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Abstract—We developed tsunami fragility functions using

three sources of damage data from the 2018 Sulawesi tsunami at

Palu Bay in Indonesia obtained from (i) field survey data (FS), (ii) a

visual interpretation of optical satellite images (VI), and (iii) a

machine learning and remote sensing approach utilized on multi-

sensor and multitemporal satellite images (MLRS). Tsunami

fragility functions are cumulative distribution functions that

express the probability of a structure reaching or exceeding a

particular damage state in response to a specific tsunami intensity

measure, in this case obtained from the interpolation of multiple

surveyed points of tsunami flow depth. We observed that the FS

approach led to a more consistent function than that of the VI and

MLRS methods. In particular, an initial damage probability

observed at zero inundation depth in the latter two methods

revealed the effects of misclassifications on tsunami fragility

functions derived from VI data; however, it also highlighted the

remarkable advantages of MLRS methods. The reasons and

insights used to overcome such limitations are discussed together

with the pros and cons of each method. The results show that the

tsunami damage observed in the 2018 Sulawesi event in Indonesia,

expressed in the fragility function developed herein, is similar in

shape to the function developed after the 1993 Hokkaido Nansei-

oki tsunami, albeit with a slightly lower damage probability

between zero-to-five-meter inundation depths. On the other hand,

in comparison with the fragility function developed after the 2004

Indian Ocean tsunami in Banda Aceh, the characteristics of Palu

structures exhibit higher fragility in response to tsunamis. The two-

meter inundation depth exhibited nearly 20% probability of dam-

age in the case of Banda Aceh, while the probability of damage was

close to 70% at the same depth in Palu.

Keywords: Fragility function, tsunami, 2018 Sulawesi,

earthquake.

1. Introduction

Tsunami fragility functions (TFFs) are cumulative

distribution functions that express the probability of a

structure reaching or exceeding a particular damage

state in response to a specific value of tsunami

intensity measure or another engineering demand

parameter. TFFs can be applied to estimate building

damage in future scenarios together with economic

losses (Wiebe and Cox 2013; Adriano et al. 2014;

Rehman and Cho 2016); however, discussion of the

accuracy of estimation when applying TFFs remains

(Moya et al. 2017). Nevertheless, TFFs serve as a

proxy for improvements of building codes where

tsunami loading must be considered (Condori Uribe

2013; Chock et al. 2016), or when analyzing syn-

thetic future damage scenarios (Moya et al. 2018c).

The tsunami intensity measure can be represented by

the tsunami inundation depth; however, in most cases

it is not enough to have a unique explanatory variable

for a complex phenomenon such as tsunami damage.
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Tsunami flow velocity and hydrodynamic force have

also been used independently (Song et al. 2017;

Aránguiz et al. 2018) and combined (Charvet et al.

2017) to develop TFFs and fragility surfaces,

respectively. To develop a TFF, it is necessary to

compile a set of damage classification data samples

and to correlate these with the tsunami intensity

measures for sample locations following a particular

statistical model. A review of early developed TFFs

can be found in Tarbotton et al. (2015), Nanayakkara

and Dias (2016). TFFs are generally empirical in

nature, derived from the damage and inundation data

collected from a field survey after a major disaster.

Due to uncertainties in the real origin and cause of

damage to buildings observed in their ultimate state

during postdisaster surveys, TFF may incorporate

damage to buildings produced by strong motion or

tsunami alone, or the combination of both. Never-

theless, damage and destruction within an inundation

area can be clearly related to a total or partial con-

tribution of the tsunami hazard. To clearly separate

the effects of earthquake and tsunami forces in a

structure, analytical fragility functions can be used;

however, this falls outside the scope of this paper.

Efforts to develop analytical fragility functions can

also be found in the literature (Alam et al. 2018;

Medina et al. 2019).

In this study, we will concentrate only on empir-

ical TFFs. In the effort to develop TFFs, several field

teams may measure inundation depths and record

later damage levels at affected asset locations.

However, this activity is time-consuming and may

place research teams at risk of harm in tsunami

affected areas. Moreover, it may disrupt relief activ-

ities or increase social anxiety for external help if the

survey tasks are not well-managed. Thus, other

methods to obtain information for TFF development

which avoid these issues are necessary. To that end,

remote sensing technology, tsunami numerical sim-

ulation and geospatial analysis aid researchers to

obtain tsunami damage information in a noninvasive

manner (Koshimura et al. 2009a; Mas et al. 2012;

Moya et al. 2018b; Adriano et al. 2019).

