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Abstract. In this paper we consider the initial boundary value problem for
a class of quasilinear parabolic equations involving weighted p-Laplacian
operators in an arbitrary domain, in which the conditions imposed on the
non-linearity provide the global existence, but not uniqueness of solutions.
The long-time behavior of the solutions to that problem is considered via
the concept of global attractor for multi-valued semiflows. The obtained
results recover and extend some known results related to the p-Laplacian
equations.
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1. Introduction

Parabolic equations of p-Laplacian type arise in many applications in the fields
of mechanics, physics and biology (non-Newtonian fluids, gas flows in porous
media, spread of biological populations, etc.). One of the most interesting prob-
lems concerning these equations is to understand the asymptotic behavior of
solutions when time grows to infinity. The study of the asymptotic behavior
of the equation is giving us relevant information about “the structure” of the
phenomenon described in the model.

In this paper we study the asymptotic behavior of solutions to the fol-
lowing problem

⎧
⎪⎨

⎪⎩

ut − div(σ(x)|∇u|p−2∇u) = λ|u|p−2u− f(x, u), x ∈ Ω, t > 0,
u|t=0 = u0(x) in Ω,
u|∂Ω = 0,

(1.1)

where 2 � p < N and Ω is an arbitrary (bounded or unbounded) domain in
R

N .
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Denote

Lp,σu = −div(σ(x)|∇u|p−2∇u),
p′ =

p

p− 1
, the conjugate exponent of p,

p∗
γ =

pN

N − p+ γ
, for γ ∈ R

+,

a ∧ b = max(a, b), for a, b ∈ R,

I[p, q] = {tp+ (1 − t)q : 0 � t � 1}.
We assume the following conditions:

(H1) The function σ : Ω → R satisfies the following assumptions: when the
domain Ω is bounded,

(Hα) σ ∈ L1
loc(Ω) and for some α ∈ (0, p), lim inf

x→z
|x − z|−ασ(x) > 0 for

every z ∈ Ω,
and when the domain Ω is unbounded,

(H∞
α,β) σ satisfies condition (Hα) and lim inf

|x|→∞
|x|−βσ(x) > 0 for some β >

p+ N
2 (p− 2).

(H2) f : Ω × R → R is a Carathéodory function, i.e. f(., u) is measurable and
f(x, .) is continuous, and satisfies
(1) |f(x, u)| � C1|u|q−1 + h1(x),
(2) uf(x, u) � C2|u|q − h2(x),

where q > 1 and C1, C2 are positive constants; h1 ∈ Lq′
(Ω), h2 ∈

L1(Ω) are non-negative functions.
(H3) λ < λ1 if q � p, where λ1 is the first eigenvalue of Lp,σ with the Dirich-

let boundary condition (the existence of λ1 is ensured by Proposition 2.3
below).

(H4) [1, p∗
α)∩I[p′, q′] �= ∅, where α is given in (Hα), if Ω is a bounded domain;
(p∗

β ∧ 1, p] ∩ I[p′, q′] �= ∅, where α, β are given in (H∞
α,β), if Ω is an

unbounded domain.

The degeneracy of problem (1.1) is considered in the sense that the mea-
surable, non-negative diffusion coefficient σ(x) is allowed to have at most a
finite number of (essential) zeroes at some points. The physical motivation
of the assumption (Hα) is related to the modeling of reaction diffusion pro-
cesses in composite materials, occupying a bounded domain Ω, in which at
some points they behave as perfect insulator. Following [13, p. 79], when at
some points the medium is perfectly insulating, it is natural to assume that
σ(x) vanishes at these points. On the other hand, when condition (H∞

α,β) is
satisfied, it is easy to see that the diffusion coefficient has to be unbounded.
Physically, this situation corresponds to a non-homogeneous medium, occu-
pying the unbounded domain Ω, which behaves as a perfect conductor in
Ω \ BR(0) (see [13], p. 79), and as a perfect insulator in a finite number
of points in BR(0). Note that in various diffusion processes, the equation
involves diffusion σ(x) ∼ |x|α, α ∈ (0, p), in the case of a bounded domain,
and σ(x) ∼ |x|α + |x|β , α ∈ (0, p), β > p, in the case of an unbounded domain.
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It is noticed that a type of weight which is close to the weight σ above is
the one of Caffarelli–Kohn–Nirenberg type. We refer the reader to works [2,3]
on Caffarelli–Kohn–Nirenberg inequalities associated to the study quasilinear
elliptic equations.

Let us now give some comments about remaining conditions. The non-
linearity f is assumed satisfying the polynomial type growth and a standard
dissipative condition. A typical example of f which satisfies condition (H2) is
that

f(u) ∼ u|u|q−2, q > 1.

The condition (H3) is necessary for the global existence of weak solutions to
problem (1.1) (see Proposition 3.1 below), while (H4) is a technical condition
(see the proof of Lemma 3.3).

