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Abstract. Recently, functions of several variables satisfying, with respect
to each variable, some functional equation (among them Cauchy’s,
Jensen’s, quadratic and other ones) have been studied. We give a new
characterization of multi-Cauchy–Jensen mappings, which states that a
function fulfilling some equation on a restricted domain is multi-Cauchy–
Jensen. Next, using a fixed point theorem, it is proved that a function
which approximately satisfies (on restricted domain) the equation char-
acterizing such functions is close (in some sense) to the solution of the
equation. This result is a tool for obtaining a generalized Hyers–Ulam sta-
bility or hyperstability of this equation for particular control functions,
which is presented in several examples.
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1. Introduction

It is well-known that among functional equations the Cauchy equation

f(x + y) = f(x) + f(y) (1)

and the Jensen equation

f
(x + y

2

)
=

f(x) + f(y)
2

(2)
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(which is closely connected with the notion of convex function) play a promi-
nent role. A lot of information about them and their applications can be found
for instance in [29,30]. The first positive answer to celebrated Ulam’s question
concerning the problem of stability of functional equations was given by Hy-
ers in the case of Eq. (1) in Banach spaces (see [23]). The history and recent
results concerning the notion of Hyers–Ulam stability can be found in many
papers (see e.g. [12,13,16,21,28,29] and references included there).

The multi-Cauchy–Jensen mappings mentioned in the title are functions
of several variables satisfying Cauchy’s functional equation in each of some
chosen variables and Jensen’s functional equation in each of the remaining
ones. Namely, if it holds for k and l variables, respectively, such a function is
called k-Cauchy and l-Jensen (see [15]). Without loss of generality it can be
assumed that such functions satisfy (1) for the first few variables, and (2) for
the next ones.

Let us note that for k = n the above definition leads to the so-called
multi-additive mappings (some basic facts on such mappings can be found for
instance in [30], where their application to the representation of polynomial
functions is also presented); for k = 0 we obtain the notion of multi-Jensen
function (which was introduced in 2005 by Prager and Schwaiger (see [33]) in
the connection with generalized polynomials), and an 1-Cauchy and 1-Jensen
mapping is just a Cauchy–Jensen mapping defined by Park and Bae [32].

In this paper, we give a new characterization of multi-Cauchy–Jensen
mappings, which states that a function fulfilling some equation on a restricted
domain is multi-Cauchy–Jensen on the whole space. Next it is proved that
a function which approximately satisfies (on restricted domain) the equation
characterizing such functions is close (in some sense) to the solution of the
equation. This result is a tool for obtaining a generalized Hyers–Ulam stability
or hyperstability of this equation for particular control functions, which is
presented in several examples. Our results are significant counterparts of some
classical outcomes from [1,11,22,23,35] and recent results from [2–4,10,17–
20,24–27,31,32,34,36].

In the proof of our stability result (Theorem 6) we use the fixed point
method, which was used for the investigation of the Hyers–Ulam stability of
functional equations for the first time by Baker [5]. For more information about
this method we refer the reader to recent survey papers [13,21].

To finish this introductory section let us finally mention that some results
on the stability of Cauchy–Jensen mappings can be found in [6,7,24–27,31,32].

2. Characterizations of Multi-Cauchy–Jensen Mappings

Throughout this paper N stands for the set of all positive integers, N0 :=
N ∪ {0}, R+ := [0,∞), [m] := {1, . . . m} for m ∈ N.
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Let us recall that an abelian semigroup G is called uniquely divisible by 2
provided for every x ∈ G there exists a unique y ∈ G (which is denoted in the
sequel by x

2 or 1
2x) such that x = y + y. The symbol my denotes (m − 1)y + y

for m ∈ N, m ≥ 2. We will denote by G0 the set G\{0}, where 0 is an identity
element. G is said to be torsion free, if the identity element is the only one of
finite order. In this case in particular, 2x, 3x ∈ G0 for x ∈ G0.

For a nonempty set X and l,m ∈ N we identify m-tuple x = (x1, . . . , xm)
∈ Xm with (y, z) ∈ X l×Xm−l, where y := (x1, . . . , xl) and z := (xl+1, . . . , xm).

