overall, this allows to formulate such a “radiation-like” condition at infin-
ity, which now takes a clear “minimal nature”:

find solutions f(y) of (2.8) bounded at infinity by functions as in (5.4).

(5.6)

In self-similar approaches and ODE theory, such conditions are known to
define similarity solutions of the second kind, a term, which was introduced by
Zel’dovich in 1956 [39]. Many of such ODE problems (but indeed, easier) have
been rigorously solved since then. For quasilinear elliptic equations such as
(2.8), the condition (5.6) is more subtle and delicate indeed. We cannot some-
how rigorously justify that the problem (2.8), (5.6) is well posed and admits
a countable family of solutions and nonlinear eigenvalues {αβ(n)}. We recall
that using the homotopy deformation as n → 0+ was our original intention in
order to avoid such a difficult “direct” mathematical attack of this nonlinear
blow-up eigenvalue problem.

We begin our actual study by noting that the first nonlinear pair for
(2.8), (5.6) is trivial: for any n > 0,

α0(n) = 0 and f−
0 (y) ≡ 1, (5.7)
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so that this well corresponds to the first Hermite polynomial from (3.17) with
|β| = 0, where ψ∗

0(y) ≡ 1. However, similarity solutions (2.7) with the first
eigenfunction in (5.7) are trivial and do not change sign, so, to understand
formation of nonlinear “multiple zeros”, we will study branching of eigenfunc-
tions f−

k (y) for k ≥ 1.

5.3. Technical bifurcation calculus

Thus, the critical values αk(n) are obtained for small n > 0 according to spec-
tral theory established in Sect. 3. As was noticed, the explicit expression for
the eigenvalues and eigenfunctions for the operator B∗ in (1.28) are known;
see Theorem 3.2. Moreover, supposing the corresponding linear counterpart
from (3.17) with n = 0, we find, at least formally, that

L(α)f := −Δ2f − 1
4
y · ∇f − αf = 0. (5.8)

This equation can be considered as a linear perturbation in terms of the param-
eter α of that for the adjoint operator B∗ in (1.28). From that equation
combined with the eigenvalue expressions obtained for the operator B∗, we
derive the critical values for the parameter α given in (5.2), where λk are the
eigenvalues defined in Theorem 3.2. Note that those eigenvalues coincide with
the eigenvalues of the operator B. In particular, when k = 0, we have that
α0 = 0 = λ0 and the eigenfunction is ψ∗

0 = 1, satisfying

B∗ψ∗
0 = 0, so that ker L(α0) = span {ψ∗

0 = 1}.
Hence, λ0 = 0 is a simple eigenvalue for the operator L(α0) = B∗ and its
algebraic multiplicity is 1. In general, we find that (note that k = 0 is trivial)

ker
(
B∗ +

k

4
I

)
= span {ψβ , |β| = k}, for any k = 0, 1, 2, 3, . . . , (5.9)

where the operator B∗+ k
4 I is Fredholm of index zero. In other words, R[L(αk)]

is a closed subspace of L2
ρ(R

N ) and

dim ker(L(αk)) < ∞, codimR[L(αk)] < ∞
for each αk. Moreover, dim ker

(
B + k

4 I
)

= M∗
k ≥ 1, for any k = 0, 1, 2, 3, . . ..

Then, once the relation between (5.8) and the linear operator B∗ has
been established, for which we know its spectral theory, by regularity issues in
Sect. 1.4, we can assume for small n > 0 in (3.17) the following expansions:

αk(n) := αk + μ1,kn+ o(n), |f |n ≡ |f |n = en ln |f | := 1 + n ln |f | + o(n),
(5.10)

where the last one is assumed to be understood in a weak sense. Again, it
is convenient to discuss further the last one. Indeed, the second expansion
cannot be interpreted pointwise for oscillatory changing sign solutions f(y),
though now these functions are assumed to have finite number of zero surfaces
(as the generalized Hermite polynomials for n = 0 do). However, as usual,
this, of course, imposes some restrictions on the possible zeros of the eigen-
functions ψ∗

β(y). According to the spectral theory in Sect. 3 we already know
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that those eigenfunctions and their linear combinations for the adjoint opera-
tor B∗ are generalized Hermite polynomials given by (3.17). Hence, they are
analytic functions with isolated zeros.

Since the possible zeros are isolated, they can be localized in arbitrarily
small neighbourhoods. Indeed, it is clear that when |f | > δ > 0 for any δ > 0,
there is no problem in approximating of |f |n as in (5.10), i.e., |f |n = O(n) as
n → 0+. However, when |f | ≤ δ for δ ≥ 0 sufficiently small, the proof of such
an approximation is far from clear unless the zeros of the f ’s are all transversal
in a natural sense. In view of the expected finite oscillatory nature of solutions
f−(y), this should allow one to obtain a weak convergence as in (1.21) to be
used in the integral equation similar to (1.18) (with B replaced by B∗).

However, let us stress again that, in the present “blow-up” case, we do not
need such subtle oscillatory properties of solutions close to interfaces, which
are not known in complicated geometries. The point is that, due to the con-
dition (5.6), we are looking for solutions f(y) exhibiting finite oscillatory and
sign changing properties, which are similar to those for linear combinations
of Hermite polynomials (3.17). Hence, we can suppose that their zeros (zero
surfaces) are transversal a.e., so we find that, for n > 0 and any δ = δ(n) > 0
sufficiently small,

n| ln |f || � 1, if |f | ≤ δ(n),

and, hence, on such subsets, f(y) must be exponentially small:

| ln |f || � 1
n

=⇒ ln |f | � − 1
n

=⇒ |f | � e− 1
n .