The existence and long-time behavior of solutions to problem (1.1) in the
case p = 2, the semilinear case, have been studied in [16,17] and recently in
[1]. The aim of this paper is to study the existence and long-time behavior of
solutions to problem (1.1) in the case 2 � p < N . Noting that the conditions
imposed on f provide the global existence of a weak solution to problem (1.1),
but not uniqueness. Thus, when studying the long-time behavior of solutions,
in order to handle non-uniqueness of solutions, we need to use the theory of
global attractor for multi-valued semiflows.

In the last years, there have been some theories for which one can treat
multi-valued semiflows and their asymptotic behavior, such as generalized
semiflows theory of Ball [4–6] and theory of multi-valued semiflows of Mel-
nik and Valero [19]. A comparison of these two theories can be found in [7].
We note also that the theory of trajectory attractors of Chepyzhov and Vis-
hik [9,10] has also been fruitfully applied to treat equations without unique-
ness. Thanks to these theories, the asymptotic behavior of equations without
uniqueness of the Cauchy problems has been studied by several authors in the
last years. There are two important reasons which justify the interest of the
researches in such type of equations. On the one hand, they contain important
models coming from Mathematical Physics, as we can see in the example of the
relevant three-dimensional Navier–Stokes equations. On the other hand, they
allow to weaken the conditions imposed on the non-linear functions involved
in the equations, which are in many cases very restrictive. In this way we can
extend the class of equations for which the asymptotic behavior of solutions
can be studied. Several results concerning the existence of global attractors in
the case of non-uniqueness have been proved for parabolic problems. However,
most of them have been devoted to the existence of global attractors for semi-
linear non-degenerate parabolic equations and systems (see, e.g. [14,15,20,22]
and references therein). In this paper we prove the existence of a global attrac-
tor for a class of quasilinear degenerate parabolic equations in an arbitrary
domain. Here the condition (Hα) in the case of bounded domains and (H∞

α,β)
in the case of unbounded domain ensure the compactness of some necessary
embeddings (see Proposition 2.1 for details).
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Let us explain the methods used in the paper. First, by the compact-
ness method and monotonicity method [18, Chapters 1, 2] we prove the global
existence of a weak solution. Let D(u0) be the set of all global weak solutions
of the problem (1.1) with the initial data u0. We define the multi-valued map
G : R

+ × L2(Ω) 	−→ 2L2(Ω) as follows

G(t, u0) = {u(t) : u(·) ∈ D(u0)}.
We show that G is a strict multi-valued semiflow and then use the theory of
global attractor for multi-valued semiflows of Melnik and Valero [19] to prove
the existence of a compact global attractor in L2(Ω) for the multi-valued
semiflow G. Our main results can be summarized in the following theorem.

Theorem 1.1. Under the conditions (H1)–(H4), problem (1.1) defines a strict
multivalued semiflow G : R

+ ×L2(Ω) 	−→ 2L2(Ω), which possesses an invariant
compact global attractor A in L2(Ω).

The rest of the paper is organized as follows. In Sect. 2, to study prob-
lem (1.1) we introduce the weighted Sobolev space related to the functional
formulation of the problem and prove some compactness results, which are
generalizations of the results in the case p = 2 of [12]. In Sects. 3 and 4, we
only consider the case of an unbounded domain for the sake of clarity and
because it is more complicated. Section 3 is devoted to prove the global exis-
tence of a weak solution to problem (1.1) using compactness and monotonicity
methods. In Section 4, the existence of an invariant compact global attractor
for the m-semiflow generated by problem (1.1) is proved. In the last section,
we give some remarks on similar results in the case of a bounded domain and
results in the case of uniqueness, which generalize some known results related
to the p-Laplacian equation with uniqueness in a bounded domain.

2. Preliminaries

In order to study the problem (1.1), we introduce the weighted Sobolev space
D1,p

0 (Ω, σ) defined as the closure of C∞
0 (Ω) in the norm

‖v‖D1,p
0 (Ω,σ) =

(∫

Ω

σ|∇v|pdx
) 1

p

(2.1)

and denote by D−1,p′
(Ω, σ) the dual space of D1,p

0 (Ω, σ).
We now prove some compactness results, which are generalizations of the

results in the case p = 2 of Caldiroli and Musina [12].

