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Abstract. We discuss the projective line P(R) over a finite associative
ring with unity. P(R) is naturally endowed with the symmetric and anti-
reflexive relation “distant”. We study the graph of this relation on P(R)
and classify up to isomorphism all distant graphs G(R,Δ) for rings R up
to order p5, p prime.
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1. Introduction

The aim of this paper is to characterize the distant graph G(R,Δ) of the pro-
jective line over any finite ring R. It is an undirected, connected graph with
the degree of a vertex equal to |R|.
The starting point of our investigation is showing the connection between
this graph and the distant graph G(R/J,ΔJ ) of the projective line over the
factor ring R/J , where J is the Jacobson radical of R. To this end we use,
introduced by Blunck and Havlicek in [9], an equivalence relation, called rad-
ical parallelism, on the set of points of the projective line, which determines
the interdependence between P(R) and P(R/J). Next we describe the graph
G(R/J,ΔJ ). Using structures theorems [2] on finite rings with unity we get
that the graph G(R/J,ΔJ ) is isomorphic to the tensor product of the distant
graphs arising from projective lines whose underlying rings are full matrix
rings over finite fields. The projective line over any full matrix ring Mn(q), i.e.
the ring of n × n matrices over the finite field F (q) of order q, is in bijective
correspondence with the Grassmannian G (n, 2n, q) of n-dimensional subspaces
of a 2n-dimensional vector space over F (q). Then we describe G(M2(q),Δ) for
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any prime power q and we give representatives of two classes of partitions
of its vertex set V

(
G(M2(2),Δ)

)
into maximal cliques. We also make use of

these partitions to show a simple construction of projective space of order 2,
described by Hirschfeld in [17] in a completely different way. The question still
unanswered is, whether a partition of V

(
G(Mn(q),Δ)

)
into maximal cliques

exists for any n, q. However, this partition of V
(
G(R,Δ)

)
for any finite ring R

such that R/J is isomorphic to the direct product of n copies of F (q) is done
in the present study, in particular the distant graph of the projective line over
any ring of lower triangular matrices over F (q) .
Using the classification of finite rings from [12,14], we find all nonisomorphic
distant graphs G(R,Δ) for rings R up to order p5, p prime, in the last section.
We also describe the graph G(R,Δ) in the case of an arbitrary local ring R.

2. Preliminaries

Throughout this paper we shall only study finite associative rings with 1 (1 �=
0). Consider the free left module 2R over a ring R. Let (a, b) ∈ 2R, the set

R(a, b) = {(αa, αb);α ∈ R}
is a left cyclic submodule of 2R. If the equation (ra, rb) = (0, 0) implies that
r = 0, then R(a, b) is called free. A pair (a, b) ∈ 2R is called admissible, if
there exist elements c, d ∈ R such that

[
a b
c d

]
∈ GL2(R).

The general linear group GL2(R) acts in natural way (from the right) on the
free left R-module 2R and this action is transitive.

Definition 1. [8] The projective line over R is the orbit

P(R) := R(1, 0)GL2(R)

of the free cyclic submodule R(1, 0) under the action of GL2(R).

In other words, the points of P(R) are those free cyclic submodules
R(a, b) ∈ 2R which possess a free cyclic complement, i.e. they are generated
by admissible pairs (a, b).

We recall that a pair (a, b) ∈ 2R is unimodular, if there exist x, y ∈ R
such that

ax + by = 1.

It is known that if R is a ring of stable rank 2, then admissibility and uni-
modularity are equivalent and R is Dedekind-finite [8, Remark 2.4]. Rings that
are finite or commutative satisfy this property, so in case of such rings, the
projective line can be described by using unimodular or admissible pairs inter-
changeably.
A wealth of further references is contained in [16], [11].
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Definition 2. [9] The point set P(R) is endowed with the symmetric and anti-
reflexive relation distant which is defined via the action of GL2(R) on the set
of pairs of points by

Δ :=
(
R(1, 0), R(0, 1)

)GL2(R)
.