Given x = (x1, . . . , xm), y = (y1, . . . , ym) ∈ Xm and a set I ⊂ [m], we
will denote by [x, y]I the m-tuple obtained from x by replacing coordinates xi

with yi for all i /∈ I, namely [x, y]I = (z1, . . . , zm), where

zi =
{

xi if i ∈ I
yi if i /∈ I

, i ∈ {1, . . . , m}

It is clear that [x, x]I = x for x ∈ Xm, I ⊂ [m]. Moreover for l ∈ [m], I ⊂ [m]

[(y, u), (z, u)]I = ([y, z][l]∩I , u), (y, u), (z, u) ∈ X l × Xm−l

and

[(u, y), (u, z)]I =
{

(u, y) if m ∈ I
(u, z) if m /∈ I

(u, y), (u, z) ∈ Xm−1 × X.

Moreover, we assume that V and W are linear spaces over the rationals, V0 :=
V \ {0}, v ∈ V0 and n ∈ N, k ∈ {0, . . . , n}.

In [9], a characterization of multi-Cauchy–Jensen mappings was proved.
Using our notations we can rephrase it in the following form.

Theorem 1. Assume that G is a semigroup uniquely divisible by 2 and with an
identity element, and W is a linear space over the rationals. Then a func-
tion f : Gn → W is k-Cauchy and n − k-Jensen if and only if for any
x = (x1, x2), y = (y1, y2) ∈ Gk × Gn−k we have

2n−kf
(
x1 + y1,

x2 + y2

2

)
=

∑
I⊂[n]

f
(
[x, y]I

)
. (3)

Substituting k = n we have a characterization of multi-additive map-
pings. A counterpart of this theorem, for mappings defined on linear space
over rationals which satisfy (1) on a restricted domain, was proved in [8]. The
theorem is still true if we assume that the domain of f is a group satisfying
some additional assumptions, which will be proven with the aid of the following
characterization of multi-Jensen mappings.

Theorem 2. Assume that G is a torsion free group uniquely divisible by 2,
G0 �= ∅. A function f : Gk → W satisfies the equation

2kf
(x + y

2

)
=

∑
I⊂[k]

f
(
[x, y]I

)
, (4)



55 Page 4 of 18 A. Bahyrycz and J. Olko Results Math

for all x, y ∈ Gk
0 , if and only if f is a multi-Jensen mapping.

Proof. First observe that by Theorem 1, every multi-Jensen mapping of k
variables satisfies (4) on Gk. The proof of the converse theorem is by induction
on k. It is true for k = 1. Indeed, in this case (4) means that for x �= 0 and
y �= 0

2f
(x + y

2

)
= f(x) + f(y), (5)

and it suffices to prove the above equality for x ∈ G and y = 0 which is
equivalent that for every x �= 0

2f(x) = f(2x) + f(0). (6)

Obviously, the above equality holds for x = 0. If x �= 0, applying (5) for pairs
of nonzero elements 2x, x and next 2x, −x we get

2f
(3x

2

)
= 2f

(2x + x

2

)
= f(2x) + f(x),

and

2f
(x

2

)
= 2f

(2x − x

2

)
= f(2x) + f(−x).

Adding the above equalities and applying (5) for elements 3x
2 , x

2 and next for
x, −x we have

2f(x) = 2f
( 3x

2 + x
2

2

)
= f

(3x

2

)
+ f

(x

2

)
= f(2x) + f(0),

and the proof of the base case is complete.
Now assume that every function of k variables satisfying (4) is multi-

Jensen and fix v ∈ G0

Let f : Gk+1 → W satisfies

2k+1f
(x + y

2

)
=

∑
I⊂[k+1]

f([x, y]I), (7)

for all x, y ∈ Gk+1
0 . Consequently for x ∈ Gk

0

2k+1f
( (x, v) + (y,−v)

2

)
=

∑
I⊂[k+1]

f
(
[(x, v), (y,−v)]I

)

=
∑
J⊂[k]

(
f
(
[x, x]J , v

)
+ f

(
[x, x]J ,−v

))

= 2k
(
f(x, v) + f(x,−v)

)
,

and thus

2f(x, 0) = f(x, v) + f(x,−v). (8)

Similarly, for x ∈ Gk
0 and z ∈ G0

2f(x, 2z) = f(x, 3z) + f(x, z). (9)
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Fix z ∈ G0 and define the function gz(x) := f(x, 2z) for x ∈ Gk. Applying (7)
and (9) we have for all x, y ∈ Gk

0

2k+1gz

(x + y

2

)
= 2k+1f

( (x, 3z) + (y, z)
2

)