Proposition 2.1. Assume that Ω is a bounded domain in R
N , N � 2, and σ

satisfies the hypothesis (Hα). Then the following embeddings hold:

(i) D1,p
0 (Ω, σ) ⊂ W 1,β

0 (Ω) continuously if 1 � β < pN
N+α ,

(ii) D1,p
0 (Ω, σ) ⊂ Lr(Ω) compactly if 1 � r < p∗

α, where p∗
α = pN

N−p+α .
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Proof. The Hölder inequality yields

∫

Ω

|∇u|β �
(∫

Ω

σ|∇u|p
) β

p
(∫

Ω

σ− β
p−β

) p−β
p

. (2.2)

From the assumption (Hα), it is easy to see that there exist a finite set
{x1, ..., xm} in Ω and r > 0 such that

σ(x) � δ|x− xi|α, for x ∈ Br(xi) ∩ Ω, i = 1, ...,m;

σ(x) � δ for x ∈ Ω\
⋃

i

Br(xi)

for some δ > 0. On the other hand, |x− xi|−
αβ

p−β ∈ L1(Ω) if β < pN
N+α . Hence

we get the conclusion (i) and we can take p∗
α = pN

N−p+α . The second conclusion
follows from (i) and the Rellich–Kondrachov embedding theorem. �

Proposition 2.2. Let Ω be an unbounded domain in R
N , N � 2, and let σ satisfy

assumption (H∞
α,β). Then the embedding D1,p

0 (Ω, σ) ⊂ Lr(Ω) holds compactly
for every r ∈ (p∗

β ∧ 1, p∗
α).

Proof. Let {um} be a sequence in D1,p
0 (Ω, σ) such that um ⇀ 0 in D1,p

0 (Ω, σ).
For any fixed r ∈ (p∗

β ∧ 1, p∗
α), we have to prove that um → 0 strongly

in Lr(Ω). For R > 0, write BR for the ball centered at 0 with radius R.
Using Proposition 2.1, we see that D1,p

0 (BR, σ) ⊂ Lr(BR) compactly. Then
‖um‖Lr(BR) → 0 as m → ∞. On the contrary, we assume that ‖um‖Lr(Ω) �→ 0.
Then ‖um‖Lr(Ω\BR) �→ 0, so there exist η > 0 and a subsequence of um, still
denoted by um, such that

∫

Ω\BR

|um|r � η, for all R > 0. (2.3)

Choose a function ϕ ∈ C∞(RN ) such that

• 0 � ϕ � 1,
• ϕ = 0 in BR and ϕ = 1 in Ω\B2R.

Now putting ûm = ϕum, we have
∫

Ω

σ(x)|∇ûm|p � C

[∫

Ω

σ(x)|∇um|p +
∫

Ω

σ(x)|um|p|∇ϕ|p
]

. (2.4)

One can rewrite the last integral as
∫

Ω

σ(x)|um|p|∇ϕ|p =
∫

Ω∩(B2R\BR)

σ(x)|um|p|∇ϕ|p.

Using Proposition 2.1 again for the bounded domain Ω∩ (B2R\BR), we obtain
that um → 0 a.e. in Ω ∩ (B2R\BR) and hence

∫

Ω

σ(x)|um|p|∇ϕ|p = o(1) as m → ∞. (2.5)
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Taking γ ∈ (0, p) such that p∗
γ = r and using the Caffarelli–Kohn–Nirenberg

inequality, we have
(∫

Ω\B2R

|um|p∗
γ

) p
p∗

γ

=

(∫

Ω\B2R

|ûm|p∗
γ

) p
p∗

γ

�
(∫

Ω

|ûm|p∗
γ

) p
p∗

γ

�
∫

Ω

|x|γ |∇ûm|p.

(2.6)

Since σ satisfies (H∞
α,β), one can see that

σ(x) � δ|x|β � δRβ−γ |x|γ for some δ > 0 and for all x ∈ Ω\BR

with R large enough. Putting this together with (2.6), we arrive at
(∫

Ω\B2R

|um|p∗
γ

) p
p∗

γ

� δ−1Rγ−β

∫

Ω

σ(x)|∇ûm|p. (2.7)

This combining with (2.4) and (2.5) imply that
(∫

Ω\B2R

|um|p∗
γ

) p
p∗

γ

� CRγ−β

∫

Ω

σ(x)|∇um|p + o(1). (2.8)

Taking (2.3) into account, we see that (2.8) leads to a contradiction when R
is chosen large enough. The proof is complete. �

Remark 1. In fact, the result in Proposition 2.2 is valid if σ satisfies condition
(H∞

α,β) with α < p < β. The condition β > p+ N
2 (p−2) is made to ensure that

p∗
β < 2, which is necessary for proving the dissipativeness of the multi-valued

semiflow generated by problem (1.1) (see Lemma 4.3).
The following proposition is an immediate consequence of the compact-

ness results established above.

Proposition 2.3. Assume that σ satisfies assumption (H1). Then

λ1 = inf

{‖u‖p

D1,p
0 (Ω,σ)

‖u‖p
Lp(Ω)

∣
∣ u ∈ D1,p

0 (Ω, σ), u �= 0

}

is a positive number and it is attained in D1,p
0 (Ω, σ) by a non-negative and

unique (up to a multiplication constant) function u1, which is a weak solution
of the problem

{−div(σ(x)|∇u1|p−2∇u1) = λ1|u1|p−2u1 in Ω,
u1 = 0 on ∂Ω.