Thus, we can control the singular coefficients in (5.10), and, in particular, see
that

ln |f | ∈ L1
loc(R

N ). (5.11)

Recall that this happens also in exponentially small neighbourhoods of the
transversal zeros.

It is worth recalling again that our computations below are to be under-
stood as those dealing with the equivalent integral equation similar to (1.18)
and operators, so, in particular, we can use the powerful facts on compactness
of the resolvent (B−λI)−1 and the adjoint one (B∗ −λI)−1 in the correspond-
ing weighted L2-spaces.

Note that, in such an equivalent integral representation, the singular term
in (5.10) satisfying (5.11) makes no principal difficulty, so the last expansion
in (5.10) makes rather usual sense for applying standard nonlinear operator
theory. Overall, the above analysis somehow justifies further branching study.
We must admit that this is not a rigorous one, but is indeed sufficient for our
formal expansions as n → 0+.

Thus, substituting (5.10) into the nonlinear eigenvalue problem (2.8) and
omitting o(n) terms when necessary, we obtain the following expression:

−∇ · [(1 + n ln |f |)∇Δf ] − 1 − αkn− μ1,kn
2

4
y · ∇f − (αk + μ1,kn)f = 0,
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for any k = 0, 1, 2, 3, . . .. Hence, rearranging terms yields

−Δ2f−n∇ · (ln |f |∇Δf)− 1
4
y · ∇f+

αkn+μ1,kn
2

4
y · ∇f−αkf−μ1,knf=0.

In addition, using the expression of the operator B∗ yields
(
B∗ +

k

4
I

)
f + nNk(f) + o(n) = 0, (5.12)

with the operator

Nk(f) := −∇ · (ln |f |∇Δf) +
αk
4
y · ∇f − μ1,kf. (5.13)

Subsequently, we shall compute the coefficients involved in the expansions
(5.10) applying the classical Lyapunov–Schmidt method to (5.12) (branching
approach when n ↓ 0), and, hence, describing the behaviour of the blow-up
solutions for at least small values of the parameter n > 0. Two cases are dis-
tinguished. The first one in which the eigenvalue is simple and the second for
which the eigenvalues are semisimple. Note that due to Theorems 3.1 and 3.2,
for any k ≥ 0, the algebraic multiplicities are equal to the geometric ones, so
we do not deal with the problem of introducing the generalized eigenfunctions
(no Jordan blocks are necessary for restrictions to eigenspaces).

5.4. Simple eigenvalue

Recall that this always happens for k = 0 (not interesting) and also in 1D
and radial geometry, when all the eigenvalues of such ordinary differential
operators are simple.

As a typical example, we perform the analysis as for k = 0, bearing in
mind the above other more interesting applications.

Thus, since the first eigenvalue λ0 = 0 of B∗ is simple, the dimension
of the eigenspace is M∗

0 = 1, the analysis of this particular case presents less
difficulties than the corresponding ones for any other k ≥ 1. Hence, denoting
ker B∗ = span {ψ∗

0 = 1} and by Y ∗
0 the complementary invariant subspace,

orthogonal to ψ0, we set

f = ψ∗
0 + V ∗

0 , (5.14)

where V ∗
0 ∈ Y ∗

0 . We define P ∗
0 and P ∗

1 such that P ∗
0 + P ∗

1 = I, to be the
projections onto ker B∗ and Y ∗

0 respectively. We next set

V ∗
0 := nΦ∗

1,0 + o(n). (5.15)

Then, after substituting (5.14) into (5.12) and passing to the limit as n → 0+,
we arrive at a linear inhomogeneous equation for Φ∗

1,0

B∗Φ∗
1,0 = −N0(ψ∗

0), (5.16)

since B∗ψ∗
0 = 0. By Fredholm’s theory [16] (spectral theory of the pair {B,B∗}

from Sect. 3 does also matter), a unique solution V ∗
0 ∈ Y ∗

0 of (5.16) exists if
and only if the right-hand side is orthogonal to the one dimensional kernel of
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the adjoint operator, in this case B. In other words, in the topology of the
dual space L2, the following holds:

〈N0(ψ∗
0), ψ0〉 = 0. (5.17)

Therefore, (5.16) has a unique solution Φ∗
1,0 ∈ Y ∗

0 determining by (5.15) a bifur-
cation branch for small n > 0. In addition, we obtain the following explicit
expression for the coefficient μ1,0 of the corresponding nonlinear eigenvalue
α0(n) denoted by (5.10):

μ1,0 :=
〈∇ · (ln |ψ∗

0 |∇Δψ∗
0), ψ0〉

〈ψ∗
0 , ψ0〉 = 〈∇ · (ln |ψ∗

0 |∇Δψ∗
0), ψ0〉.

5.5. Multiple eigenvalues for k ≥ 1
For any k ≥ 1, we know that

dim ker
(
B∗ +

k

4
I

)
= M∗

k > 1 (actually, M∗
k = Mk).