It means that
∧

R(a,b),R(c,d)∈P(R)

R(a, b)ΔR(c, d) ⇔
[

a b
c d

]
∈ GL2(R).

Moreover,
∧

ϕ∈GL2(R)

∧

R(a,b),R(c,d)∈P(R)

R(a, b)ΔR(c, d) ⇔ (R(a, b))ϕΔ(R(c, d))ϕ.

The next relation on P(R) is connected with the Jacobson radical of R, denoted
by J . It is that two-sided ideal which is the intersection of all the maximal
right (or left) ideals of R.
Namely, in [9] Blunck and Havlicek introduced an equivalence relation on the
set of points of the projective line called radical parallelism (‖) as follows:

R(a, b) ‖ R(c, d) ⇔ Δ(R(a, b)) = Δ(R(c, d)),

where Δ(R(a, b)) is the set of those points of P(R) which are distant to
R(a, b) ∈ P(R). In this case we say that a point R(a, b) ∈ P(R) is radically
parallel to a point R(c, d) ∈ P(R).
The canonical epimorphism R → R/J sends any a ∈ R to a+J =: a. According
to ([9, Theorem 2.2]) the mapping

Φ : R(a, b) �→ R/J(a, b)

is well defined and it satisfies

R(a, b) ‖ R(c, d) ⇔ R/J(a, b) = R/J(c, d).

Remark 1. [9] Furthermore, we have
∧

a,b∈R

R(a, b) ∈ P(R) ⇔ R/J(a, b) ∈ P(R/J)

and
∧

R(a,b),R(c,d)∈P(R)

R(a, b)ΔR(c, d) ⇔ R/J(a, b)ΔJR/J(c, d),

where ΔJ denotes the distant relation on P(R/J).

Therefore, the radical parallelism relation determines the connection
between the projective lines P(R) and P(R/J).
Since the point set P(R) is endowed with the distant relation, we can consider
P(R) as the vertex set V

(
G(R,Δ)

)
of the distant graph G(R,Δ), i.e. the

undirected graph of the relation Δ. Its vertices are joined by an edge if, and
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only if, they are distant. This graph is connected and its diameter is less or
equal 2 [16, 1.4.2. Proposition].
One of the basic concepts of graph theory is that of a clique. A clique in
an undirected graph G is a subset of the vertices such that any two distinct
vertices comprise an edge, i.e. the subgraph of G induced by these vertices
is complete. A maximum clique of a graph G is a clique, such that there is
no clique in G with more vertices. A maximal clique is a clique which is not
properly contained in any clique.

All maximal cliques in the distant graph G(R,Δ) induce its isomorphic
subgraphs, which is due to the fact that the group GL2(R) acts transitively on
P(R). Hence all maximal cliques in the distant graph G(R,Δ) have the same
number of vertices, denoted by ω

(
G(R,Δ)

)
, and at the same time, they are

maximum cliques.
To describe maximal cliques of the distant graph we make use of the following
definitions.

Definition 3. An (n − 1)-spread in the (2n − 1)-dimensional projective space
PG(2n − 1, q) over the finite field with q elements F (q) is a set of (n − 1)-
dimensional subspaces such that each point of PG(2n − 1, q) is contained in
exactly one element of this set.

Definition 4. An (n − 1)-parallelism in PG(2n − 1, q) is a partition of the set
of (n− 1)-dimensional subspaces of PG(2n− 1, q) by pairwise disjoint (n− 1)-
spreads.

Remark 2. PG(2n−1, q) corresponds to a 2n-dimensional vector space V (2n, q)
over the finite field F (q), and (n − 1)-dimensional subspaces of PG(2n − 1, q)
correspond to n-dimensional subspaces of V (2n, q). Consequently, we can also
talk about n-spreads and n-parallelisms of V (2n, q) rather than (n−1)-spreads
and (n − 1)-parallelisms of PG(2n − 1, q).

In our considerations we will often use the following fact about the direct
product of projective lines.

Theorem 1. [7, 6.1.] Let R be the direct product of rings Ri, i = 1, 2, . . . , n,
i.e. R = R1 × R2 × · · · × Rn. Then

P(R) � P(R1) × P(R2) × · · · × P(Rn).