In this study, we developed TFFs using three

types of building damage data obtained from differ-

ent methods. First, we used conventional field survey

data; then, we used a visual interpretation of optical

satellite images, and finally, we used a machine

learning approach utilized on multisensor and multi-

temporal satellite images. Here, TFFs are developed

using the damage data of the 2018 Sulawesi tsunami

at Palu Bay in Indonesia. Sulawesi Island has expe-

rienced more than 15 tsunamis since 1820

(Pelinovsky et al. 1997), most of them from a seismic

source. On September 28, 2018 at 18:02 local time, a

shallow strike-slip earthquake occurred near Palu

City (Heidarzadeh et al. 2019; Gusman et al. 2019;

Socquet et al. 2019; Ulrich et al. 2019). The 7.5 Mw

magnitude earthquake generated tsunami waves

which arrived onshore within minutes with a short

period, according to tidal gauge records (Muhari

et al. 2018). Postevent analysis has found that in

addition to the seismic generating source, tsunami

waves were also caused by a series of submarine

landslides that contributed to the generation of waves

(Arikawa et al. 2018; Kijewski-Correa and Robertson

2018; Carvajal et al. 2019; Takagi et al. 2019;

Nakata et al. 2020). To develop TFFs in this study,

we will concentrate our analysis on tsunami damaged

buildings in central Palu City, as shown in Fig. 1.

2. Posttsunami Surveys

Postevent field reconnaissance reports (Kijewski-

Correa and Robertson 2018; Robertson 2018) have

suggested that most of the structures in Palu City

consist of light timber frames, followed by low-rise

reinforced concrete structures with unreinforced

masonry infill walls. Accordingly, in the same

reports, the authors suggested that the earthquake

shaking did not damage or only slightly damaged

these structures. However, tsunami hydrodynamic

and debris impact forces may have been the principal

causes of failure and collapse in the waterfront area

of Palu Bay. In contrast, other areas with liquefaction

showed that lateral spreading was the main cause for

collapse. Table 1 summarizes the available reports

conducted and field survey data collected after the

disaster and compiled in this study.

Muhari et al. (2018) first reported the observa-

tions from their field survey. Based on the tide gauge

from Pantoloan port, they concluded that this event

presented particularly short period tsunami waves

2438 E. Mas et al. Pure Appl. Geophys.



arriving very rapidly to the coast of Palu Bay with

maximum 8-m height and 50-m inundation distance

for the area surveyed. In addition, tsunami depth

decreased rapidly for dense urban areas. Flow depths

up to 1 m were found inside houses. For these rea-

sons, the report also suggested that the event was

possibly generated by additional sources other than

the seismic seafloor deformation.

On the other hand, Putra et al. (2019) surveyed

tsunami deposits along the coastline of Palu Bay. In

this field survey, tsunami heights below 8 m were

found at six locations where tsunami deposits were

investigated. However, maximum inundation dis-

tance was reported as 310 m.

The next field survey, reported by Widiyanto

et al. (2019), measured tsunami inundation and run-

up across 18 sites in Palu Bay. A maximum run-up

height of approximately 10.5 m was found. Similarly,

a maximum inundation distance of 510 m was

reported here. In addition, rapid arrival times for

tsunami waves were reported by survivors approxi-

mately 3 to 8 min after the earthquake (Fig. 2).

Widiyanto et al. (2019) also suggest some indicators

of underwater landslides. During the same week of

this survey, another group from Japan and Indonesia

(Arikawa et al. 2018) was collecting information in

the forms of geomorphological changes, tsunami

traces and eyewitness testimonies. Landslide traces

were found in six areas on both sides of the bay.

Later, Kijewski-Correa and Robertson (2018) sug-

gested a total of 13 locations for landslides based on

survivor video and visual comparison of before and

after satellite imagery of the area. These locations

were used by Pakoksung et al. (2019) for tsunami

simulations and verified with measurements provided

by the Geological Agency of Indonesia (Fig. 2). For

Figure 1
Palu Bay in Sulawesi Island, Indonesia, and the area of study shown in the right panel
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tsunami height measurements, Syamsidik et al.

(2019) reported measurements from 3 to 5 m in the

city of Palu (Fig. 2), while Arikawa et al. (2018)’s

survey reported heights from 2 to 6 m in Palu Bay,

with higher values observed towards the central and

southern areas of the bay.

Similarly, Koshimura et al. (2019) conducted a

field survey to identify tsunami impacts on buildings.

Here, RTK-GPS measurements were obtained to

delimit the tsunami inundation and inland penetra-

tion. In addition, flow depths and structural damage

information were gathered. A maximum of 6 m of

tsunami height was observed during this survey.

Again, nonseismic sources were suggested in addition

to the earthquake to explain short period waves and

rapid arrival to the coast (Fig. 2).