Hence, we have to take the representation

f =
∑

|β|=k
cβψ̂

∗
β + V ∗

k , (5.18)

for every k ≥ 1. Currently, for convenience, we denote {ψ̂∗
β}|β|=k =

{ψ̂∗
1 , . . . , ψ̂

∗
Mk

}, the natural basis of the M∗
k -dimensional eigenspace ker(

B∗ + k
4 I

)
and set ψ∗

k =
∑

|β|=k cβψ̂
∗
β . Moreover, V ∗

k ∈ Y ∗
k and V ∗

k =∑
|β|>k cβψ

∗
β , where Y ∗

k is the complementary invariant subspace of
ker

(
B∗ + k

4 I
)
. Furthermore, in the same way as we did for the case k = 0, we

define the P ∗
0,k and P ∗

1,k, for every k ≥ 1, to be the projections of ker
(
B∗ + k

4 I
)

and Y ∗
k respectively. We also denote V ∗

k by

V ∗
k := nΦ∗

1,k + o(n). (5.19)

Subsequently, substituting (5.18) into (5.12) and passing to the limit as n ↓ 0+,
we obtain the following equation:

(
B∗ +

k

4
I

)
Φ1,k = −Nk

⎛
⎝ ∑

|β|=k
cβψ

∗
β

⎞
⎠, (5.20)

under the natural “normalizing” constraint
∑

|β|=k
cβ = 1. (5.21)

Therefore, applying the Fredholm alternative [16], a unique V ∗
k ∈ Y ∗

k exists
if and only if the right-hand side of (5.20) is orthogonal to ker

(
B∗ + k

4 I
)
.

Multiplying the right-hand side of (5.20) by ψβ , for every |β|, in the topology
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of the dual space L2, we obtain an algebraic system of M∗
k + 1 equations and

the same number of unknowns, {cβ , |β| = k} and μ1,k:
〈

Nk

⎛
⎝ ∑

|β|=k
cβψ

∗
β

⎞
⎠ , ψβ

〉
= 0 for all |β| = k, (5.22)

which is indeed the Lyapunov–Schmidt branching equation [38]. Through that
algebraic system we shall ascertain the coefficients of the expansions (5.10)
and, hence, eventually the directions of branching, as well as the number
of branches. However, a full solution of the non-variational algebraic system
(5.22) is a very difficult issue, though we claim that the number of branches
is expected to be related to the dimension of the eigenspace ker

(
B∗ + k

4 I
)
.

In order to obtain the number of possible branches and with the objective
of avoiding excessive notation, we analyze two typical cases.
Computations for branching of dipole solutions in 2D. Firstly, we
ascertain some expressions for those coefficients in the case when |β| = 1, N =
2 and M∗

1 = 2, so that, in our notations, {ψβ}|β|=1 = {ψ̂∗
1 , ψ̂

∗
2} such that

ψ∗
1 = c1ψ̂

∗
1 + c2ψ̂

∗
2 . Consequently, in this case, we obtain the following alge-

braic system:
⎧
⎨
⎩
c1〈ψ̂1, h1〉+ c1α1

4 〈ψ̂1, y · ∇ψ̂∗
1〉−c1μ1,1+c2〈ψ̂1, h2〉+ c2α1

4 〈ψ̂1, y · ∇ψ̂∗
2〉=0,

c1〈ψ̂2, h1〉 + c1α1
4 〈ψ̂2, y · ∇ψ̂∗

1〉 + c2〈ψ̂2, h2〉+ c2α1
4 〈ψ̂2, y · ∇ψ̂∗

2〉−c2μ1,1 = 0,
c1 + c2 = 1,

(5.23)

where

h1 := −∇ · [ln(c1ψ̂∗
1 + c2ψ̂

∗
2)∇Δψ̂∗

1 ], h2 := −∇ · [ln(c1ψ̂∗
1 + c2ψ̂

∗
2)∇Δψ̂∗

2 ],

and, c1, c2 and μ1,1 are the coefficients that we want to calculate. Also, α1 = λ1

is regarded as the value of the parameter α denoted by (5.2) such that ψ̂∗
1,2

are the corresponding associated adjoint eigenfunctions. Now, from the third
equation we have c2 = 1−c1, so that substituting it into the first two equations
of (4.5) gives

⎧
⎨
⎩

0 = N1(c1, μ1,1) + c1
α1
4

[
〈ψ̂1, y · ∇ψ̂∗

1〉 − 〈ψ̂1, y · ∇ψ̂∗
2〉
]
,

0 = N2(c1, μ1,1) + c1
α1
4

[
〈ψ̂2, y · ∇ψ̂∗

1〉 − 〈ψ̂2, y · ∇ψ̂∗
2〉
]

− μ1,1,
(5.24)

where

N1(c1, μ1,1) := c1〈ψ̂1, h1〉 + 〈ψ̂1, h2〉 +
α1

4
〈ψ̂1, y · ∇ψ̂∗

2〉 − c1〈ψ̂1, h2〉 − c1μ1,1,

N2(c1, μ1,1) := c1〈ψ̂2, h1〉 + 〈ψ̂2, h2〉 +
α1

4
〈ψ̂2, y · ∇ψ̂∗

2〉 − c1〈ψ̂2, h2〉 + c1μ1,1

represent the nonlinear parts of the algebraic system, with h0 and h1 just
depending on c1 in this case.

To detect solutions for the system (5.23) we apply the Brouwer fixed
point theorem to (5.24) (see [1] for further details). Then, we suppose that
the values c1 and μ1,1 are the unknowns in a sufficiently big disc DR(ĉ1, μ̂1,1),
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centered in a possible nondegenerate zero (ĉ1, μ̂1,1). Therefore, if one of the
next two conditions are satisfied

〈ψ̂1, y · ∇ψ̂∗
1〉 − 〈ψ̂1, y · ∇ψ̂∗

2〉 
= 0 or 〈ψ̂2, y · ∇ψ̂∗
2〉 − 〈ψ̂2, y · ∇ψ̂∗

1〉 
= 0,

the nonlinear algebraic system (5.24) has at least one non-degenerate solution.
Note that multiplicity results are extremely difficult to obtain. So, to ascer-
tain the number of solutions for those nonlinear finite-dimensional algebraic
problems is rather complicated. However, we expect, and in fact compute it in
some cases, that this is somehow related to the dimension of the corresponding
eigenspace ker