In [1] was pointed out that in another way to state this is to say

G(R,Δ) � G(R1,Δ1) × G(R2,Δ2) × · · · × G(Rn,Δn),

where Δi stands for the distant relation on P(Ri). It means that G(R,Δ) is the
tensor product of the graphs G(R1,Δ1), G(R2,Δ2), . . . , G(Rn,Δn), i.e., the
vertex set of G(R,Δ) is the Cartesian product of vertex sets of
the graphs G(R1,Δ1), G(R2,Δ2), . . . , G(Rn,Δn), and for all elements
(x1, x2, . . . , xn), (x′

1, x
′
2, . . . , x

′
n) ∈ G(R,Δ) holds

(x1, x2, . . . , xn)Δ(x′
1, x

′
2, . . . , x

′
n) ⇔ x1Δ1x

′
1, x2Δ2x

′
2, . . . , xnΔnx′

n.
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If a ring R cannot be written as R � R1 ×R2, where R1, R2 are nonzero rings,
then it is called indecomposable ring.

3. Construction of the Distant Graph on the Projective Line

In order to describe the distant graph G(R,Δ) of the projective line over
a ring R we show the connection between this graph and the distant graph
G(R/J,ΔJ ) of the projective line over the factor ring R/J . Next we find the
graph G(R/J,ΔJ ).
The points of P(R/J) are in one-one correspondence with the equivalence
classes of the radical parallelism relation on P(R). Each of these comprises |J |
elements. See [9] for more details. Write

a = {ai; i = 1, 2, . . . , |J |}
for all a ∈ R. For any point R/J(a, b) ∈ P(R/J) there exist exactly |J | different
points R(ai, bi) ∈ P(R) such that R/J(ai, bi) = R/J(a, b). Then the graph
G(R,Δ) is uniquely determined by the Remark 1. For example, if R = T (2) is
the ring of ternions over the field F (2), then the projective line over T (2)/J
has a distant graph which is depicted in Fig. 1 (left). For better visualisation
we only show the vertices and the edges of the graph G(T (2),Δ) corresponding
to the top right vertices and edges encircled by a line in G(T (2)/J,ΔJ ).

Proposition 1. The vertex set V
(
G(R/J,ΔJ )

)
has a partition into m maximal

cliques if, and only if, the vertex set V
(
G(R,Δ)

)
has a partition into m|J |

maximal cliques. In this case the following equality holds

ω
(
G(R/J,ΔJ )

)
= ω

(
G(R,Δ)

)
.

Proof. This follows from Remark 1 and the fact that Φ−1
(
R/J(a, b)

)
contains

exactly |J | points for any R/J(a, b). �

Figure 1. The connection between the distant graphs
G

(
T (2)/J,ΔJ

)
and G

(
T (2),Δ

)
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Proposition 2. Let Gi be a graph such that V (Gi) has a partition into max-
imal cliques Ki

ti , ti = 1, . . . ,mi, of the same cardinality, i.e. |Ki
1| = · · · =

|Ki
mi

| = si, for all i = 1, . . . , n. Write min{si; i = 1, . . . , n} = s. The ver-
tex set V

(⊗n
i=1 Gi

)
has a partition into (m1...mn)(s1...sn)

s maximal cliques with
ω(

⊗n
i=1 Gi) = s.

Proof. Suppose that the above assumptions are satisfied. We have

V (G1) × · · · × V (Gn) =
m1⋃

t1=1

K1
t1 ×· · ·×

mn⋃

tn=1

Kn
tn =

m1⋃

t1=1

. . .

mn⋃

tn=1

K1
t1 ×· · · × Kn

tn .

