Skip to main content
Log in

Marking and Shifting a Part in Partitions

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Refined versions, analytic and combinatorial, are given for classical integer partition theorems. The examples include the Rogers–Ramanujan identities, the Göllnitz–Gordon identities, Euler’s odd = distinct theorem, and the Andrews–Gordon identities. Generalizations of each of these theorems are given where a single part is “marked” or weighted. This allows a single part to be replaced by a new larger part, “shifting” a part, and analogous combinatorial results are given in each case. Versions are also given for marking a sum of parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E.: A generalization of the Göllnitz–Gordon partition theorems. Proc. Amer. Math. Soc. 18, 945–952 (1967)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E.: Partitions and Durfee dissection. Amer. J. Math. 101(3), 735–742 (1979)

    Article  MathSciNet  Google Scholar 

  3. Berkovich, A., Garvan, F.G.: Dissecting the Stanley partition function. J. Combin. Theory Ser. A 112(2), 277–291 (2005)

    Article  MathSciNet  Google Scholar 

  4. Berkovich, A., Grizzell, K.: A partition inequality involving products of two \(q\)-Pochhammer symbols. In: Alladi, K., Garvan, F., Yee, A.J. (eds.) Ramanujan 125, Contemp. Math., 627, pp. 25–39. Amer. Math. Soc., Providence, RI (2014)

  5. Göllnitz, H.: Partitionen mit Differenzenbedingungen. J. Reine Angew. Math. 225, 154–190 (1967)

    MathSciNet  MATH  Google Scholar 

  6. Gordon, B.: Some continued fractions of the Rogers–Ramanujan type. Duke Math. J. 32, 741–748 (1965)

    Article  MathSciNet  Google Scholar 

  7. Greene, J.: Bijections related to statistics on words. Discrete Math. 68(1), 15–29 (1988)

    Article  MathSciNet  Google Scholar 

  8. Kadell, K.W.J.: An injection for the Ehrenpreis Rogers–Ramanujan problem. J. Combin. Theory Ser. A 86(2), 390–394 (1999)

    Article  MathSciNet  Google Scholar 

  9. O’Hara, K., Stanton, D.: Refinements of the Rogers–Ramanujan identities. Exp. Math. 24(4), 410–418 (2015)

    Article  MathSciNet  Google Scholar 

  10. Stanton, D.: \(q\)-Analogues of Euler’s odd = distinct theorem. Ramanujan J. 19(1), 107–113 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Stanton.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Hara, K., Stanton, D. Marking and Shifting a Part in Partitions. Ann. Comb. 23, 935–951 (2019). https://doi.org/10.1007/s00026-019-00448-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-019-00448-5

Keywords

Mathematics Subject Classification

Navigation