Proof. The proof is standard and we omit it. �

The next two propositions, which are easily proved by using similar argu-
ments as in [18, Chapter 2], give some important properties of the operator
Lp,σ.
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Proposition 2.4. The operator Lp,σ maps D1,p
0 (Ω, σ) into its dual D−1,p′

(Ω, σ).
Moreover,

i) Lp,σ is hemicontinuous, i.e. for all u, v, w ∈ D1,p
0 (Ω, σ), the map λ 	→

〈Lp,σ(u+ λv), w〉 is continuous from R to R.
(ii) Lp,σ is monotone, i.e. 〈Lp,σu−Lp,σv, u− v〉 � 0 for all u, v ∈ D1,p

0 (Ω, σ).

Proposition 2.5. Assume that

• un ⇀ u in Lp(0, T ;D1,p
0 (Ω, σ)),

• Lp,σun ⇀ ψ in Lp′
(0, T ;D−1,p′

(Ω, σ)) and
• lim

n→∞〈Lp,σun, un〉 � 〈ψ, u〉.
Then ψ = Lp,σu.

3. Existence of a global weak solution

Denote

QT = Ω × (0, T ),

V = Lp(0, T ;D1,p
0 (Ω, σ)) ∩ L2(QT ) ∩ Lq(QT ),

V ∗ = Lp′
(0, T ;D−1,p′

(Ω, σ)) + L2(QT ) + Lq′
(QT ).

In what follows, we assume that u0 ∈ L2(Ω) is given.

Definition 3.1. A function u(x, t) is called a weak solution of (1.1) on (0, T )
iff

u ∈ V,
∂u

∂t
∈ V ∗,

u|t=0 = u0 a.e. in Ω

and
∫

QT

(
∂u

∂t
ξ + σ|∇u|p−2∇u∇ξ + (f(x, u) − λ|u|p−2u)ξ

)

dxdt = 0 (3.1)

for all test functions ξ ∈ V .

We begin this section by showing that the assumption (H3) is necessary
for studying the long-time behavior of solutions to problem (1.1). We will
prove that if q � p and λ > λ1, the solutions of (1.1) may blow-up in a finite
time.

Proposition 3.1. Let p > 2 and f(x, u) = µu with µ > 0. Then the solutions
of problem (1.1) blow-up in a finite time for some class of initial data u0.

Proof. Put

E(t) =
1
p

∫

Ω

σ(x)|∇u|p − λ

p

∫

Ω

|u|p +
µ

2

∫

Ω

u2,

H(t) =
1
2

∫

Ω

u2.
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By computations, we have

E′(t) = −‖ut‖2
L2(Ω) in D′(R+),

H ′(t) + pE(t) =
(p− 2)µ

2

∫

Ω

u2 in D′(R+).

Then

H ′′(t) − (p− 2)µH ′(t) = −pE′(t) in D′(R+). (3.2)

On the other hand, one has

(H ′(t))2 =
(∫

Ω

uut

)2

� ‖u‖2
L2(Ω)‖ut‖2

L2(Ω) = −2H(t)E′(t).

Combining this with (3.2), we obtain
p

2
(H ′(t))2 � H(t)[H ′′(t) − (p− 2)µH ′(t)].

Multiplying last inequality by H−1− p
2 , we arrive at

p

2
H−1− p

2 (H ′)2 −H− p
2H ′′ + (p− 2)µH− p

2H ′ � 0. (3.3)

Now putting k(t) = H1− p
2 (t), (3.3) turns to

k′′(t) − (p− 2)µk′(t) � 0.

It follows that

k′(t) − (p− 2)µk(t) � ,

where  = k′(0)−(p−2)µk(0). An application of the Gronwall inequality yields

k(t) � e(p−2)µt

[

k(0) +


(p− 2)µ

]

− 

(p− 2)µ
.

The last inequality implies that, the blow-up of solutions of (1.1) occurs if the
following holds



+ (p− 2)µk(0)
> 0,

or equivalently

k(0)
k′(0)

<
1

(p− 2)µ
.

This takes place if one has

H(0)
H ′(0)

> − 1
2µ
. (3.4)

We now testify to (3.4) for a class of initial data. Taking u0 = θu1, where θ > 0
and u1 is the eigenfunction corresponding to λ1, we see that

H ′(0) = θp(λ− λ1)
∫

Ω

|u1|p − θ2µ

∫

Ω

u2
1.
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It follows that, if θ is taken large enough then H ′(0) > 0 and (3.4) holds. This
completes the proof. �

The following proposition makes the initial condition in problem (1.1)
meaningful.

Proposition 3.2. If u ∈ V and
du

dt
∈ V ∗ then u ∈ C([0, T ];L2(Ω)).

Proof. We select a sequence un ∈ C1([0, T ];D1,p
0 (Ω, σ) ∩ L2(Ω) ∩ Lq(Ω)) such

that
{
un → u in V
∂un

∂t → ∂u
∂t in V ∗.

Then, for all t, t0 ∈ [0, T ], we have

‖un(t) − um(t)‖2
L2(Ω) = ‖un(t0) − um(t0)‖2

L2(Ω)

+ 2
∫ t

t0

〈u′
n(s) − u′

m(s), un(s) − um(s)〉 ds.