We first give the proof for the case n = 2. Without loss of generality, assume
that s1 � s2. Let (k1

l1
, k2

l2
), l1 = 1, . . . , s1, l2 = 1, . . . , s2, be vertices of K1

t1 ×
K2

t2 . For all t1 = 1, . . . ,m1, t2 = 1, . . . , m2, K1
t1 × K2

t2 is equal to the set
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(k1
1, k

2
1), (k

1
2, k

2
2), . . . , (k

1
s1−1, k

2
s1−1), (k

1
s1

, k2
s1

),
(k1

1, k
2
2), (k

1
2 , k

2
3), . . . , (k

1
s1−1, k

2
s1

), (k1
s1

, k2
1),

...
(k1

1, k
2
s1

), (k1
2, k

2
1), . . . , (k

1
s1−1, k

2
s1−2), (k

1
s1

, k2
s1−1)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

in case of s1 = s2,

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(k1
1, k

2
1), (k

1
2 , k

2
2), . . . , (k

1
s1−1, k

2
s1−1), (k

1
s1

, k2
s1

),
(k1

1, k
2
2), (k

1
2 , k

2
3), . . . , (k

1
s1−1, k

2
s1

), (k1
s1

, k2
s1+1),

...
(k1

1, k
2
s2−s1+1), (k

1
2, k

2
s2−s1+2), . . . , (k

1
s1−1, k

2
s2−1), (k

1
s1

, k2
s2

)
(k1

1, k
2
s2−s1+2), (k

1
2 , k

2
s2−s1+3), . . . , (k

1
s1−1, k

2
s2

), (k1
s1

, k2
1)

...
(k1

1, k
2
s2

), (k1
2 , k

2
1), . . . , (k

1
s1−1, k

2
s1−2), (k

1
s1

, k2
s1−1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

if s1 � s2.
By the definition of the tensor product of graphs G1, G2 we get that

vertices (k1
l1

, k2
l2

), (k1
l′1

, k2
l′2

) in G1 × G2 are joined by an edge if, and only if,
k1

l1
and k1

l′1
, k2

l2
and k2

l′2
comprise edges in G1, G2 respectively. All vertices

ki
li
, ki

l′i
are elements of the clique Ki

ti , and so they are joined by an edge if,
and only if, li �= l′i. Therefore vertices written down in rows of the above sets
K1

t1 × K2
t2 are maximal cliques in G1 × G2. If t1 �= t′1, then there is no vertex

in K1
t1 × K2

t2 forming edges with all elements of some vertex-disjoint maximal
clique of K1

t′
1
× K2

t′
2
.

Thus
⋃m1

t1=1

⋃m2
t2=1 K1

t1 ×K2
t2 = V (G1×G2) is a sum of m1m2s2 vertex-disjoint

maximal cliques with s1 elements.
Applying the induction we get the claim. �

Theorem 2. Let R be a finite ring such that R/J is isomorphic to R1×· · ·×Rn

and V
(
G(Ri,Δi)

)
has a partition into mi maximal cliques Ki with |Ki| = si
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for all i = 1, . . . , n and let min{si; i = 1, . . . , n} = s. There exists a partition
of V

(
G(R,Δ)

)
into (m1...mn)(s1...sn)

s |J | maximal cliques with ω
(
G(R,Δ)

)
= s.

Proof. In view of Theorem 1, we have G(R/J,ΔJ ) � G(R1,Δ1)×G(R2,Δ2)×
· · · × G(Rn,Δn).
By Proposition 2, V

(
G(R/J,ΔJ )

)
has a partition into (m1...mn)(s1...sn)

s maxi-
mal cliques with ω

(
G(R,Δ)

)
= s. Proposition 1 now yields to desired claim.

�

Corollary 1. Let R be a ring such that R/J is isomorphic to the direct product
of n copies of F (q). There exists a partition of the vertex set V

(
G(R,Δ)

)
into

(q + 1)n−1|J | maximal cliques with ω
(
G(R,Δ)

)
= q + 1. The ring of lower

triangular n × n matrices over the field F (q) is one example of such rings and

|J | = q
n2−n

2 in this case.