=
∑

I⊂[k+1]

f
(
[(x, 3z), (y, z)]I

)

=
∑
J⊂[k]

f
(
[x, y]J , 3z

)
+

∑
J⊂[k]

f
(
[x, y]J , z

)

=
∑
J⊂[k]

{
f
(
[x, y]J , 3z

)
+ f([x, y]J , z)

}

=
∑
J⊂[k]

2f
(
[x, y]J , 2z

)
= 2

∑
J⊂[k]

gz
(
[x, y]J

)
,

which with the inductive assumption implies that gz is a multi-Jensen function.
Similarly, a function g0 : Gk → W given by the formula g0(x) = f(x, 0)

is multi-Jensen, since according to (7) and (8) it satisfies for x, y ∈ Gk
0

2k+1g0

(x + y

2

)
= 2k+1f

( (x, v) + (y,−v)
2

)

=
∑

I⊂[k+1]

f
(
[(x, v), (y,−v)]I

)

=
∑
J⊂[k]

f
(
[x, y]J , v

)
+

∑
J⊂[k]

f
(
[x, y]J ,−v

)

=
∑
J⊂[k]

(
f
(
[x, y]J , v

)
+ f

(
[x, y]J ,−v

))

=
∑
J⊂[k]

2f
(
[x, y]J , 0

)

= 2
∑
J⊂[k]

g0
(
[x, y]J

)
.

It suffices to show that f is a Jensen function with respect to the last
variable. Fix x = (x1, . . . , xk) ∈ Gk and define hx : G → W as follows hx(y) =
f(x, y). Let

ui =
{

v xi = 0
3xi

2 xi �= 0 , wi =
{

−v xi = 0
xi

2 xi �= 0 , i ∈ {1, . . . , k}.

Thus u = (u1, . . . , uk), w = (w1, . . . , wk) ∈ Gk
0 and x = u+w

2 . We will show
that hx fulfills (4) on G0. To this end take y, z ∈ G0, then (u, y), (w, z) ∈ Gk+1

0

and the functions gy, gz are multi-Jensen. Therefore
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2k+1hx

(y + z

2

)
= 2k+1f

( (u, y) + (w, z)
2

)

=
∑

I⊂[k+1]

f
(
[(u, y), (w, z)]I

)

=
∑
J⊂[k]

f
(
[u,w]J , y

)
+

∑
J⊂[k]

f
(
[u,w]J , z

)

=
∑
J⊂[k]

gy
(
[u,w]J

)
+

∑
J⊂[k]

gz
(
[u,w]J

)

= 2kgy
(u + w

2

)
+ 2kgz

(u + w

2

)

= 2k
(
gy(x) + gz(x)

)

= 2k
(
hx(y) + hx(z)

)
.

From what has already been proved in the base step, we conclude that hx is
Jensen, and finally induction completes the proof. �

We are thus led to the following new proof of a refinement of a charac-
terization for multi-additive mappings given in [8].

Proposition 3. Assume that G is a torsion free group uniquely divisible by 2,
G0 �= ∅. A function f : Gk → W satisfies the equation

f(x + y) =
∑
I⊂[k]

f
(
[x, y]I

)
, (10)

for all x, y ∈ Gk
0 , if and only if f is a multi-additive mapping.

Proof. First observe that by Theorem 1, every multi-additive mapping of k
variables satisfies (10) on Gk. Now assume that (10) is fulfilled for x, y ∈ Gk

0 .
According to Theorem 1, it suffices to show that it holds on Gk. We begin by
proving that f is 2-homogeneous of degree k, namely

f(2x) = 2kf(x) for x ∈ Gk. (11)

Indeed, if x ∈ Gk
0 we conclude from (10) that

f(2x) = f(x + x) =
∑
I⊂[k]

f([x, x]I) = 2kf(x).

For any x = (x1, . . . , xk) ∈ Gk\Gk
0 , fix v ∈ G0 and define

yi =
{

v xi = 0
xi xi �= 0 , zi =

{
−v xi = 0
xi xi �= 0 , i ∈ {1, . . . , k}.
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Then 2x = y + z with y = (y1, . . . , yk), z = (z1, . . . , zk) ∈ Gk
0 , and

f(2x) = f(y + z) =
∑
I⊂[k]

f([y, z]I) =
∑
I⊂[k]

f
(
2
[y

2
,
z

2

]
I

)

=
∑
I⊂[k]

2kf
([y

2
,
z

2

]
I

)

= 2kf
(y

2
+

z

2

)
= 2kf(x).