We choose t0 so that

‖un(t0) − um(t0)‖2
L2(Ω) =

1
T

∫ T

0

‖un(t) − um(t)‖2dt.

We have the estimates
∫

Ω

|un(t) − um(t)|2dx

=
1
T

∫

Ω

∫ T

0

|un(t) − um(t)|2dtdx

+ 2
∫

Ω

∫ t

t0

(u′
n(s) − u′

m(s)) (un(s) − um(s)) dsdx

� 1
T

∫

Ω

∫ T

0

|un(t) − um(t)|2dtdx+ 2‖u′
n − u′

m‖V ∗‖un − um‖V .

Hence {un} is a Cauchy sequence in C([0, T ];L2(Ω)). Thus, the sequence
{un} converges in C([0, T ];L2(Ω)) to a function v ∈ C([0, T ];L2(Ω)). Since
un(t) −→ u(t) ∈ L2(Ω) for a.e. t ∈ [0, T ], we deduce that u = v a.e. t ∈ [0, T ].
After redefining on a subset of zero-measure, we get u ∈ C([0, T ];L2(Ω)). �

Before proving the existence result, we need an auxiliary lemma.

Lemma 3.3. Let {un} be a bounded sequence in Lp(0, T ;D1,p
0 (Ω, σ)) such that

{u′
n} is bounded in V ∗. If (H1) and (H4) hold, then {un} converges almost

everywhere in QT up to a subsequence.

Proof. By hypothesis (H4) and Proposition 2.2, one can take a number r ∈
(p∗

β ∧ 1, p] ∩ I[p′, q′] such that

D1,p
0 (Ω, σ) ⊂⊂ Lr(Ω). (3.5)
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Since r′ ∈ I [p, q], we have

Lp(Ω) ∩ Lq(Ω) ∩ L2(Ω) ⊂ Lr′
(Ω)

and therefore

Lr(Ω) ⊂ Lp′
(Ω) + Lq′

(Ω) + L2(Ω). (3.6)

Using Proposition 2.2 again, we see that

D1,p
0 (Ω, σ) ⊂ Lp(Ω).

This and (3.6) follow that

Lr(Ω) ⊂ W ∗ := D−1,p′
(Ω) + Lq′

(Ω) + L2(Ω).

Now with (3.5), we have an evolution triple

D1,p
0 (Ω, σ) ⊂⊂ Lr(Ω) ⊂ W ∗. (3.7)

The boundedness of {u′
n} in V ∗ ensures that {u′

n} is also bounded in Ls(0, T ;
W ∗), where s = min{p′, q′, 2}. Thanks to the Compactness Lemma in [18, p.
58], {un} is precompact in Lp(0, T ;Lr(Ω)) and therefore in Lr(0, T ;
Lr(Ω)) since r ≤ p. This implies that {un} has an a.e. convergent subse-
quence. �

Theorem 3.4. Under the assumptions (H1)–(H4), for each u0 ∈ L2(Ω) and
T > 0 given, problem (1.1) has at least one weak solution on (0, T ).

Proof. Consider the approximating solution un(t) in the form

un(t) =
n∑

k=1

unk(t)ek,

where {ej}∞
j=1 is a basis of D1,p

0 (Ω, σ) ∩Lq(Ω) ∩L2(Ω), which is orthogonal in
L2(Ω). We get un from solving the problem

〈dun

dt
, ek〉 = −〈Lp,σun, ek〉 + 〈λ|un|p−2un − f(x, un), ek〉,

(un(0), ek) = (u0, ek), k = 1, . . . , n.

Since f is continuous, using the Peano theorem, we get the local existence of
un. We now establish some a priori estimates for un and u′

n. We have

1
2
d

dt
‖un(t)‖2

L2(Ω) +
∫

Ω

σ|∇un|p +
∫

Ω

f(x, un)un = λ

∫

Ω

|un|p. (3.8)

Using assumption (H2), we deduce that

1
2
d

dt
‖un(t)‖2

L2(Ω) +
∫

Ω

σ|∇un|p + C2

∫

Ω

|un|q � λ

∫

Ω

|un|p +
∫

Ω

h2. (3.9)

First we consider the case q > p. By virtue of the interpolation inequality and
Proposition 2.2, one has

λ‖un‖p
Lp(Ω) � C‖un‖pθ

Lq(Ω)‖un‖p(1−θ)
Lr(Ω) � C‖un‖pθ

Lq(Ω)‖un‖p(1−θ)

D1,p
0 (Ω,σ)
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for some r ∈ (p∗
β ∧ 1, p), θ ∈ (0, 1) and C > 0. Hence

λ‖un‖p
Lp(Ω) � 1

2
‖un‖p

D1,p
0 (Ω,σ)

+ C‖un‖p
Lq(Ω)

� 1
2
‖un‖p

D1,p
0 (Ω,σ)

