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c© Birkhäuser Verlag, Basel, 2008

Annals of Combinatorics

Two Theorems about Similarity Maps

Andreas Dress1,2, Tatjana Lokot3, Walter Schubert4, and Peter Serocka1,2

1CAS-MPG Partner Institute for Computational Biology, 320 Yue Yang Road, Shanghai 200031,
P.R. China

2Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstrasse 2-26 D-04103
Leipzig, Germany
{andreas, pserocka}@picb.ac.cn

3Fakulät für Mathematik, Universität Bielefeld, D-33615 Bielefeld, Germany
tlokot@mathematik.uni-bielefeld.de

4Institut of Medical Neurobiology, University of Magdeburg, D-39120
Magdeburg, Germany
Walter.Schubert@med.ovgu.de

Received April 01, 2005

AMS Subject Classification: 54Exx, 54E40, 62P10, 65D18, 68U05, 68U10, 92C50, 92C55

Abstract. One of the problems arising when exploring toponome or other multivariate-image
data is the following: Given a family of n gray-value images of, e.g., a given sample of cell
tissue, indexed by a collection of n proteins under investigation (so-called MELK data) — each
single image representing the varying local concentration of one of those n proteins at the various
sites (pixels) of the given sample, how should one quantify, for any two pixels (or clusters of
pixels), the (dis)similarity between the corresponding “vectors” of local protein concentrations
in question. Some (dis)similarity mappings defined on R

n allowing for fast OpenGL texture
mapping turned out to be useful in visual inspection of toponome data. Here, we derive two
rather general results regarding similarity and dissimilarity mappings and, as a corollary, the fact
that the functions that were used for visual inspection of MELK data are, indeed, metrics. We
believe that our results are, however, also of more general interest within the ongoing program of
elucidating the structure of metrics from a more abstract point of view.

Keywords: metrics, similarity maps, dissimilarities, MELK, protein localization, protein co-
localization, toponome, multivariate images, SGI-type texture mapping, scientific visualization,
visual interactive analysis of multivariate images, Lasagne

1. Introduction

One of the problems arising when exploring toponome data (cf. [7–9]) is the following:
Given a family of n gray-value images of a cell-tissue sample, indexed by a collection of
n proteins under investigation (so-called MELK data) — each representing the varying
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local concentration of one of the n individual proteins at the various sites of the given
sample (as represented by the images’ pixels), how should one quantify — for any
two pixels (or aggregation of pixels) — the (dis)similarity between the corresponding
“vectors” of local protein concentrations in question. Some (dis)similarity mappings
defined on R

n and allowing for fast OpenGL texture mapping, turned out to be useful in
this context. For example, a particular metric F defined on [0, 1]n according to Corollary
4.1was used to obtain the eight images shown and discussed below. The program used
to obtain these pictures is called Lasagne. It was created by PS in collaboration with
Sebastian Funke for visual interactive analysis of toponome data. It provides numerous
modes for visual inspection, and one of them (the so-called dynamical mode) highlights,
almost instantaneously upon mouse click, all pixels whose protein distribution is, as
measured by F , sufficiently similar to the distribution at that pixel that was chosen by
mouse click (and marked with the cross in pictures below; in these figures, one can also
see, in the left lower part of the image, the actual protein distribution at the chosen pixel
— the concentration levels of the proteins in question represented by corresponding
vertical bars).

Here, we give a rather general definition of similarity mappings closely adapted to
the definition of metrics, and we show that

• the product of any two non-negative similarity mappings s1, s2 defined on the same
set X is also a similarity mapping, and

• the composition f ◦ s of a similarity map s with a monotonously increasing and
convex map f defined on an interval I ⊆ R that contains all values of s, is also a
similarity map.

As a corollary, we show that the functions that were used for visual inspection of MELK
data are, indeed, metrics. Moreover, we believe that these two rather general observa-
tions may also be of interest within the context of the ongoing program of elucidating
the structure of metrics from a more abstract point of view that has been pursued in
quite a number of papers in recent years (cf. [1–6]).

2. Basic Properties of Similarity Mappings

Definition 2.1. A similarity mapping — or, for short, a similarity — defined on a set X
is a map

s : X ×X → R : (x, y) 7→ s(x, y) =: xy∗ (2.1)

such that
xy ≤ xx and yx+ zx ≤ zy+ xx (2.2)

holds for all x, y, z ∈ X.

We collect some simple facts and observations regarding similarities:

Remark 2.2. Note that (2.2) implies that xy = yx must hold for all x, y ∈ X for any
similarity s : X ×X → R as above (just put z := x in (2.2), then exchange x and y in
(2.2) and put z := y).
∗ To improve readability, we write xy rather than s(x, y) for the value of s at a pair x, y of elements from X .
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Remark 2.3. A map d : X ×X → R is a metric defined on X if and only if the map

s = −d : X ×X → R : (x, y) 7→ −d(x, y)

is a similarity defined on X for which xx = 0 holds for all x ∈ X .