(
B∗ + k

4 I
)
, k ≥ 1.

Firstly, we calculate the number of solutions for the nonlinear algebraic
system (5.23). Integrating by parts the terms in which h1 and h2 are involved
in the first two equations and rearranging terms, we arrive at (as usual, all
integrals are over R

N )

∫
∇ψ1 · ln

(
c1ψ̂

∗
1 + c2ψ̂

∗
2

)
∇Δ

(
c1ψ̂

∗
1 + c2ψ̂

∗
2

)
+ c1

α1

4

∫
ψ̂1y · ∇ψ̂∗

1 − c1μ1,1

+c2
α1

4

∫
ψ̂1y · ∇ψ̂∗

2 = 0,
∫

∇ψ̂2 · ln
(
c1ψ̂

∗
1 + c2ψ̂

∗
2

)
∇Δ

(
c2ψ̂

∗
1 + c2ψ̂

∗
2

)
+ c1

α1

4

∫
ψ̂2y · ∇ψ̂∗

1 − c2μ1,1

+c2
α1

4

∫
ψ̂2y · ∇ψ̂∗

2 = 0.

Then, substituting the third equation with the expression c1 = 1 − c2 and,
hence, putting c1ψ̂

∗
1 + c2ψ̂

∗
2 = ψ̂∗

1 + (ψ̂∗
2 − ψ̂∗

1)c2 into those two equations
obtained above yields

∫
∇ψ̂1 · ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)
∇Δ

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)
− μ1,1 + c2μ1,1

+
α1

4

∫
ψ̂1y · ∇ψ̂∗

1 + c2
α1

4

∫
ψ̂1y ·

(
∇ψ̂∗

2 − ∇ψ̂∗
1

)
= 0,

∫
∇ψ̂2 · ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)
∇Δ

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)
− c2μ1,1 (5.25)

+
α1

4

∫
ψ̂2y · ∇ψ̂∗

1 + c2
α1

4

∫
ψ̂2y ·

(
∇ψ̂∗

2 − ∇ψ̂∗
1

)
= 0.

Subsequently, adding both equations, we have that

μ1,1 =
∫ (

∇ψ̂1 + ∇ψ̂2

)
· ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)
∇Δ

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)

+
α1

4

∫ (
ψ̂1 + ψ̂2

)
y · ∇ψ̂∗

1 + c2
α1

4

∫ (
ψ̂1 + ψ̂2

)
y ·

(
∇ψ̂∗

2 − ∇ψ̂∗
1

)
.
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Substituting it into the second equation of (5.25), we find the following equa-
tion with the single unknown c2:

−c22
α1

4

∫ (
ψ̂1 + ψ̂2

)
y ·

(
∇ψ̂∗

2 − ∇ψ̂∗
1

)

+c2
α1

4

(∫
ψ̂2y · ∇ψ̂∗

2 −
∫ (

ψ̂1 + 2ψ̂2

)
y · ∇ψ̂∗

1

)

+
α1

4

∫
ψ̂2y · ∇ψ̂∗

1 +
∫

∇ψ̂2 · ln
(
ψ̂∗

1 +
(
ψ̂∗

2 −ψ̂∗
1

)
c2

)
∇Δ

(
ψ̂∗

1 +
(
ψ̂∗

2 −ψ̂∗
1

)
c2

)

−c2
∫ (

∇ψ̂1+∇ψ̂2

)
· ln

(
ψ̂∗

1 +
(
ψ̂∗

2 −ψ̂∗
1

)
c2

)
∇Δ

(
ψ̂∗

1 +
(
ψ̂∗

2 −ψ̂∗
1

)
c2

)
=0,

(5.26)

which can be written in the following way:

c22A+ c2B + C + ω(c2) ≡ F(c2) + ω(c2) = 0. (5.27)

Here ω(c2) can be considered as a perturbation of the quadratic form F(c2)
with the coefficients of such a quadratic form defined by

A := −α1

4

∫ (
ψ̂1 + ψ̂2

)
y ·

(
∇ψ̂∗

2 − ∇ψ̂∗
1

)
,

B :=
α1

4

(∫
ψ̂2y · ∇∇ψ̂∗

2 −
∫ (

ψ̂1 + 2ψ̂2

)
y · ∇ψ̂∗

1

)
,

C :=
α1

4

∫
ψ̂2y · ∇ψ̂∗

1 ,

ω(c2) :=
∫

∇ψ̂2 · ln
(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)
∇Δ

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)

−c2
∫ (

∇ψ̂1 + ∇ψ̂2

)
· ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)
∇Δ

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2

)
.

Hence, due to the normalizing constraint (5.21), c2 ∈ [0, 1], solving the qua-
dratic equation F(c2) = 0 yields:

(i) c2 = 0 =⇒ F(0) = C;
(ii) c2 = 1 =⇒ F(1) = A+B + C; and
(iii) differentiating F with respect to c2, we obtain that F′(c2) = 2c2A + B.

Then, the critical point of the function F is c∗2 = − B
2A and its image is

F(c∗2) = − B
4A + C.

Therefore, since we know about the existence of at least one solution,
different from zero, in this particular case we impose some conditions in order
to have at most two solutions:
(a) C(A+B + C) > 0;
(b) C

(− B
4A + C

)
< 0; and

(c) 0 < − B
2A < 1.

Note that, for − B
4A + C = 0, we have just a single solution.