Since (10) holds on Gk
0 and f is 2-homogeneous of degree k, for x, y ∈ Gk

0

we obtain

2kf
(x + y

2

)
=

∑
I⊂[k]

2kf
([x

2
,
y

2

]
I

)
=

∑
I⊂[k]

f
(
[x, y]I

)
.

Therefore f is k-Jensen and satisfies (4) on Gk, by Theorems 2 and 1. Finally,
applying (4) and (11), for x, y ∈ Gk we see that

f(x + y) = f
(
2
x + y

2

)
= 2kf

(x + y

2

)
=

∑
I⊂[k]

f
(
[x, y]I

)
,

which completes the proof. �

We are now in a position to show the second characterization of multi-
Cauchy–Jensen mappings.

Theorem 4. Assume that G is a torsion free group uniquely divisible by 2,
G0 �= ∅. A function f : Gn → W satisfies the Eq. (3) for all x = (x1, x2), y =
(y1, y2) ∈ Gk

0 × Gn−k
0 if and only if f is a multi-Cauchy–Jensen mapping.

Proof. It suffices to prove that if a function f : Gn → W satisfies the Eq. (3)
for all x = (x1, x2), y = (y1, y2) ∈ Gk

0 ×Gn−k
0 then f is a multi-Cauchy–Jensen

mapping.
By (3) for all x, y ∈ Gk

0 and z ∈ Gn−k
0 we have

f(x + y, z) =
∑
I⊂[k]

f
(
[x, y]I , z

)
. (12)

Since for any z ∈ Gn−k
0 a mapping gz : Gk −→ W given by

gz(x) := f(x, z), x ∈ Gk

satisfies the Eq. (10) for all x, y ∈ Gk
0 , Lemma 3 shows that the function gz is

multi-additive, which means that

f(x + y, z) =
∑
I⊂[k]

f
(
[x, y]I , z

)
(13)

for z ∈ Gn−k
0 , x, y ∈ Gk.
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On the other hand, setting y = 0 := (0, . . . , 0) ∈ Gk in (13) we have

f

(
x + 0,

z + w

2

)
=

∑
I⊂[k]

f
(
[x,0]I ,

z + w

2

)
= f

(
x,

z + w

2

)
, (14)

for any x ∈ Gk and z, w ∈ Gn−k
0 , since f

(
[x,0]I , z+w

2

)
= 0 if I �= [k]. Therefore

using (3) for all x ∈ Gk and z, w ∈ Gn−k
0 we have

2n−kf
(
x,

z + w

2

)
=

∑
I⊂[n−k]

f(x, [z, w]I). (15)

Thus for any x ∈ Gk the function hx : Gn−k −→ W given by

hx(y) := f(x, y), y ∈ Gn−k

satisfies the equation

2n−khx

(z + w

2

)
=

∑
I⊂[n−k]

hx

(
[z, w]I

)
,

for all z, w ∈ Gn−k
0 . Lemma 2 shows that the function hx is multi-Jensen,

which means (15) holds for all x ∈ Gk and z, w ∈ Gn−k, and finishes the proof
that f is a multi-Cauchy–Jensen mapping. �

3. Stability of Multi-Cauchy–Jensen Mappings on Restricted
Domain

In this section we prove stability of Eq. (3) on restricted domain. This result
generalizes Theorem 3.2 from [9]. The proof is based on a fixed point result
that can be derived from [14] (Theorem 1). To present it we need the following
three hypothesis:

(H1) E is a nonempty set, Y is a Banach space, f1, . . . , fk : E → E and
L1, . . . , Lk : E → R+ are given.

(H2) T : Y E → Y E is an operator satisfying the inequality

∥∥T ξ(x) − T μ(x)
∥∥ ≤

j∑
i=1

Li(x)
∥∥ξ(fi(x)) − μ(fi(x))

∥∥, ξ, μ ∈ Y E , x ∈ E.

(H3) Λ : R+
E → R+

E is defined by

Λδ(x) :=
j∑

i=1

Li(x)δ(fi(x)), δ ∈ R+
E , x ∈ E.

