Erratum to: On the Closure of TranslationDilation Invariant Linear Spaces of Polynomials

J. M. Almira and L. Székelyhidi

Erratum to: Results. Math.
 DOI 10.1007/s00025-015-0494-7

In our recently published paper "On the closure of translation-dilation invariant linear spaces of polynomials" (see original article), there was an error. Namely, the decomposition of Ω_{V} given after Lemma 8 in original article does not hold for $d \geqslant 3$ for some TDI-subspaces of $\mathbb{R}[x]$. For example, the TDIsubspace $V=\operatorname{span}\left\{x_{1}^{a} x_{2}^{b} x_{3}^{c}: a \leqslant 1, b \leqslant 2\right\}$ of $\mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ does not possess such a decomposition. This fact was pointed to the authors by Prof. Georg Zimmermann after publication of the paper. Below we give a new proof of the main result of original article avoiding such a hypothesis. We use the notation introduced in original article.

Theorem 1. If a sequence in a TDI-subspace in the polynomial ring $\mathbb{R}[x]$ converges pointwise to a polynomial, then this polynomial belongs to the subspace, too.

Proof. We note that if V is a TDI-subspace of $\mathbb{R}[x]$ such that there exist natural numbers N_{1}, \ldots, N_{d} satisfying

$$
\Omega_{V}=\bigcup_{k=1}^{d} Z_{i}
$$

[^0]where $Z_{i}=\left\{\alpha \in \mathbb{N}^{d}: \alpha_{i} \leqslant N_{i}\right\}$ for $i=1,2, \ldots, d$, then our statement is proved in original article, in Case 1 in the proof of Theorem 9 in original article.

Now let V be an arbitrary TDI-subspace of $\mathbb{R}[x]$ and let the sequence $\left(p_{n}\right)_{n \in \mathbb{N}}$ of elements of V converge pointwise to the polynomial p. Assume that

$$
p(x)=\sum_{|\gamma| \leqslant \operatorname{deg}(p)} a_{\gamma} x^{\gamma}
$$

with $a_{\alpha} \neq 0$ for some $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ which is not in Ω_{V}. We define
$\widetilde{\Omega}=\left\{\beta: \beta_{k}<\alpha_{k}\right.$ for at least one $\left.k\right\}$, and $\widetilde{V}=\operatorname{span}\left\{x^{\alpha}: \alpha \in \widetilde{\Omega}\right\}$.
Then \widetilde{V} is a TDI-subspace of $\mathbb{R}[x]$ and $\Omega_{V} \subseteq \widetilde{\Omega}$. Indeed, assuming that β is in Ω_{V} with $\beta \notin \widetilde{\Omega}$ gives $\beta_{k} \geqslant \alpha_{k}$ for all k, so $\alpha \leqslant \beta$, hence α is in Ω_{V}, a contradiction.

Obviously, $\widetilde{\Omega}=\bigcup_{k=1}^{d} Z_{k}$, where $Z_{k}=\left\{\beta: \beta_{k}<\alpha_{k}\right\}$. Hence, by our remark above, we conclude that p is in \widetilde{V} which, by our construction, is impossible. This proves the theorem.

We note that Lemma 8 of original article is not needed in this proof.

J. M. Almira

Departamento de Matemáticas
Universidad de Jaén, E.P.S. Linares
Campus Científico Tecnológico de Linares
Cinturón Sur s/n
23700 Linares
Spain
e-mail: jmalmira@ujaen.es
L. Székelyhidi

Institute of Mathematics
University of Debrecen
Egyetem tér 1
Debrecen 4032
Hungary
and
Department of Mathematics
University of Botswana
4775 Notwane Rd.
Gaborone
Botswana
e-mail: 1szekelyhidi@gmail.com

[^0]: The online version of the original article can be found under doi:10.1007/s00025-015-0494-7.