Consequently, going back again to the equation (5.27), we need to control
somehow the perturbation of the quadratic form to maintain the number of
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solutions. Therefore, controlling the possible oscillations of the perturbation
ω(c2) in such a way that

‖ω(c2)‖L∞ ≤ F(c∗2),

we can assure that the number of solutions for (5.23) is exactly two (or at most
two). This is actually the dimension of the kernel for the operator B+ 1

4 I as we
conjectured. Note that, in general and for large k � 1, to solve such multiplic-
ity problems for those types of non-variational equations is a rather difficult
open problem.
Branching computations for |β| = 2. Subsequently, we shall extend those
results for the case in which the dimension of the eigenspace is greater
than 1. Again the calculus are rather tedious. For that reason we find it
easier to make such calculations for the particular case when |β| = 2 and
M∗

2 = 3(N = 2), so that {ψ∗
β}|β|=2 = {ψ̂∗

1 , ψ̂
∗
2 , ψ̂

∗
3} stands for a basis of the ei-

genspace ker
(
B∗ + 1

2 I
)
, with k = 2 and λk = −k

4 as the associated eigenvalue.
Observe that αk(0) = λk.

Thus, in this case, performing in a similar way as was done for (5.23)
with ψ∗

2 = c1ψ̂
∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3 , we arrive at the following algebraic system:⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1〈ψ̂1, h1〉 + c2〈ψ̂1, h2〉 + c3〈ψ̂1, h3〉 + c1α2
4 〈ψ̂1, y · ∇ψ̂∗

1〉 + c2α2
4 〈ψ̂1, y · ∇ψ̂∗

2〉
+ c3α2

4 〈ψ̂1, y · ∇ψ̂∗
3〉 − c1μ1,2 = 0,

c1〈ψ̂2, h1〉 + c2〈ψ̂2, h2〉 + c2〈ψ̂2, h3〉 + c1α2
4 〈ψ̂2, y · ∇ψ̂∗

1〉 + c2α2
4 〈ψ̂2, y · ∇ψ̂∗

2〉
+ c3α2

4 〈ψ̂2, y · ∇ψ̂∗
3〉 − c2μ1,2 = 0,

c1〈ψ̂3, h1〉 + c2〈ψ̂3, h2〉 + c2〈ψ̂3, h3〉 + c1α2
4 〈ψ̂3, y · ∇ψ̂∗

1〉 + c2α2
4 〈ψ̂3, y · ∇ψ̂∗

2〉
+ c3α2

4 〈ψ̂3, y · ∇ψ̂∗
3〉 − c3μ1,2 = 0,

c1 + c2 + c3 = 1,

(5.28)

where

h1 := −∇ ·
[
ln

(
c1ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)
∇Δψ̂∗

1

]
,

h2 := −∇ ·
[
ln

(
c1ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)
∇Δψ̂∗

2

]
,

and h3 := −∇ ·
[
ln

(
c1ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)
∇Δψ̂∗

3

]
,

and c1, c2, c3, and μ1,2 are unknowns.
Here, ψ̂1, ψ̂2, ψ̂3 represent the eigenfunctions associated with the eigen-

value λ2 = α2(0) and ψ̂∗
1 , ψ̂

∗
2 , ψ̂

∗
3 are the corresponding adjoint eigenfunctions,

which are associated with the same eigenvalue λ2.
As for the case |β| = 1, the application of the Brouwer fixed point theorem

and the topological degree provide us with the existence of a non-degenerate
solution for the nonlinear algebraic system (5.28) under certain conditions.

Furthermore, in the subsequent analysis, we shall show a possible way
to ascertain the number of solutions of the nonlinear algebraic system (5.28).
Obviously, since the dimension of the eigenspace is bigger than the corre-
sponding one in the case |β| = 1, the difficulty in obtaining multiplicity results
increases.
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We proceed as in the previous case. Firstly, we integrate by parts those
terms in which h1, h2, and h3 are involved. After rearranging terms, this yields

∫
∇ψ1 · ln

(
c1ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)
∇Δ

(
c1ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)

+c1
α2

4

∫
ψ̂1y · ∇ψ̂∗

1 − c1μ1,2 + c2
α2

4

∫
ψ̂1y · ∇ψ̂∗

2

+c3
α2

4

∫
ψ̂1y · ∇ψ̂∗

3 = 0;
∫

∇ψ̂2 · ln
(
c1ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)
∇Δ

(
c2ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)

+c1
α2

4

∫
ψ̂2y · ∇ψ̂∗

1 − c2μ1,2 + c2
α2

4

∫
ψ̂2y · ∇ψ̂∗

2

+c3
α2

4

∫
ψ̂2y · ∇ψ̂∗

3 = 0;
∫

∇ψ̂3 · ln
(
c1ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)
∇Δ

(
c2ψ̂

∗
1 + c2ψ̂

∗
2 + c3ψ̂

∗
3

)

+c1
α2

4

∫
ψ̂3y · ∇ψ̂∗

1 − c3μ1,2 + c2
α2

4

∫
ψ̂3y · ∇ψ̂∗

2

+c3
α2

4

∫
ψ̂3y · ∇ψ̂∗

3 = 0.