Remark 2.4. A map s : X ×X → R is a similarity defined on X if and only if for one (or
as well for all) univariate map(s) h : X → R, the Farris transform (cf. [3])

sh : X ×X → R : (x, y) 7→ xy−h(x)−h(y)

is a similarity defined on X . In particular, every similarity s defined on X is of the form

s = −dh : X ×X → R : (x, y) 7→ h(x)+h(y)−d(x, y), (2.3)

for some univariate map h = hs : X →R and some metric d = ds defined on X , uniquely
determined by s

(

as (2.3) implies that h(x) = 1
2 xx and d(x, y) = −xy + h(x) + h(y) =

−xy+ 1
2

(

xx+ yy
)

must hold for all x, y ∈ X
)

.
In other words, there exists a canonical one-to-one correspondence between the

set Met(X) of all metrics defined on X and the set Sim(X)/∼
F

of equivalence classes

contained in the set Sim(X) consisting of all similarities defined on X relative to the
equivalence relation ∼

F
(well-)defined on Sim(X) by “s∼

F
s′ ⇔ s′ = sh holds for some

univariate map h = hs : X → R”.

Remark 2.5. A map s : X ×X → R : (x, y) 7→ xy is a simalarity if and only if the map

ρ · s : X ×X → R : (x, y) 7→ ρ xy

is a similarity for one (or as well for all) positive real number(s) ρ.

Remark 2.6. Given a similarity s defined on X and a map p : Y → X , the map

s◦ (p× p) : Y ×Y → R : (u, v) 7→ p(u)p(v)

is a similarity defined on Y .

3. Basic Results

Theorem 3.1. If s1, s2 : X ×X → R are two similarities defined on X with s1(x, y),
s2(x, y) ≥ 0 for all x, y ∈ X, then their product

s := s1 · s2 : X ×X → R : (x, y) 7→ xy := s1(x, y)s2(x, y)

is also a similarity.

Proof. With x, y, z, . . ., we will always denote elements of X .
It is obvious that, in view of 0 ≤ s1(x, y) ≤ s1(x, x) and 0 ≤ s2(x, y) ≤ s2(x, x), the

inequality
xy = s1(x, y)s2(x, y) ≤ s1(x, x)s2(x, x) = xx
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holds for all x, y ∈ X . Furthermore, we have

s1(y, z) ≥ s1(x, y)+ s1(x, z)− s1(x, x)

and
s2(y, z) ≥ s2(x, y)+ s2(x, z)− s2(x, x),

as well as

0 ≤ s1(x, y), s1(x, z) ≤ s1(x, x) and 0 ≤ s2(x, y), s2(x, z) ≤ s2(x, x),

for all x, y, z ∈ X . Hence, if

si(x, y)+ si(x, z)− si(x, x) ≤ 0

holds, for given elements x, y, z ∈ X , for some i ∈ {1, 2}, and if j ∈ {1, 2} is chosen so
that {1, 2} = {i, j} holds, we get

s1(x, y)s2(x, y)+ s1(x, z)s2(x, z)− s1(x, x)s2(x, x)

= si(x, y)s j(x, y)+ si(x, z)s j(x, z)− si(x, x)s j(x, x)

≤ si(x, y)s j(x, x)+ si(x, z)s j(x, x)− si(x, x)s j(x, x)

= (si(x, y)+ si(x, z)− si(x, x))s j(x, x)

≤ 0.

Hence,

s1(x, y)s2(x, y)+ s1(x, z)s2(x, z)− s1(x, x)s2(x, x) ≤ s1(y, z)s2(y, z)

and, therefore, xy+ xz ≤ yz+ xx, as claimed. Otherwise, we have

0 ≤ s1(x, y)+ s1(x, z)− s1(x, x) ≤ s1(y, z)

and
0 ≤ s2(x, y)+ s2(x, z)− s2(x, x) ≤ s2(y, z),

which implies

yz = s1(y, z)s2(y, z)

≥ (s1(x, y)+ s1(x, z)− s1(x, x))(s2(x, y)+ s2(x, z)− s2(x, x))

= s1(x, y)s2(x, y)+ s1(x, z)s2(x, z)− s1(x, x)s2(x, x)

+(s1(x, y)− s1(x, x))(s2(x, z)− s2(x, x))

+(s1(x, z)− s1(x, x))(s2(x, y)− s2(x, x))

= s1(x, y)s2(x, y)+ s1(x, z)s2(x, z)− s1(x, x)s2(x, x)
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+(s1(x, x)− s1(x, y))(s2(x, x)− s2(x, z))

+(s1(x, x)− s1(x, z))(s2(x, x)− s2(x, y))

≥ s1(x, y)s2(x, y)+ s1(x, z)s2(x, z)− s1(x, x)s2(x, x)

= xy+ xz− xx,

as required in view of the fact that s1(x, x)− s1(x, u), s2(x, x)− s2(x, u) ≥ 0 holds for
all u ∈ X .