Theorem 3. Let R,R′ be finite rings. G(R,Δ) and G(R′,Δ′) are isomor-
phic if, and only if, |R| = |R′| and R/J =

∏n
i=1 Ri, R′/J ′ =

∏n
i=1 Rσ(i),

where Ri, Rσ(i) are full matrix rings over finite fields, with a permutation σ
of {1, 2, . . . , n} such that αi : Ri → Rσ(i) is an isomorphism or an anti-
isomorphism.

Proof. “ ⇒” This is straightforward from [7, Corollary 6.8].
“ ⇐” An isomorphism or an anti-isomorphism αi : Ri → Rσ(i) gives G(Ri,Δi)
� G(Rσ(i),Δσ(i)) for all i = 1, . . . , n ([7, 2.4 (c)], [10, Theorem 5.2, Remark
5.4]). Hence G(R/J,ΔJ ) and G(R′/J ′,Δ′

J ′) are isomorphic and from the con-
nection between G(R/J,ΔJ ) and G(R,Δ) we get an isomorphism of G(R,Δ)
and G(R′,Δ′). �

Any finite ring with identity is semiperfect. By the structure theorem
of such rings [2] R/J is artinian semisimple and idempotents lift modulo J .
Hence it has a unique decomposition into a direct product of simple rings:

R/J � R1 × R2 × · · · × Rm.

According to Theorem 1 we get G(R/J,ΔJ ) �
⊗m

i=1 G(Ri,Δi). Any simple
ring Ri is isomorphic to a full matrix ring Mni

(qi) over the finite field with qi

elements:

G(R/J,ΔJ ) �
m⊗

i=1

G(Mni
(qi),Δi).

It follows then that the description of the projective line over any finite ring
can be based on the projective line over the full matrix ring P(Mn(q)). There is
a bijection between P(Mn(q)) and the Grassmannian G (n, 2n, q), i.e. the set of
all n-dimensional subspaces of V (2n, q) [4, 2.4 Theorem.]. Consequently, any
point of P(Mn(q)) can be expressed by using of a basis of the corresponding
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n-dimensional subspace of V (2n, q). The point

Mn(q)

⎛

⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎣

q11 q12 . . . q1n

q21 q22 . . . q2n

...
...

...
...

qn1 qn2 . . . qnn

⎤

⎥
⎥
⎥
⎦

,

⎡

⎢
⎢
⎢
⎣

q′
11 q′

12 . . . q′
1n

q′
21 q′

22 . . . q′
2n

...
...

...
...

q′
n1 q′

n2 . . . q′
nn

⎤

⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎠

corresponds, for instance, to the system of vectors

(q11 q12 . . . q1n q′
11 q′

12 . . . q′
1n)

(q21 q22 . . . q2n q′
21 q′

22 . . . q′
2n)

...
...

...
...

...
...

...
...

(qn1 qn2 . . . qnn q′
n1 q′

n2 . . . q′
nn)

.

The distant graph of the projective line over the full matrix ring G(Mn(q),
Δ), is isomorphic to the graph on G (n, 2n, q) whose vertex set is G (n, 2n, q)
and whose edges are pairs of complementary subspaces X,Y ∈ G (n, 2n, q):

∧

X,Y ∈G (n,2n,q)

XΔY ⇔ X ⊕ Y = V (2n, q).

Another graph on G (n, 2n, q) is the well known Grassmann graph, which
has the same set of vertices as the distant graph but X,Y ∈ G (n, 2n, q) form
an edge, whenever both X and Y have codimension 1 in X + Y , i.e. they are
adjacent (in symbols: ∼ ):

∧

X,Y ∈G (n,2n,q)

X ∼ Y ⇔ dim
(
(X + Y )/X

)
= dim

(
(X + Y )/Y

)
= 1.

G(Mn(q),Δ) can be described using the notion of the Grassmann graph [6,
Theorem 3.2]. These graphs have been thoroughly investigated by many
authors, for example in [5,6,20]. In [19] finite Grassmann graphs are uniquely
determined as distance-regular graphs, however, this special case of the Grass-
mann graph G (n, 2n, q) is not characterized.
We can give the number of vertices of G(Mn(q),Δ) (cf. [15, p. 920]), i.e. the
number of n-dimensional subspaces of V (2n, q):

|V (
G(Mn(q),Δ

)| =
(q2n − 1)(q2n − q) . . . (q2n − qn−1)
(qn − 1)(qn − q) . . . (qn − qn−1)

=
[

2n
n

]

q

.