For the convenience of the reader, we recall the above mentioned fixed
point theorem.
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Theorem 5. Let hypotheses (H1)–(H3) be valid and functions ε : E → R+ and
ϕ : E → Y fulfill the following two conditions

∥∥T ϕ(x) − ϕ(x)
∥∥ ≤ ε(x), x ∈ E,

ε∗(x) :=
∞∑
l=0

Λlε(x) < ∞, x ∈ E.

Then there exists a unique fixed point ψ of T with

‖ϕ(x) − ψ(x)‖ ≤ ε∗(x), x ∈ E.

Moreover

ψ(x) := lim
l→∞

T lϕ(x), x ∈ E.

In the sequel, we assume that W is a Banach space, k ≥ 1 and D,E are
the nonempty subsets of V such that E ⊂ D and x1 + x2,

x1+x2
2 ∈ D for all

x1, x2 ∈ D.
Write

(Φf)(x, y) := 2n−kf
(
x1 + y1,

x2 + y2

2

)
−

∑
I⊂[n]

f
(
[x, y]I

)
,

for f : Dn → W and x = (x1, x2), y = (y1, y2) ∈ Dk × Dn−k.

Theorem 6. Let f : Dn → W and θ : E2n → R+ be mappings satisfying the
inequality

‖(Φf)(x, y)‖ ≤ θ(x, y), (16)

for x, y ∈ En. Assume also that there is an s ∈ {−1, 1} such that

ε∗(x) :=
1

2
n+k

(
s−1
2

)
∞∑
l=0

( 1
2sk

)l

θ
(
2sl+

s−1
2 x1, x2, 2sl+

s−1
2 x1, x2

)
< ∞, (17)

for x = (x1, x2) ∈ Ek × En−k,

lim
l→∞

( 1
2sk

)l

θ(2slx1, x2, 2sly1, y2) = 0, (18)

for x1, y1 ∈ Ek, x2, y2 ∈ En−k, and the set E fulfils a condition

2se ∈ E, e ∈ E. (19)

Then there exists a unique function F : En → W satisfying Eq. (3) for all
x = (x1, x2), y = (y1, y2) ∈ Ek × En−k and such that

‖f(x) − F (x)‖ ≤ ε∗(x), x ∈ En. (20)
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Proof. If s = 1 putting in (16) x = y = (x1, x2) ∈ Ek×En−k and then dividing
by 2n we get

∥∥∥ 1
2k

f(2x1, x2) − f(x)
∥∥∥ ≤ 1

2n
θ(x, x). (21)

If s = −1 putting in (16) x = y =
(

1
2x1, x2

)
∈ Ek × En−k and then dividing

by 2n−k we have
∥∥∥2kf

(1
2
x1, x2

)
− f(x)

∥∥∥ ≤ 1
2n−k

θ(x, x), (22)

Let s ∈ {1,−1}. Write

T ξ(x) :=
1

2sk
ξ(2sx1, x2), ξ ∈ WDn

, x = (x1, x2) ∈ Dk × Dn−k

ε(x) :=

{
1
2n θ(x, x) if s = 1,

1
2n−k θ

(
1
2x1, x2, 1

2x1, x2
)

if s = −1,
x = (x1, x2) ∈ Ek × En−k.

Then (21) if s = 1, (22) if s = −1 takes the form

‖T f(x) − f(x)‖ ≤ ε(x), x ∈ En.

Define

Λη(x) :=
1

2sk
η(2sx1, x2), η ∈ R

En

+ , x = (x1, x2) ∈ Ek × En−k.

Then it is easily seen that Λ has the form described in (H3) with j = 1 and
f1(x) = (2sx1, x2), L1(x) = 1

2sk
, for x = (x1, x2) ∈ Ek × En−k. Moreover, for

every ξ, μ ∈ WDn

, x ∈ Dn

‖T ξ(x) − T μ(x)‖ =
∥∥∥ 1

2sk
ξ(2sx1, x2) − 1

2sk
μ(2sx1, x2)

∥∥∥
≤ L1(x)‖ξ(f1(x) − μ(f1(x))‖,

so (H2) is valid.
It is easy to check that for x = (x1, x2) ∈ Ek × En−k

Λlε(x) =
( 1

2sk
)l

ε(2slx1, x2)

=
1

2
n+k

(
s−1
2

)
( 1

2sk
)l

θ
(
2sl+

s−1
2 x1, x2, 2sl+

s−1
2 x1, x2

)
.