+
C2

2
‖un‖q

Lq(Ω) + C3,

where we have used the Young inequality.
Combining with (3.9), we infer that

‖un(t)‖2
L2(Ω)+

∫

Qt

σ|∇un|p+C2

∫

Qt

|un|q �‖un(0)‖2
L2(Ω)+2t

(

C3+
∫

Ω

h2

)

(3.10)

for any t ∈ (0, T ].
In the case q � p, using hypothesis (H3), we get the following estimate

from (3.9)

1
2
‖un(t)‖2

L2(Ω)+
(

1− λ

λ1

)∫

Qt

σ|∇un|p+C2

∫

Qt

|un|q � 1
2
‖un(0)‖2

L2(Ω) + t

∫

Ω

h2.

(3.11)

Both of (3.10) and (3.11) lead to

• {un} is bounded in L∞(0, T ;L2(Ω)),
• {un} is bounded in Lp(0, T ;D1,p

0 (Ω, σ)) (and therefore it is bounded in
Lp(QT )),

• {un} is bounded in Lq(QT ).

Using Lemma 3.3, we see that un → u a.e. in QT . Then f(x, un) → f(x, u)
a.e. in QT . In addition, the boundedness of {un} in Lq(QT ) and hypothesis
(H2) follow that {f(x, un)} is bounded in Lq′

(QT ) and hence f(x, un) ⇀ χ in
Lq′

(QT ). Thus χ = f(x, u) thanks to Lemma 1.3 in [18].
We rewrite the equation (1.1) in V ∗ as

u′
n = λ|un|p−2un − Lp,σun − f(x, un) (3.12)

and perform the following estimate deduced from the Hölder inequality

∣
∣〈Lp,σun, v〉

∣
∣ =

∣
∣
∣
∣
∣

∫ T

0

dt

∫

Ω

σ
p−1

p |∇un|p−2∇un(σ
1
p ∇v)

∣
∣
∣
∣
∣

� ‖un‖
p
p′
Lp(0,T ;D1,p

0 (Ω,σ))
‖v‖Lp(0,T ;D1,p

0 (Ω,σ)).

Using the boundedness of {un} in Lp(0, T ;D1,p
0 (Ω, σ)) again, we infer that

{Lp,σun} is bounded in Lp′
(0, T ;D−1,p′

(Ω, σ)). (3.13)

Then it follows that {u′
n} is bounded in V ∗. Therefore

• u′
n ⇀ u′ in V ∗,

• Lp,σun ⇀ ψ in Lp′
(0, T ;D−1,p′

(Ω, σ)).
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Now taking (3.12) into account, we obtain the following equation in V ∗

u′ = λ|u|p−2u− ψ − f(x, u). (3.14)

In order to prove that u is a weak solution of (1.1), it remains to show that
ψ = Lp,σu. Noticing that

〈Lp,σun, un〉 =
∫ T

0

dt

∫

Ω

σ|∇un|pdx (3.15)

=
∫ T

0

dt

∫

Ω

(λ|un|p−f(x, un)un)dx+
1
2
‖un(0)‖2

L2(Ω) − 1
2
‖un(T )‖2

L2(Ω).

It follows from the formulation of un(0) that un(0) → u0 in L2(Ω). Moreover,
by the lower semi-continuity of ‖.‖L2(Ω) we obtain

‖u(T )‖L2(Ω) � lim inf
n→∞ ‖un(T )‖L2(Ω). (3.16)

Meanwhile, by the Lebesgue dominated theorem, one can check that
∫ T

0

dt

∫

Ω

(λ|u|p − f(x, u)u)dx = lim
n→∞

∫ T

0

dt

∫

Ω

(λ|un|p − f(x, un)un)dx.

This fact and (3.15)–(3.16) imply

lim
n→∞〈Lp,σun, un〉 �

∫ T

0

dt

∫

Ω

(λ|u|p − f(x, u)u)dx

+
1
2
‖u(0)‖2

L2(Ω) − 1
2
‖u(T )‖2

L2(Ω). (3.17)

In view of (3.14), we have
∫ T

0

dt

∫

Ω

(λ|u|p − f(x, u)u)dx+
1
2
‖u(0)‖2

L2(Ω) − 1
2
‖u(T )‖2

L2(Ω) = 〈ψ, u〉.

This and (3.17) deduce

lim
n→∞〈Lp,σun, un〉 � 〈ψ, u〉.

The proof is now completed thanks to Proposition 2.5. �

4. Existence of a global attractor

For the convenience of the reader, we recall some basic concepts and results
related to the theory of global attractors for multi-valued semiflows [19] which
we will use.