Kijewski-Correa and Robertson (2018) presented

a follow-up report to the prompt virtual assessment

report published by Robertson (2018). The group

visited the affected areas at the end of October 2018

and published their observations (Fig. 2) together

with Mikami et al. (2019). In Kijewski-Correa and

Robertson (2018), the interested reader may find

general descriptions and observations of the event

and its impact. In addition, the damage from the

earthquake and liquefaction from a structural engi-

neering point of view are presented. In contrast,

Mikami et al. (2019) conducted an aerial photo-

graphic survey with UAV and a field survey of

tsunami inundation and run-up heights. They strongly

suggested that landslide sources were present; some

of those were discussed in greater detail by Sassa and

Takagawa (2019), Takagi et al. (2019) and Nakata

et al. (2020).

According to Omira et al. (2019), ten sectors of

large coastal collapse were identified during their

field survey. In addition, tsunami run-up and inun-

dation heights of 9.1 m and 8.7 m, respectively, were

measured in Palu Bay.

Finally, another group that visited the affected

area and conducted a field survey reported their

observations in Paulik et al. (2019). A large number

of data points of flow depths, buildings, roads and

electricity infrastructure damage were shared with the

scientific community (Fig. 2). The combination of

these data and previous survey data represents the

main input used in this study to construct the TFF of

the Palu Bay area.

3. Data and Preprocessing

In this study, we have used the available field data

surveyed by different groups within a common area

Table 1

Summary of field surveys conducted after the disaster

References Field

Survey

period

Comments

Muhari et al.

(2018)

Oct. 4–6,

2018

Suggested a short period tsunami

based on tidal records with

heights above 8 meters

Putra et al. (2019) Oct. 8–18,

2018

Surveyed tsunami deposits and

heights of approximately 8

meters

Widiyanto et al.

(2019)

Oct.

11–19,

2018

Surveyed run-up values from 2

to 10 meters. Inundation

distance was also measured

from 80 to 510 meters

Syamsidik et al.

(2019)

Oct. 12–

Nov. 10,

2018

Measured lower tsunami depths

on the southwest edge of Palu

Bay compared to the

northeastern side

Arikawa et al.

(2018)

Oct.

12–17,

2018

Searched for evidence of

landslide traces and identified

sites of potential subsidence

along the coast

Koshimura et al.

(2019)

Oct.

21–22,

2018

Measured tsunami inland

penetration and found major

impacts within the first 200 m

inland in central Palu

Kijewski-Correa

and Robertson

(2018)

Oct.

27–31,

2018

Structural reconnaissance report.

Visited the area together with

Mikami et al. (2019)

Mikami et al.

(2019)

Oct.

27–31,

2018

Measured inundation heights

and run-up heights over 6

meters

Takagi et al.

(2019)

Nov. 7–10,

2018

Performed a bathymetric survey

and simulation of tsunami

propagation from a possible

landslide source

Omira et al. (2019) Nov. 7–11,

2018

Measured maximum values of

8.7-m inundation height and

9.1-m run-up height

Paulik et al. (2019) Nov.

13–17,

2018

Measured flow depths and

classified damage to

buildings, roads and utility

poles
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concentrated within the central Palu Bay area (see

Figs. 1, 2).

The data required to develop TFFs are paired

measurements corresponding to (i) a level of tsunami

damage for a building and (ii) the tsunami inundation

depth measured at the same location. Several meth-

ods can be used to obtain this information and have

been described previously in the literature (Mas et al.

2012; Aránguiz et al. 2018). To summarize them, the

following methods can be considered for each nec-

essary parameter:

[1] Tsunami Inundation Depth

– Posttsunami field survey

– Tsunami inundation simulation

– Geospatial interpolation (surface from sur-

veyed points)

[2] Tsunami Building Damage Classification

– Posttsunami field survey

– Visual interpretation using satellite remote

sensing

– Machine learning algorithms using satellite

remote rensing

3.1. Tsunami Inundation Depth

First, we compiled the field survey data published

by five different groups to obtain a comprehensive

tsunami inundation depth database for central Palu

City area. To estimate the tsunami inundation depth,

we used spatial interpolation methods based on all

available field survey points. Next, we calculated the

relative tsunami height of all surveyed depth points

by adding the topographic height acquired from a

digital elevation model (DEM) provided by the

Geospatial Information Agency of Indonesia (Badan

Informasi Geospasial, Indonesia - BIG). The DEM is

a raster dataset of 15-m resolution with artificial zero

elevations added towards a shoreline digitized from

Figure 2
Top: field survey data color-coded by author. Bottom: the same data with tsunami depth used to create the tsunami inundation surface
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pre-event DigitalGlobe WorldView-2 satellite image

data of February 20, 2018.

We then created virtual points at the shoreline and

run-up boundaries based on the survey data.

Ys ¼ ðy þ aS0Þe
2x
3a � aS0 ð1Þ

We applied Eq. 1, as suggested by Smart et al.