Hence and from (17), according to Theorem 5 there exists a unique solu-
tion F : En → Y

F (x) =
1

2sk
F (2sx1, x2), x = (x1, x2) ∈ Ek × En−k,

such that (20) holds. Moreover,

F (x) := lim
l→∞

(T lf)(x), x ∈ En.
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One can now show, by induction, that

‖Φ(T lf)(x, y)‖ ≤
( 1

2sk
)l

θ(2slx1, x2, 2sly1, y2), (23)

for every l ∈ N0, x = (x1, x2), y = (y1, y2) ∈ Ek × En−k. Letting l → ∞ in
(23) and using (18) we obtain

Φ(F )(x, y) = 0, x, y ∈ En,

which means the function F satisfies Eq. (3) for all x = (x1, x2), y = (y1, y2) ∈
Ek × En−k. Now, we assume that F ′ : En → W is another function satisfying
the Eq. (3) for all x = (x1, x2), y = (y1, y2) ∈ Ek × En−k and the inequality
(20). Then using (3) and (20), we have for x = (x1, x2) ∈ Ek × En−k, l ∈ N

‖F (x) − F ′(x)‖ =
∥∥∥ 1

2skl
F (2slx1, x2) − 1

2skl
F ′(2slx1, x2)

∥∥∥

≤ 1

2skl

(
‖F (2slx1, x2) − f(2slx1, x2)‖ + ‖F ′(2slx1, x2) − f(2slx1, x2)‖

)

≤ 2

2skl
ε∗(2slx1, x2) =

2

2
n+k

(
s−1
2

)
∞∑
j=l

( 1

2sk

)j
θ
(
2sj+

s−1
2 x1, x2, 2sj+

s−1
2 x1, x2

)
,

whence letting l → ∞ and using (17) we obtain F (x) = F ′(x) for x ∈ En,
which finishes the proof. �

4. Stability and Hyperstability Results

Applying the above Theorem 6 for specific functions θ and D = V, E = V0

yields the following stability results. These results are significant generaliza-
tions of some outcomes from [8,27].

Corollary 7. Assume that f : V n −→ W is a mapping satisfying the inequality

‖(Φf)(x, y)‖ ≤ C

n�

j=1

‖xj‖pj‖yj‖qj , (24)

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V n
0 , with some C ∈ (0,+∞) and

pj , qj ∈ R such that

d :=
k∑

j=1

(pj + qj) − k �= 0. (25)

Then there exists a unique k-Cauchy and n−k-Jensen mapping F : V n −→ W
such that

‖f(x) − F (x)‖ ≤ C

2n|1 − 2d|

n�

j=1

‖xj‖pj+qj , x = (x1, . . . , xn) ∈ V n
0 .
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Proof. Put

θ(x, y) := C

n�

j=1

‖xj‖pj‖yj‖qj , x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V n
0 .

From (25) we get that d < 0 or d > 0. Then there exists s ∈ {1,−1} such that
2sd < 1 (s = 1 if d < 0, s = −1 if d > 0), and

∞∑
l=0

(2sd)l =
1

1 − 2sd
.

Using Theorem 6, because

ε∗(x) =
C

2n|1 − 2d|

n�

j=1

‖xj‖pj+qj < +∞, x = (x1, . . . , xn) ∈ V n
0 ,

and

lim
l→∞

C
(
2sd

)l n�

j=1

‖xj‖pj‖yj‖qj = 0, xj , yj ∈ V0, j ∈ {1, . . . , n},

we obtain that there exists a unique function F ∗ : V n
0 → W satisfying Eq. (3)

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V n
0 and such that

‖f(x) − F ∗(x)‖ ≤ ε∗(x), x ∈ V n
0 .

We define the function F : V n → W in the following way for x = (x1, x2)

F (x) :=
{

F ∗(x) if x ∈ V n
0

liml→∞ 1
2skl f(2slx1, x2) otherwise .

Finally, using Theorem 4 we get that F is k-Cauchy and n−k-Jensen mapping.
�

Using the above corollary we can obtain the following hyperstability re-
sult.

Corollary 8. Let C > 0 and pj , qj ∈ R, j ∈ {1, . . . , n} be such that (25) holds
and pt + qt < 0 with some t ∈ {1, . . . , n}. If f : V n −→ W is a function
satisfying the condition (24) for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V n

0 ,
then f is a k-Cauchy and n − k-Jensen mapping.