Corollary 3.2. Given two sets X and Y together with two non-negative similarities

sX : X ×X → R and sY : Y ×Y → R,

the map

s := sX × sY : (X ×Y )× (X ×Y) → R :
(

(x, y), (x ′, y ′)
)

7→ sX (x, x ′)sY (y, y ′)

is a similarity, too, defined on X ×Y.

To continue, recall that a map f : I →R defined on an interval I ⊆R is called convex
if

f (αx+βy) ≤ α f (x)+β f (y)

holds for all α, β ∈ [0, 1] with α + β = 1, and all x, y ∈ I. Our next result states that
similarities are transformed into similarities by composing them with a monotonously
increasing and convex map.

Theorem 3.3. Assume that s : X ×X →R : (x, y) 7→ xy is a similarity and that f : I →R

is a monotonously increasing and convex map defined on an interval I ⊆ R with xy ∈ I
for all x, y ∈ X. Then, the map

f ◦ s : X ×X → R : (x, y) 7→ f (xy)

is also a similarity.

Proof. Clearly, our assumptions imply that

( f ◦ s)(x, y) = f (xy) ≤ f (xx) = ( f ◦ s)(x, x)

holds for all x, y ∈ X . Thus, it remains to prove that also

( f ◦ s)(x, y)+( f ◦ s)(x, z) = f (xy)+ f (xz) ≤ f (yz)+ f (xx)

= ( f ◦ s)(y, z)+( f ◦ s)(x, x) (3.1)

holds for all x, y, z ∈ X . One easily sees that the inequality (3.1) holds indeed for the
case xy ≤ yz or xz ≤ yz in view of the monotonicity of f and the fact that xy, xz ≤ xx
holds by assumption.

So, we need to prove (3.1) only in case yz < xy and yz < xz. To this end, we put
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xy := xy+
yz+ xx− xy− xz

2
and

xz := xz+
yz+ xx− xy− xz

2
,

and note that, in view of (2.2) and our assumptions, one has

yz < xy ≤ xy =
(yz− xz)+(xx+ xy)

2
<

xx+ xy
2

≤ xx,

as well as

yz < xz ≤ xz =
(yz− xy)+(xx+ xz)

2
<

xx+ xz
2

≤ xx,

while
xy+ xz = yz+ xx

holds by definition of xy and xz. Hence, putting

α :=
xy− yz
xx− yz

=
xx− xz
xx− yz

and
β :=

xz− yz
xx− yz

=
xx− xy
xx− yz

,

we have α, β > 0, α+β = 1,

αxx+βyz =
xyxx− xyyz

xx− yz
= xy,

βxx+αyz =
xzxx− xzyz

xx− yz
= xz,

and, therefore,

( f ◦ s)(x, y)+( f ◦ s)(x, z) = f (xy)+ f (xz) ≤ f (xy)+ f (xz)

= f (α xx+β yz)+ f (β xx+α yz)

≤ α f (xx)+β f (yz)+β f (xx)+α f (yz)

= ( f ◦ s)(x, x)+( f ◦ s)(y, z),

as claimed.

4. Applications: Metrics from Metrics

The above results can be used to define a large variety of operators that construct metrics
from metrics: Starting, e.g., with just any metric d defined on a set X , one can begin by
considering the similarity map s := −d, then choose some positive real number ρ and
some univariate map h : X →R and form the Farris transform s′ = s′(d, ρ, h) := (−ρd)h
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of −ρd relative to h, then choose some monotonously increasing and convex map f
defined on an interval I ⊆ R with s′(x, y) ∈ I for all x, y ∈ X (or, if I and f are given,
one may try to choose ρ and h so that s′(x, y) ∈ I holds for all x, y ∈ X) to form the
similarity map s′′ = s′′(d, ρ, h, f ) := f ◦ s′(d, ρ, h) = f ◦ (−ρ d)h for which one may
then form the associated metric d ′ = d′(d, ρ, h, f ) := ds′′ . Note that this works, in
particular, for all d, ρ, and h as above in case f is the exponential function (because this
function is monotonously increasing and convex) and yields a similarity s′′(d, ρ, h, f )
all of whose values are positive (because exp(ρ) > 0 holds for all ρ ∈ R).