Next, by the fourth equation in (5.28), we have that c1 = 1 − c2 − c3. Then,
setting

c1ψ̂1 + c2ψ̂2 + c3ψ̂3 = ψ̂1 + c2

(
ψ̂2 − ψ̂1

)
+ c3

(
ψ̂3 − ψ̂1

)

and substituting this into three equations above yields a nonlinear algebraic
system:

∫
∇ψ̂1 · ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

×∇Δ
(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

−μ1,2 + c2μ1,2 + c3μ1,2 +
α2

4

∫
ψ̂1y · ∇ψ̂∗

1

+
α2

4

∫
ψ̂1y ·

((
∇ψ̂∗

2 − ∇ψ̂∗
1

)
c2 +

(
∇ψ̂∗

3 − ∇ψ̂∗
1

)
c3

)
= 0;

∫
∇ψ̂2 · ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

×∇Δ
(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

−c2μ1,2 +
α2

4

∫
ψ̂2y · ∇ψ̂∗

1 +
α2

4

∫
ψ̂2y ·

((
∇ψ̂∗

2 − ∇ψ̂∗
1

)
c2

+
(
∇ψ̂∗

3 − ∇ψ̂∗
1

)
c3

)
= 0;
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∫
∇ψ̂3 · ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

×∇Δ
(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)
(5.29)

−c3μ1,2 +
α2

4

∫
ψ̂3y · ∇ψ̂∗

1 +
α2

4

∫
ψ̂3y ·

((
∇ψ̂∗

2 − ∇ψ̂∗
1

)
c2

+
(
∇ψ̂∗

3 − ∇ψ̂∗
1

)
c3

)
= 0.

Now, adding the first equation of (5.29) to the other two ones, we have that
∫ (

∇ψ̂1 + ∇ψ̂2

)
· ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

×∇Δ
(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

−μ1,2 + c3μ1,2 +
α2

4

∫ (
ψ̂1 + ψ̂2

)
y · ∇ψ̂∗

1

+
α2

4

∫ (
ψ̂1 + ψ̂2

)
y ·

((
∇ψ̂∗

2 − ∇ψ̂∗
1

)
c2 +

(
∇ψ̂∗

3 − ∇ψ̂∗
1

)
c3

)
= 0,

∫ (
∇ψ̂1 + ∇ψ̂3

)
· ln

(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

×∇Δ
(
ψ̂∗

1 +
(
ψ̂∗

2 − ψ̂∗
1

)
c2 +

(
ψ̂∗

3 − ψ̂∗
1

)
c3

)

−μ1,2 + c2μ1,2 +
α2

4

∫ (
ψ̂1 + ψ̂3

)
y · ∇ψ̂∗

1

+
α2

4

∫ (
ψ̂1 + ψ̂3

)
y ·

((
∇ψ̂∗

2 − ∇ψ̂∗
1

)
c2 +

(
∇ψ̂∗

3 − ∇ψ̂∗
1

)
c3

)
= 0.

Subsequently, subtracting those equations yields

μ1,2 =
1

c2 − c3

[∫ (
∇ψ̂2 − ∇ψ̂3

)
· ln Ψ∗∇ΔΨ∗ +

α2

4

∫ (
ψ̂2 − ψ̂3

)
y · ∇ψ̂∗

1

+
α2

4

∫ (
ψ̂2 − ψ̂3

)
y ·

((
∇ψ̂∗

2 − ∇ψ̂∗
1

)
c2 +

(
∇ψ̂∗

3 − ∇ψ̂∗
1

)
c3

)]
,

where Ψ∗ = ψ̂∗
1 + (ψ̂∗

2 − ψ̂∗
1)c2 + (ψ̂∗

3 − ψ̂∗
1)c3. Thus, substituting it into (5.29),

we arrive at the following system, with c2 and c3 as the unknowns:

c3

∫ (
∇ψ̂1−∇ψ̂2+∇ψ̂3

)
· ln Ψ∇ΔΨ∗−c2

∫ (
∇ψ̂1 + ∇ψ̂2 − ∇ψ̂3

)
· ln Ψ∇ΔΨ∗

+
∫ (

∇ψ̂2 − ∇ψ̂3

)
· ln Ψ∗ +

α2

4

∫ (
ψ̂2 − ψ̂3

)
y · ∇ψ̂∗

1

+c2
α2

4

[∫ (
ψ̂2 − ψ̂3

)
y · ∇

(
ψ̂∗

2 − 2ψ̂∗
1

)
−

∫
ψ̂1y · ∇ψ̂∗

1

]

+c3
α2

4

[∫ (
ψ̂2 − ψ̂3

)
y · ∇

(
ψ̂∗

3 − 2ψ̂∗
1

)
−

∫
ψ̂1y · ∇ψ̂∗

1

]

+c2c3
α2

4

[ ∫
ψ̂1y ·

(
∇ψ̂∗

2 − ∇ψ̂∗
3

)
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+
∫ (

ψ̂2 − ψ̂3

)
y ·

(
2∇ψ̂∗

1 − ∇ψ̂∗
2 − ∇ψ̂∗

3

))]

+c23
α2

4

∫ (
ψ̂1 − ψ̂2 + ψ̂3

)
y ·

(
∇ψ̂∗

3 − ∇ψ̂∗
1

)

−c22
α2

4

∫ (
ψ̂1 + ψ̂2 − ψ̂3

)
y ·

(
∇ψ̂∗

2 − ∇ψ̂∗
1

)
= 0,

c3

∫
∇ψ̂2 · ln Ψ∗∇ΔΨ∗ − c2

∫
∇ψ̂3 · ln Ψ∗∇ΔΨ∗ + c3

α2

4

∫
ψ̂2y · ∇ψ̂∗

1

−c2α2

4

∫
ψ̂3y · ∇ψ̂∗

1 +c3
α2

4

∫
ψ̂2y ·

((
∇ψ̂∗

2 −∇ψ̂∗
1

)
c2 +

(
∇ψ̂∗

3 − ∇ψ̂∗
1

)
c3

)

−c2α2

4

∫
ψ̂3y ·

((
∇ψ̂∗

2 − ∇ψ̂∗
1

)
c2 +

(
∇ψ̂∗

3 − ∇ψ̂∗
1

)
c3

)
= 0.