Proof. According to Corollary 7, there exists a unique k-Cauchy and n − k-
Jensen mapping F : V n −→ W such that

‖f(x) − F (x)‖ ≤ ϕ(x), x ∈ V n
0 ,

where ϕ(x) := C
2n|1−2d|

�n
j=1 ‖xj‖pj+qj for x = (x1, . . . , xn).

Let t ∈ {1, . . . , n} be such that pt + qt < 0. Then at least one of pt, qt must
be negative. Without loss of generality we can assume that pt < 0. Fix x =
(x1, x2) ∈ V k

0 × V n−k
0 .

If t ≤ k, define sequences (zm), (wm) of vectors
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zm := (zm1 , . . . , zmk ) ∈ V k
0 such that zmt = (m + 1)xt and zmj = 1

2xj for
j �= t,
and

wm := (wm
1 , . . . , wm

k ) ∈ V k
0 such that wm

t = −mxt and wm
j = 1

2xj for
j �= t.
Then for every m ∈ N and I ⊂ [k]

zm + wm = x1 and [zm, wm]I =
{

zm if t ∈ I
wm if t /∈ I.

Therefore for m ∈ N

(Φf)(zm, x2, wm, x2) = 2n−kf(zm + wm, x2) − 2n−k
∑
I⊂[k]

f([zm, wm]I , x2)

= 2n−kf(x1, x2) − 2n−k · 2k−1
(
f(zm, x2) + f(wm, x2)

)

and consequently

f(x) =
1

2n−k
(Φf)(zm, x2, wm, x2) + 2k−1

(
f(zm, x2) + f(wm, x2)

)
. (26)

On the other hand, since F is k-additive and n − k-Jensen we have

0 = (ΦF )(zm, x2, wm, x2)=2n−kF (zm + wm, x2) − 2n−k
∑
I⊂[k]

F ([zm, wm]I , x2)

= 2n−kF (x1, x2) − 2n−k · 2k−1
(
F (zm, x2) + F (wm, x2)

)

thus

F (x) = 2k−1
(
F (zm, x2) + F (wm, x2)

)
. (27)

Then by (26) and (27), for every m ∈ N

‖f(x) − F (x)‖ = ‖ 1
2n−k

Φf(zm, x2, wm, x2) + 2k−1
(
(f − F )(zm, x2)

+ (f − F )(wm, x2)
)
‖

≤ C

2n−k
(m + 1)ptmqt

(1
2

)∑
j �=t(pj+qj)

n�

j=1

‖xj‖pj+qj

+ 2k−1
(
ϕ(zm, x2) + ϕ(wm, x2)

)
.

Since

lim
m→∞(m + 1)ptmqt ≤ lim

m→∞ mpt+qt = 0,

and

lim
m→∞ ϕ(zm, x2) = lim

m→∞ ϕ(wm, x2) = 0,

letting in the above inequality m → ∞ we obtain that f(x) = F (x).
We now turn to the case t > k and apply similar arguments with se-

quences defined as follows
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zm := (zmk+1, . . . , z
m
n ) such that zmt = (m + 2)xt and zmj = xj for j �= t,

and
wm := (wm

k+1, . . . , w
m
n ) such that wm

t = −mxt and wm
j = xj for j �= t.

Then for every m ∈ N and I ⊂ [k]

zm + wm

2
= x2 and [zm, wm]I =

{
zm if t ∈ I
wm if t /∈ I.

,

and therefore for every m ∈ N

‖f(x) − F (x)‖ =
∥∥∥ 1

2n−k
Φf

(1
2
x1, zm,

1
2
x1, wm

)

+ 2n−1
[
(f − F )

(1
2
x1, zm

)
+ (f − F )

(1
2
x1, wm

)]∥∥∥

≤ C

2n−k
(m + 2)ptmqt

(1
2

)∑k
j=1(pj+qj)

n�

j=1

‖xj‖pj+qj

+ 2k−1
[
ϕ
(1

2
x1, zm

)
+ ϕ

(1
2
x1, wm

)]
.

Since

lim
m→∞(m + 2)ptmqt ≤ lim

m→∞ mpt+qt = 0,

and

lim
m→∞ ϕ

(1
2
x1, zm

)
= lim

m→∞ ϕ
(1

2
x1, wm

)
= 0,

letting in the above inequality m → ∞ we conclude that f(x) = F (x).
It follows that f = F on V n

0 and finally the application of Theorem 4
finishes the proof. �

The following corollary applied to the case of Cauchy–Jensen equation
(n = 2, k = 1) is a generalization of [27, Th. 2.2].