Similarly, if several metrics d1, d2, . . . , dN defined on X are given, one may choose
the parameters ρ1, ρ2, . . . , ρN , h1, h2, . . . , hN so that all the resulting similarity maps

s1 := s′ (d1, ρ1, h1) , s2 := s′ (d2, ρ2, h2) , . . . , sN := s′ (dN , ρN , hN)

have non-negative values in which case one may also form their product ∏N
ν=1 sν which

yields yet another similarity s for which the associated metric d := ds may be formed.
It could be interesting to check how geodesics of such metrics are related to geo-

desics of the component metrics.
Finally, we mention the special case that has been used in the software developed

for interactive exploration of MELK data.

Corollary 4.1. Given any family f1, . . . , fn : [0, 1] → [0, 1] of convex, monotonously
decreasing functions with fi(0) = 1 and fi(1) = 0 for all i = 1, . . . , n

(

e.g., f1(x) =
· · · = fn(x) := (1− x)ρ for some ρ > 1

)

, the function

F : [0, 1]n × [0, 1]n → R : ((x1, . . . , xn), (y1, . . . , yn)) 7→ 1−
n

∏
i=1

fi(|xi − yi|)

is a metric on [0, 1]n.

Proof. Applying our observations and results collected above, we see that

• the maps

si : [0, 1]× [0, 1]→ [0, 1]⊆R : (x, y) 7→ fi(|x−y|) = fi(−(−|x−y|)) (i = 1, . . . , n)

are similarities because

– the map [0, 1]× [0, 1] → [−1, 0] : (x, y) 7→ −|x− y| is a similarity, and
– the maps [−1, 0]→ [0, 1] : ρ 7→ f (−ρ) are convex and monotonously increas-

ing for all i = 1, . . . , n,

which in turn implies that (cf. Corollary 3.2),

• the product

s := s1 ×·· ·× sn : [0, 1]n × [0, 1]n → [0, 1] :
(

(x1, . . . , xn), (y1, . . . , yn)
)

7→ ∏
i=1,...,n

fi(|xi − yi|)

is a similarity, too, defined on the product space [0, 1]n for which



286 A. Dress et al.

• s
(

(x1, . . . , xn), (x1, . . . , xn)
)

= 1 holds for all (x1, . . . , xn) in [0, 1]n implying that

• the corresponding metric ds is given by

ds : [0, 1]n × [0, 1]n → [0, 1] :
(

(x1, . . . , xn), (y1, . . . , yn)
)

7→ 1− s
(

(x1, . . . , xn), (y1, . . . , yn)
)

and, thus, coincides with F.

5. A Paradigmatic Application in Biology: Synapses in the Rat Perietal Brain
Isocortex

Synapses are specialized contacts between nerve cells allowing electrical impulses on
the nerve-cell surface to be transduced from cell to cell. On the synaptic level, this is
brought about by combinatorial arrangements of proteins (relative abundancies) in the
postsynaptic membrane and by specialized molecules (transmitters) that are released
on the presynaptic site upon an electrical impulse. Presently 100 different proteins
have been identified to be associated with the postsynaptic membrane, however it is
completely unknown, according to which local rules these proteins are combined in
individual synapses to perform their function(s). To address this problem for the first
time, MELK toponome technology (cf. [7–9]) was applied to localize, as a first step,
7 selected synaptic proteins in the rat perietal brain isocortex by analyzing a tissue
section of this area. The section was taken tangentially to the isocortex gray matter,
approximately crossing the inner pyramidal cell layer.

The MELK toponome technology produced 7 single images, each showing the dis-
tribution pattern of each particular protein (data not shown). These images were aligned
and then superimposed to be analyzed by Lasagne. Figure 3 gives eight examples indi-
cating the relative abundancies of these proteins. One can readily recognize that there
are subregions of this cortex area, which are uniquely characterized by similar relative
abundancies of the synaptic proteins under investigation, thereby indicating directly
different functional states of synapses due to topological restriction defined by the col-
umn architecture of the isocortex. Detailed biological conclusions will be discussed
elsewhere.

One can employ Lasagne using other metrics, too, to obtain alternative representa-
tions. However, for the inspection of MELK data, the metrics introduced above appear
to produce meaningful data representations more readily than most of the other metrics
that we have tested.
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Figure 1: 7 non-processed primary grey-value image data produced by MELK To-
ponome Technology from one tissue section in one experiment (co-)localizing 7 synap-
tic proteins.
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Figure 2: Nerve-cell tissue: 5 images obtained with Lasagne from MELK toponome
data as shown in Figure 1.
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Figure 3: Nerve-cell tissue: 8 further images obtained with Lasagne from the same data
set.