These can be re-written in the following form:

F1 (c2, c3) + ω1 (c2, c3) ≡ A1c
2
2 +B1c

2
3 + C1c2 +D1c3 + E1c2c3

+ ω1 (c2, c3) = 0,

F1 (c2, c3) + ω2 (c2, c3) ≡ A2c
2
2 +B2c

2
3 + C2c2 +D2c3 + E2c2c3

+ ω2 (c2, c3) = 0,

(5.30)

where ω1 (c2, c3) := c3

∫ (
∇ψ̂1 − ∇ψ̂2 + ∇ψ̂3

)
· ln Ψ∗∇ΔΨ∗

−c2
∫ (

∇ψ̂1 + ∇ψ̂2 − ∇ψ̂3

)
· ln Ψ∗∇ΔΨ∗

+
∫ (

∇ψ̂2 − ∇ψ̂3

)
· ln Ψ∗ − α2

4

∫ (
ψ̂2 − ψ̂3

)
y · ∇ψ̂∗

1 ,

and ω2 (c2, c3) := c3

∫
∇ψ̂2 · ln Ψ∗∇ΔΨ∗ − c2

∫
∇ψ̂3 · ln Ψ∗∇ΔΨ∗

are the perturbations of the quadratic polynomials

Fi(c2, c3) := Aic
2
2 +Bic

2
3 + Cic2 +Dic3 + Eic2c3, with i = 1, 2.

The system (5.30) can be re-written in a matrix form with two quadratic forms
involved: {

(c2 c3)P1

(
c2
c3

)
+Q1

(
c2
c3

)
+ F1 = 0,

(c2 c3)P1

(
c2
c3

)
+Q1

(
c2
c3

)
+ F2 = 0,

where the matrices Pj and Qj of the quadratic forms with j = 1, 2 have the
corresponding coefficients Aj to Ej as entries, plus the perturbations of the
quadratic forms denoted, under this notation, by Fj , with j = 1, 2.

Then, owing to the conic classification, we are able to solve (5.30) (with-
out the nonlinear perturbation) and obtain an estimate for the number of
solutions of the original nonlinear algebraic system (5.28).

Hence, according to the conic classification, we will have the following
conditions that will provide us with conic section of each equation of the sys-
tem (5.30) (without the nonlinear perturbation):
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(i) If B2
j − 4AjCj < 0, the equation represents an ellipse, unless the conic is

degenerate, for example c22 + c23 + a = 0 for some positive constant a. So,
if Aj = Bj and Cj = 0 the equation represents a circle;

(ii) If B2
j − 4AjCj = 0, the equation represents a parabola; and

(iii) If B2
j − 4AjCj > 0, the equation represents a hyperbola. If we also have

Aj + Cj = 0 the equation represents a hyperbola (a rectangular one).
Therefore, taking into account the “normalizing” constraint, the zeros of

our system will depend on the coefficients we have for the system, so on the
eigenfunctions that generate each eigenspace ker

(
B∗ + k

4 I
)
.

Observe that the number of intersections between two conics oscillates
from one to four. Hence, this will be the possible number of branches that are
obtained for our problem. However, since the dimension of the eigenspace in
this particular case is three, it seems that, in this case, we have four branches,
so two of them should coincide, though this claim remains uncertain.

Moreover, as was done for the previous case when |β| = 1, we need to
control the oscillations of the perturbation functions in order to maintain the
number of solutions. Consequently, assuming that

‖ωi(c2, c3)‖L∞ ≤ Fi(c∗2, c
∗
3), with i = 1, 2,

we conclude that the number of solutions must be between one and four. This
again gives us an idea of the difficulty of more general multiplicity results.

6. Final comments

6.1. A first comment: towards evolutionary completeness

According to [25], evolutionary completeness of the nonlinear eigenfunction
subsets Φ−(n) simply means that those functions describe all possible types of
finite time blow-up asymptotics for solutions of the TFE-4 (1.1) in a neighbour-
hood of any point (x0, t0). For nonlinear evolution equations, such a complete-
ness is a very difficult question. As far as we know, the evolution completeness
result proved in [25] for the 1D porous medium equation on a bounded interval
remains the only known such result for essentially quasilinear PDEs (i.e., not
a perturbed semilinear equation).

Indeed, for the TFE-4 (1.1), such a completeness problem is difficult
beyond any imagination. In particular, this would include a full analysis of
all the asymptotics of the non-stationary quasilinear fourth-order degenerate
parabolic flow (2.10) containing no monotone, coercive, potential, or order-
preserving operators.

However, our homotopy approach somehow implies certain (but not that
strong and promising) confidence concerning the evolutionary completeness
of Φ−(n) for n > 0: the point is that, for n = 0, the eigenfunction set of
the Hermite polynomials (3.17) is indeed complete and closed in any suitable
weighted space, where those notions are now understood as in classic theory
of bi-orthogonal polynomials and Riesz bases. So we may expect that the evo-
lution completeness for small n > 0 can be “inherited” from those brilliant
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spectral properties available for n = 0 (Sect. 3). This is the only issue we are
aware of and can rely on in this analysis.

Same speculations apply to the evolutionary completeness of global
similarity patterns Φ+(n) for small n > 0, which is now connected with com-
pleteness/closure of eigenfunctions (3.15) of B for n = 0; see [18] for proofs.

6.2. A pessimistic comment

Overall, we must admit that, though we have obtained some multiplicity results
for not-that-multi-dimensional eigenspaces and have shown certain extensions
of our techniques, any further rigorous justification seems to be too excessive.
Indeed, any rigorous results will inevitably require to specify or evaluate with
sufficient accuracy of those numerical values of various projections given by
linear functionals as linear combinations of the Hermite polynomials (3.17). In
view of a complicated nature of non-self-adjoint theory for the spectral pair
{B,B∗}, this is expected to be entirely illusive.