Corollary 9. Assume that f : V n −→ W is a mapping satisfying the inequality

‖(Φf)(x, y)‖ ≤
n∑

j=1

(Aj‖x1‖pj + Bj‖yj‖qj ) (28)

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V n
0 , Aj , Bj ∈ (0,+∞) and pj , qj ∈

R, j ∈ {1, . . . , n} such that cj := pj − k and dj := qj − k fulfill a condition

∀j∈{1,...,k}(cj < 0 ∧ dj < 0). (29)

Then there exists a unique k-Cauchy and n−k-Jensen mapping F : V n −→ W
such that

‖f(x) − F (x)‖ ≤ ε∗(x), x = (x1, . . . , xn) ∈ V n
0 ,
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where

ε∗(x) =
1
2n

(
k∑

j=1

( Aj

2cj − 1
‖xj‖pj +

Bj

2dj − 1
‖xj‖qj

)

+
1

1 − 2−k

n∑
j=k+1

(
Aj‖xj‖pj + Bj‖xj‖qj

)
)

.

Proof. Put

θ(x, y) :=
n∑

j=1

(Aj‖xj‖pj + Bj‖yj‖qj ) x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V n
0 .

From (29) we obtain for each j ∈ {1, . . . , k}
∞∑
l=0

(2cj )l =
1

1 − 2cj
and

∞∑
l=0

(2dj )l =
1

1 − 2dj
.

Since

ε∗(x) < +∞, x ∈ V n
0 ,

and

lim
l→∞

k∑
j=1

(
Aj2cj l‖xj‖pj + Bj2dj l‖yj‖qj

)

+
(1

2

)kl n∑
j=k+1

(Aj‖xj‖pj + Bj‖yj‖qj ) = 0,

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ V n
0 , therefore in the analogous way like

in Corollary 7 we obtain the assertion. �
The above statement and analysis similar to that in the proof of [27, Th.

3.1] lead to the following hyperstability result.

Corollary 10. Let pj , qj < 0, Aj , Bj > 0 for j ∈ {1, . . . , n}. If f : V n → W is
a function satisfying condition (28) for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈
V n
0 , then f is k-Cauchy and n − k-Jensen mapping.

Proof. According to the above corollary, there exists a unique k-Cauchy and
n − k-Jensen mapping F : V n −→ W such that

‖f(x) − F (x)‖ ≤ ϕ(x), x = (x1, . . . , xn) ∈ V n
0 ,

where

ϕ(x) :=
1
2n

(
k∑

j=1

( Aj

2cj − 1
‖xj‖pj +

Bj

2dj − 1
‖xj‖qj

)

+
1

1 − 2−k

n∑
j=k+1

(
Aj‖xj‖pj + Bj‖xj‖qj

)
)

.
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Observe that for every m ∈ N and x = (x1, . . . , xn) ∈ V n
0

‖f(x) − F (x)‖
=

1

2n−k
‖Φf((m + 1)x1, (m + 2)x2, −mx1, −mx2)

+
∑

a1, . . . , ak ∈ {m + 1, −m}
bk+1, . . . , bn ∈ {m + 2, −m}

(f − F )(a1x1, . . . , akxk, bk+1xk+1, . . . , bnxn)‖

≤ 1

2n−k

( k∑
j=1

(
Aj(m + 1)pj‖xj‖pj + Bjm

qj‖xj‖qj
)

+
n∑

j=k+1

(
Aj(m + 2)pj‖xj‖pj + Bjm

qj‖xj‖qj
)

+
∑

a1, . . . , ak ∈ {m + 1, −m}
bk+1, . . . , bn ∈ {m + 2, −m}

ϕ(a1x1, . . . , akxk, bk+1xk+1, . . . , bnxn)
)
.

Since

lim
m→∞ ϕ(a1x1, . . . , akxk, bk+1xk+1, . . . , bnxn) = 0,

for a1, . . . , ak ∈ {m+1,−m}, bk+1, . . . , bn ∈ {m+2,−m}, letting in the above
inequality m → ∞ we conclude that f = F on V n

0 . Now, using Theorem 4 we
obtain our claim. �
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[18] Ciepliński, K.: On multi-Jensen functions and Jensen difference. Bull. Korean
Math. Soc. 45, 729–737 (2008)
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