Definition 4.1. Let E be a Banach space. The mapping

G : [0,+∞) × E → 2E

is called an m-semiflow if the following conditions are satisfied
(1) G(0, w) = w for arbitrary w ∈ E;
(2) G(t1 + t2, w) ⊂ G(t1,G(t2, w)) for all w ∈ E, t1, t2 � 0.
It is called a strict m-semiflow if G(t1 + t2, w) = G(t1,G(t2, w)), for all w ∈
E, t1, t2 ∈ R

+.
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Definition 4.2. The set A is said to be a global attractor of the m-semiflow G
if the following conditions hold

(1) A is an attracting, i.e. dist(G(t, B),A) → 0 as t → ∞ for all bounded
subsets B ⊂ E;

(2) A is negatively semi-invariant, i.e. A ⊂ G(t,A) for arbitrary t � 0;
(3) If B is an attracting of G then A ⊂ B̄.

The following theorem gives the sufficient conditions for the existence of
a global attractor for the m-semiflow G.

Theorem 4.1 ([19]). Suppose that the m-semiflow G has the following properties

(1) G is pointwise dissipative, i.e. there exists K > 0 such that for u0 ∈
E, u(t) ∈ G(t, u0) one has ‖u(t)‖E � K if t � t0(‖u0‖E);

(2) G(t, .) is a closed map for any t � 0, i.e. if ξn → ξ, ηn → η, ξn ∈ G(t, ηn)
then ξ ∈ G(t, η);

(3) G is asymptotically upper semicompact, i.e. if B is a bounded set in E such
that for some T (B), γ+

T (B)(B) is bounded, any sequence ξn ∈ G(tn, B) with
tn → ∞ is precompact in E. Here γ+

T (B)(B) is the orbits after the time
T (B).

Then G has a compact global attractor in E. Moreover, if G is a strict m-semi-
flow then A is invariant, i.e. G(t,A) = A for any t � 0.

By Theorem 3.4, we construct the multi-valued mapping as follows

G(t, u0) = {u(t) | u(.) is the solution of (1.1), u(0) = u0}.
We now check that G is a strict m-semiflow in the sense of Definition 4.1.
Assume that ξ ∈ G(t1 + t2, u0), then ξ = u(t1 + t2) where u(t) is a solu-
tion of problem (1.1). Denoting v(t) = u(t + t2), we see that v(.) is also in
the set of solutions of (1.1) with respect to initial condition v(0) = u(t2).
Therefore ξ = v(t1) ∈ G(t1, u(t2)) ⊂ G(t2,G(t2, u0)). It is remain to show that
G(t1,G(t2, u0)) ⊂ G(t1 + t2, u0). If ξ ∈ G(t1,G(t2, u0)) then ξ = v(t1), where
v(0) ∈ G(t2, u0). One can suppose that v(0) = u(t2) where u(0) = u0. Set

w(τ) =

{
u(τ), 0 � τ < t2,

v(τ − t2), τ � t2.

Since u and v are the solutions of (1.1), we obtain that w is a solution of (1.1)
with w(0) = u(0) = u0. In addition, by the fact that ξ = v(t1) = w(t1 + t2),
we have ξ ∈ G(t1 + t2, u0).

In order to show that G is pointwise dissipative, we need the following
lemma (see [21]).

Lemma 4.2. Assume that y(t) is an absolutely continuous and non-negative
function defined for t > 0. If there exist a > 0, b > 0 such that

dy(t)
dt

+ ayρ(t) � b
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where ρ > 1, then

y(t) �
(
b

a

) 1
ρ

+
1

[a(ρ− 1)t]
1

ρ−1
.

Lemma 4.3. The m-semiflow G generated by (1.1) is pointwise dissipative.

Proof. Let u(t) ∈ G(t, u0), one gets

1
2
d

dt
‖u(t)‖2

L2(Ω) +
∫

Ω

σ|∇u|p + C2‖u‖q
Lq(Ω) � λ

∫

Ω

|u|p +
∫

Ω

h2.

Arguing as in proof of Theorem3.4, we observe that

• In the case q > p, we have

d

dt
‖u(t)‖2

L2(Ω) +
∫

Ω

σ|∇u(t)|p + C2

∫

Ω

|u(t)|q � 2C3 + 2
∫

Ω

h2 (4.1)

for some C3 > 0.
• If q � p, the assumption (H3) allows us to state that

1
2
d

dt
‖u(t)‖2

L2(Ω) +
(

1 − λ

λ1

)∫

Ω

σ|∇u(t)|p + C2

∫

Ω

|u(t)|q �
∫

Ω

h2. (4.2)

Since p � 2 and p∗
β < 2, we see that D1,p

0 (Ω) ⊂ L2(Ω). Then, in all cases, we
have the following inequality

d

dt
‖u(t)‖2

L2(Ω) + a‖u(t)‖p
L2(Ω) � b,

where a = a(λ, λ1) and b = b(‖h2‖L1(Ω)) are positive numbers.
Applying Lemma 4.2 (or the Gronwall inequality for the case p = 2), we

complete the proof. �

The following lemma plays an important role in this section.

Lemma 4.4. G(t∗, .) : L2(Ω) → L2(Ω) is a compact mapping for each t∗ ∈
(0, T ].