The degree of a vertex v ∈ G(Mn(q),Δ) is equal to the number of
n-dimensional subspaces of V (2n, q) that are disjoint to any given n-dimensional
subspace:

deg(υ) =
(q2n − qn)(q2n − qn+1) . . . (q2n − q2n−1)

(qn − 1)(qn − q) . . . (qn − qn−1)
= qn2

.
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It means that deg(v) = |Mn(q)| and generally if v ∈ G(R,Δ) then deg(υ) =
|R|, which is also due to the fact that GL2(R) acts transitively on P(R). Max-
imal cliques in G(Mn(q),Δ) correspond to n-spreads in the 2n-dimensional
vector space over F (q). It is known that such an n-spread contains qn + 1 n-
dimensional vector subspaces. Any partition of the vertex set V

(
G(Mn(q),Δ)

)

into maximal cliques corresponds to an n-parallelism of the vector space
V (2n, q). Therefore and on account of [3, Theorem 1.], which has been also
proved (independently) by Denniston [13], there exists a partition of the set
V

(
G(M2(q),Δ)

)
into q2+q+1 maximal cliques with ω

(
G(M2(q),Δ)

)
= q2+1

for any q.
We pay attention now to the distant graph G(M2(2),Δ) which has 35

vertices.

Theorem 4. The vertex set of the distant graph G(M2(2),Δ) has 240 distinct
partitions into maximal cliques. They fall into two orbits of 120 each under
the action of the automorphism group of G(M2(2),Δ).

Proof. The proof follows directly from [17, Theorem 17.5.6 ii]. �

We can identify the graph G
(
Mn(q),Δ

)
and the corresponding Grass-

mannian G (n, 2n, q). Then all automorphisms of the distant graph G(M2(2),Δ)
are linear or superpositions of linear with the automorphisms defined by dual-
ity and annihilator mapping; see [20]. Automorphisms of the first type fix the
two orbits of partitions and those of the second type exchange them. Below
we write down one partition from each orbit. In both tables (Tables 1 and
2) the seven members of the partition are maximal cliques of size five, which
are labelled as I, II, . . . , VII. Thereby each point of the graph G(M2(2),Δ)
is described in terms of two basis vectors of its corresponding subspace in
G (2, 4, 2).

Table 1. Partition 1

I II III IV V VI VII

(0010) (1001) (1011) (1010) (1010) (1001) (1001)
(0001) (0101) (0100) (0100) (0110) (0100) (0110)
(1000) (1000) (1000) (1011) (1000) (1011) (1010)
(0100) (0111) (0110) (0111) (0101) (0101) (0111)
(1010) (1010) (0010) (0010) (0010) (0110) (0100)
(0101) (0001) (0101) (1101) (1001) (0001) (0001)
(1001) (1110) (1010) (0110) (1110) (1000) (0010)
(0111) (1101) (1001) (0101) (0001) (0010) (1100)
(1011) (0100) (0001) (1000) (0100) (1100) (1000)
(0110) (0010) (1100) (0001) (0011) (0011) (0011)
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Table 2. Partition 2

I II III IV V VI VII

(0010) (1001) (1000) (1000) (1010) (1011) (1010)
(0001) (0101) (0110) (0101) (0100) (0101) (0111)
(1000) (1011) (1001) (1010) (1011) (1000) (1001)
(0100) (0100) (0100) (0110) (0111) (0111) (0110)
(1010) (1110) (1010) (0010) (0110) (1010) (1000)
(0101) (1101) (0001) (1001) (0101) (1001) (0011)
(1011) (0110) (0010) (1110) (0010) (0100) (0010)
(0110) (0001) (0101) (0001) (1101) (0010) (1100)
(1001) (1000) (0011) (0100) (1000) (0001) (0100)
(0111) (0010) (1100) (0011) (0001) (1100) (0001)

We study now cliques formed by vertices of any two maximal cliques
of the first partition (Table 1). We are interested only in cliques containing
vertices of both maximal cliques. We see that there exists exactly one such
maximum clique with four elements for any two different maximal cliques. As
an example, we show edges formed by vertices of cliques I and II (Fig. 2).