On the other hand, it would be very important to trace our n-bifurcation
branches of nonlinear eigenvalue problems in both global and blow-up setting
by using some more general and powerful techniques of nonlinear operator
theory. However, no one can expect this to be a simply task. We suspect that,
in view of principally non-variational structure of such nonlinear eigenvalue
problems, containing no monotone and/or strongly coercive operators, any
non-local (in n) sharp results on existence/multiplicity of n-branches will not
be obtained reasonably soon.

Therefore, overall, we claim that our n-branching approach, which
allowed us to explain the occurrence of nonlinear branches from linear eigen-
functions at n = 0, though not being fully rigorous, is the only currently
available way to detect branching phenomena for such nonlinear eigenvalue
problems embracing similar classes of non-variational and non-monotone oper-
ators. It is clear how these homotopy-branching methods can be extended to
more general and more higher-order quasilinear operators of different types,
once a parameter homotopy to a proper linear spectral problem for a suitable
non-self-adjoint pair {B,B∗} has been well understood and carefully and rig-
orously studied. However, we warn that the latter linear problem often can be
a very difficult one itself; one such example of a refined scattering theory for
2m-th order linear Schrödinger operators is under attack in [27].

Appendix A: Necessary functional setting for branching at
n = 0+

Here, we are going to present some justification of the our main branching anal-
ysis. Namely, we need to deal with expansions such as (1.20) and/or (1.21).
Recall that, using this, we are not going to, and in fact cannot, justify rigor-
ously the existence of nonlinear eigenfunctions as solutions of (1.3)+, (1.4) at
least for small n > 0, but just the branching at n = 0, under the hypothesis
that a proper limit

f(y;n) → f0(y) (= ψβ(y)) as n → 0+ (A.1)
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exists in a necessary metric to be specified. According to our spectral theory
of the non-self adjoint pair {B,B∗}, here f0 denote some eigenfunction ψβ ,
and, in the most simple and interesting case, we assume that

f0(y) = F (y) (= ψ0(y)), (A.2)

where F (y) is the rescaled kernel of the fundamental solution (3.3) of the
bi-harmonic operator.

Thus, we need to check under which extra assumptions on (A.1), the
following limit takes place, in the weak sense,

|f(y;n)|n − 1
n

⇀ ln |f0(y)|, (A.3)

where the right-hand side is assumed to be well defined (bounded) a.e. First
of all, it is obvious that such a convergence crucially depends on the structure
of zeros of the limit functions f0(y), which is easy to demonstrate:

Example. a non-transversal zero. Let f0(y) have a non-transversal zero at, say,
y = 0− (the interface point), and

f(y;n) = e
1

ny for y < 0 =⇒ |f(y;n)|n − 1
n

=
e

1
y − 1
n

→ ∞. (A.4)

Actually, this means that

f(y;n) → 0 ≡ f0(y) as n → 0+ for all y < 0, (A.5)

i.e., y = 0 is not a transversal zero of f0(y). Then the limit (A.3) makes no
sense and the branching analysis at n = 0 does not apply at all.

Fortunately, such a situation cannot occur for the analytic kernel F (y)
and all its derivatives, representing other eigenfunctions. Of course, we cannot
guarantee that non-transversal zeros of F (y) cannot occur at all. They can,
but with a lower probability as for any analytic function. However, we do know
that such non-transversal zeros are always isolated and cannot concentrate on
a given surface in R

N . Therefore, on any compact subset such non-transversal
zero surfaces have zero measure. However, this is not sufficient and an extra
rough estimate would be useful.

Evidently, (A.3) is violated in the pointwise sense on a bad set of points
b∗(n) such that

|f(y;n)| ≈ |f0(y)| � e− 1
n for all n > 0 small. (A.6)

Then, in this worst case,

|f0(y)|n − 1
n

∼ − 1
n

→ ∞ as n → 0+. (A.7)
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Assume that a non-transversal (a multiple) zero again occur at y = 0 and the
1D behaviour is as follows:

f0(y) ∼ yk, where k = 2, 3, 4, . . . . (A.8)

Then, in the weak sense, the integral representation of (A.3) will provide us
with the “bad” (“worst”) discrepancy of the order

∼ 1
n

meas b∗(n) ∼ 1
n

e− 1
nk → 0 as n → 0+ (A.9)

for any finite multiplicity of the zero at y = 0. It is clear that any use of the
R
N -geometry of such multiple zeros cannot affect the non-analytic exponential

term in (A.9) and the convergence.
We complete our discussion as follows:

Proposition A.1. Let (A.1) hold uniformly on compact subset, where the limit
function f0(y) satisfy the above assumption of a.a. transversal zeros. Then
(A.3) holds in the weak sense.

Finally, let us also formally note that, in (1.24) on the bad set b∗(n), we
have the following:∣∣∣∣(∇Δ)−1

( |f |n − 1
n

∇Δf
)∣∣∣∣ ∼

∣∣∣∣(∇Δ)−1

(
1
n

∇Δf
)∣∣∣∣ ∼

∣∣∣∣
1
n
f(y)

∣∣∣∣ � 1
n

e− 1
n → 0

(A.10)

as n → 0+. This confirms that the convergence (1.24) takes place a.e., pro-
vided that the zero set of f0(y) has zero measure only on any compact subset
in R

N , i.e., the analyticity is not required (Sard’s theorem for Cp functions in
R
N with any p ≥ 1 may be used). Of course, this is just a rough estimate and

further study is needed.
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