Proof. Assume that B is a bounded set in L2(Ω) and ξn ∈ G(t∗, B). By the
definition of G, there exists a sequence {un(t)} such that un(t) is the solution
of (1.1) with the initial data belongs to B and un(t∗) = ξn.

Then we have
1
2
‖un(t)‖2

L2(Ω) +
∫

Qt

σ|∇un|p +
∫

Qt

f(un)un =
1
2
‖un(0)‖2

L2(Ω) + λ

∫

Qt

|un|p,

for t ∈ (0, T ]. Repeating the arguments as in proof of Theorem3.4, we infer
that

• un → u a.e. in QT ,
• un(t) ⇀ u(t) in L2(Ω) for any t ∈ [0, T ],
• u ∈ V and u′ ∈ V ∗.
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Using Proposition 3.2, we obtain that un and u belong to C([0, T ];L2(Ω)). In
the case t = t∗, one has un(t∗) ⇀ u(t∗) in L2(Ω). It remains to show that
‖un(t∗)‖L2(Ω) → ‖u(t∗)‖L2(Ω).

Let us denote

Jn(t) = ‖un(t)‖2
L2(Ω) − Ct(1 + ‖h2‖L1(Ω)),

J(t) = ‖u(t)‖2
L2(Ω) − Ct(1 + ‖h2‖L1(Ω))

for some constant C > 0. Obviously, Jn and J are decreasing on [0, T ] for C
chosen large enough. In addition, Jn(t) → J(t) for a.e. t ∈ [0, T ]. Suppose that
{tm} is an increasing sequence in [0, T ], tm → t∗ as m → ∞. Then

• Jn(tm) → Jn(t∗) as m → ∞,
• Jn(tm) → J(tm) as n → ∞.

So

Jn(t∗) − J(t∗) � Jn(tm) − J(t∗) = Jn(tm) − J(tm) + J(tm) − J(t∗) < ε,

for ε > 0. Similarly, J(t∗) − Jn(t∗) < ε. Therefore Jn(t∗) → J(t∗) and then
‖un(t∗)‖L2(Ω) → ‖u(t∗)‖L2(Ω) as n → ∞. �

We can now finish the proof of the main result.

Proof of Theorem. 1.1. It suffices to check the hypotheses (2) and (3) in The-
orem 4.1. Assume that ξn ∈ G(t, ηn), ξn → ξ, ηn → η in L2(Ω). Then there
exists a sequence {un} satisfying

un(t) = ξn, un(0) = ηn.

Using the same arguments as in the proof of Theorem 3.4, we have

• un(t) ⇀ u(t) in L2(Ω) for arbitrary t ∈ [0, T ] (and then u(0) = η),
• f(x, un) ⇀ f(x, u) in Lq′

(QT ),
• u′

n ⇀ u′ in V ∗,
• Lp,σun ⇀ Lp,σu in Lp′

(0, T ;D−1,p′
(Ω, σ))

up to a subsequence. Hence, passing to the limit the following equality in V ∗

u′
n + Lp,σun = λ|un|p−2un − f(x, un)

we conclude that u(t) is the solution of (1.1) with respect to initial condition
u(0) = η. Thus, ξ ∈ G(t, η).

For the hypothesis (3), one observes that

G(tn, B) = G(t∗ + tn − t∗, B) ⊂ G(t∗,G(tn − t∗, B)) ⊂ G(t∗, B∗),
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where t∗ > 0 and B∗ is a bounded set in L2(Ω). Using Lemma 4.4, we see that,
if ξn ∈ G(tn, B) then {ξn} is precompact in L2(Ω). �

5. Some further remarks

In this section we discuss the case of a bounded domain Ω ⊂ R
N , N � 2 and

the weight function σ(x) satisfies condition (Hα). Under the conditions (H1)–
(H4) when Ω is bounded, using Proposition 2.1 and repeating the arguments
in the case of an unbounded domain, one can prove that Theorem3.4 is still
true for this case.

It is worth noticing that under some additional conditions on f , for
example,

(f(x, u) − f(x, v)) (u− v) � −C|u− v|2 for all x ∈ Ω, u, v ∈ R,

one can prove that the weak solution of problem (1.1) is unique. Then the m-
semiflow G turn to be a single-valued one and, by the definition, the compact
global attractor A obtained in Theorem 1.1 is exactly the one for single-valued
semiflow in the usual sense [21].

Noting that in the case of a bounded domain and σ(x) satisfies con-
dition (Hα) the problem (1.1) contains some important classes of parabolic
equations, such as the semilinear heat equations (when σ = const > 0, p = 2),
semilinear degenerate parabolic equations (when p = 2), the p-Laplacian equa-
tions (when σ = 1, p �= 2), etc. Thus, in some sense, our results recover
and extend some known results on the existence and long-time behavior of
solutions to the semilinear heat equation and the p-Laplacian equations in a
bounded domain [8,10,11,15,21].
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