Figure 2. Cliques formed by vertices of cliques I and II
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Figure 3. Maximum cliques formed by vertices of cliques I,
II and III

Edges comprised by vertices of a maximum clique are represented by thicker
lines.

So, for any two of three vertex-disjoint maximal cliques we have one
maximum clique and we checked that three such maximum cliques are of two
distinct kinds: either any two of them have one common vertex (Fig. 3) or they
are pairwise disjoint (Fig. 4). The same result can be drawn for the second
partition.

By direct verification we found that the maximal cliques I, II, . . . , VII
can be seen as the points of the projective plane of order 2, where three points
form a line of this plane if, and only if, the three maximal cliques are of the
second kind (Fig. 5).

Thus we get a simple alternative construction of the Fano plane described
by Hirschfeld in [17, Theorem 17.5.6] in projective geometry language.

It is not known whether there exists a partition of the vertex set of any
graph G(Mn(q),Δ). But this problem is well known as the problem about
the existence of an n-parallelism in combinatorial designs. Sarmiento in [21]
described the partition of the design corresponding to that of V

(
G(M3(2),Δ)

)
.

4. The Classification of Distant Graphs

We start with a characterization of the distant graph of the projective line
over a finite local ring.

Theorem 5. Let R be a finite local ring. There exists a partition of the vertex
set of the distant graph G(R,Δ) into |J | maximal cliques with ω

(
G(R,Δ)

)
=

|R/J | + 1.
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Figure 4. Maximum cliques formed by vertices of cliques I,
II and IV

Proof. If R is a finite local ring, then J is the maximal ideal of R, R/J is a
field, and so G(R/J,ΔJ ) is a complete graph with |R/J | + 1 vertices. Accord-
ing to the connection between G(R/J,ΔJ ) and G(R,Δ) described in Sect. 3,
taking into account Remark 1 we obtain that vertices R(ai, bi) of G(R,Δ) cor-
responding to the vertex R/J(a, b) of G(R/J,ΔJ ) are not joined by an edge,
while they form an edge with any other vertex of G(R,Δ). This finishes the
proof. �

Let now vj
i , v

l
k be vertices of G(R,Δ) and let V

(
G(R,Δ)

)
, E

(
G(R,Δ)

)
be

the sets of vertices and edges of this graph, respectively. We described G(R,Δ)
explicitly in case of a finite local ring R:

V
(
G(R,Δ)

)
= {vj

i ; i = 1, . . . , |J |, j = 1, . . . , |R/J | + 1},

E
(
G(R,Δ)

)
= {(vj

i , v
l
k); j �= l, i, k = 1, . . . , |J |}.
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Figure 5. Projective plane of order 2

The sets {vj
i ; i = 1, . . . , |J |}, where j ∈ {1, . . . , |R/J |+1} is fixed, are maximal

anticliques and the sets {vj
i ; j = 1, . . . , |R/J | + 1}, where i ∈ {1, . . . , |J |} is

fixed, are maximal cliques.
Note that Theorem 5 and the above description of G(R,Δ) remain true in case
of an infinite commutative local ring R.

Any finite commutative ring is the direct product of local rings [18, VI.2].
Thus the distant graph of the projective line over any finite commutative ring
is known by the above and Theorem 1.
Every finite ring is isomorphic to the direct product of rings of prime power
order [18, I.1]. Hence the distant graph of the projective line over a finite ring
can be also described as the tensor product of the distant graphs of the pro-
jective lines over rings of prime power order.
We classify below distant graphs G(R,Δ), where R is an indecomposable ring
up to order p5, p prime. We use some facts and the notations that were estab-
lished in [12]. Namely, any finite ring can be represented as R = S ⊕M , where
S =

⊕m
i=1 Ri, Ri are primary rings and M is a bimodule over the ring S. M

is also an additive subgroup of J , so M ⊆ J and we thus get R/J � S/J .
In the case of p, p2 for any p we get complete graphs of order p+1, p2 +1 and
the graph G(R,Δ), where R is local and |R| = p2, |J | = p. If |R| = p3 then we
have three graphs G(R,Δ) for any p: the complete graph of order p3 + 1, the
graph where R is local and |J | = p2 and the graph of the projective line over
the ring of lower triangular 2 × 2-matrices over a field F (p), which is a sum of
p2 + p vertex-disjoint maximal cliques with ω

(
G(R,Δ)

)
= p + 1.
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Theorem 6. Let R be an indecomposable ring of order p4, p prime. There are
exactly five nonisomorphic graphs G(R,Δ) for any p. These are:

1. The complete graph of order p4 + 1;
2. The graph on the projective line over a local ring with |J | = p2;
3. The graph on the projective line over a local ring with |J | = p3;
4. The graph with the vertex set which has a partition into p3 + p2 maximal

cliques with ω
(
G(R,Δ)

)
= p + 1, (R/J = F (p) × F (p));

5. G(M2(p),Δ) (described in Sect. 3).

Proof. The proof is straightforward from the classification of rings of order p4

in [12,14], Theorems 1, 5 and the connection between G(R,Δ) and G(R/J,ΔJ ).
�

Theorem 7. Let R be an indecomposable ring of order p5, p prime. There are
exactly six nonisomorphic graphs G(R,Δ) for any p. These are:

1. The complete graph of order p5 + 1;
2. The graph on the projective line over a local ring with |J | = p3;
3. The graph on the projective line over a local ring with |J | = p4;
4. The graph with the vertex set which has a partition into p4 + p3 maximal

cliques with ω
(
G(R,Δ)

)
= p + 1, (R/J = F (p) × F (p));

5. The graph with the vertex set which has a partition into p4 + p2 maximal
cliques with ω

(
G(R,Δ)

)
= p + 1, (R/J = F (p) × F (p2));

6. The graph with the vertex set which has a partition into (p+1)2 maximal
cliques with ω

(
G(R,Δ)

)
= p + 1, (R/J = F (p) × F (p) × F (p)).

Proof. The proof for 1., 2., 3. is similar to the proof of the previous theorem.
It follows immediately from Theorem 5 and the classification of rings of order
p5 in [12].
By characterization of the ring part S in the representation R = S ⊕M in [12]
we obtain three types of rings with the following ring part S:
(a) R1 × R2, where R1, R2 are

• proper local rings of order p2, p3 or a field F (p) such that |R1||R2| =
p4;

• proper local rings of order p2 or a field F (p) such that |R1||R2| = p3;
• fields F (p).

In this case R/J = F (p) × F (p).
(b) F (p2) × F (p) or F (p) × F (p2). It is necessary to explain how these two

ring parts represent two distinct rings. And that is, they have different
module parts: F (p2)MF (p) and F (p)MF (p2) respectively. For all these rings
R/J = F (p) × F (p2).

(c) F (p) × F (p) × F (p) and also R/J = F (p) × F (p) × F (p).
Theorem 2 and Corollary 1 now complete the proof. �

When this paper was finished we became aware of the recent preprint by
Silverman (arXiv:1612.08085) which in part is addressed to the same topic.
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Faculty of Mathematics and Computer Science
University of Warmia and Mazury in Olsztyn
S�loneczna 54 Street
10-710 Olsztyn
Poland
e-mail: amatras@uwm.edu.pl

Edyta Bartnicka
e-mail: edytabartnicka@wp.pl

Received: March 2, 2017.

Accepted: July 5, 2017.


	The Distant Graph of the Projective Line Over a Finite Ring with Unity
	Abstract
	1. Introduction
	2. Preliminaries
	3. Construction of the Distant Graph on the Projective Line
	4. The Classification of Distant Graphs
	Open Access
	References