(2016), to the estimation of water depth profiles to

calculate the tsunami height at shoreline points (Ys)

with respect to the nearest survey point (y) obtained

based on Voronoi cells from the survey data. We

assumed a value of 90 for the roughness aperture

parameter (a), which is a value between the recom-

mended values (Smart et al. 2016) corresponding to

‘‘undulating open ground’’ and ‘‘light buildings,

coconut plantations,’’ which we judge to better

describe the inland conditions of Palu Bay. Similarly,

based on the analysis of slopes using the DEM data of

the area of study, an average value of 0.1 was decided

for S0.

Finally, the tsunami height values are interpolated

within the inundation area. The inundation area was

obtained based on the area reported by Pakoksung

et al. (2019) and adjusted following the run-up data

compiled from field surveys used in this study, along

with a shoreline from pre-event satellite imagery.

The final correlation coefficient of points in the

inundation surface and from field surveys was 0.98.

Next, the DEM was subtracted from the resulting

surface to obtain a tsunami inundation depth surface

as shown in Fig. 3. We used the values from this

surface at the respective locations of buildings

classified by the two estimation methods that used

remote sensing (i.e., VI and MLRS).

3.2. Tsunami Building Damage Classification

Building damage classification based on posttsu-

nami field survey (Paulik et al. 2019), visual

interpretation using satellite remote sensing (Coper-

nicus EMS 2018) and a machine learning algorithm

applied on satellite imagery (Adriano et al. 2019) are

used to construct the TFF of the event. The original

damage classification and reclassification for the

three methods are summarized in Fig. 4 and Table 2.

In Fig. 4, the vertical line that divides the original

classification bars defines the reclassification criteria.

To the left side are ’damaged’ structures and to the

right side are ’other’. We carefully balanced the rates

of classes across methods.

4. Developing Tsunami Fragility Functions

Tsunami fragility functions provide a probabilistic

relationship between either tsunami hydrodynamic

features or tsunami intensity measure and building

damage (Koshimura et al. 2009a; Macabuag et al.

2016). TFFs are developed using empirical data and

linear regression models together with ordinary least

squares (OLS) parameter estimation (Suppasri et al.

2012b, a; Mas et al. 2012). Other methods proposed

in the literature (Charvet et al. 2017; Macabuag et al.

2016) use disaggregated data for generalized linear

Figure 3
The tsunami inundation depth surface calculated from the field survey data
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Figure 4
Distribution and classification of the damage data from three different sources and their reclassification to construct TFFs

Table 2

Summary of the damage data used to construct tsunami fragility functions

Reference No. of buildings in area of study Original damage classification Reclassified damage levels

Paulik et al. (2019) 307 a. Complete Damage Damaged (a, b)

b. Partial Damage (Unrepairable)

c. Partial Damage (Repairable) Non-Damaged (c, d)

d. No Damage

Copernicus EMS (2018) 1,772 a. Destroyed Destroyed (a)

b. Damaged Other (b, c)

c. Possibly Damaged

Adriano et al. (2019) 1,559 a. Destroyed Destroyed (a)

b. Damaged Other (b, c, d)

c. Possibly Damaged

d. No Damage

Vol. 177, (2020) Characteristics of Tsunami Fragility Functions 2443



models. For a comprehensive review of TFFs in the

literature, see Tarbotton et al. (2015), Charvet et al.

(2017). Since the predictive power of these models

has not yet been quantitatively assessed and remains

in discussion among researchers (Macabuag et al.

2016; Aránguiz et al. 2018), in this study, we will

develop TFFs using the OLS model methodology of

Koshimura et al. (2009b). In the OLS model, two sets

of data are necessary for correlation. As presented at

the beginning of Sect. 3, tsunami inundation depth

and building damage classification are the basic

datasets required for TFF development. The details of

the model methodology are described more precisely

in Koshimura et al. (2009b), Mas et al. (2012), Sup-

pasri et al. (2012b, a), Aránguiz et al. (2018). Herein,

we summarize the steps as follows:

1. Compile damage classification and tsunami inten-

sity measurement data by means of field survey,

remote sensing or other methods.

2. Assemble a one-to-one dataset of damage level

and tsunami intensity measurements.

3. Sort the sample data in descending order with

respect to the tsunami intensity measure.

4. Divide the sorted data into groups with the same

number of structures, where one group becomes

one point for the regression model.

5. Calculate the damage rate in each group and the

median value of tsunami intensity measurements

within the group.

6. Consider that the cumulative probability density

function of building damage follows the standard-

ized normal or log-normal distribution, where the

values of mean (l) and standard deviation (r) are
calculated by least-square fitting of the hydrody-

namic features and the inverse of the probability

on normal or log-normal papers.

7. Apply the OLS model to the median values and

damage rates of data points to estimate the

parameters of the statistical distribution’s cumu-

lative density function (i.e., l and r).

Figure 5
a Map of the damage data compiled through field survey by Paulik et al. (2019) b histogram of two classes of structures (i.e., damaged and

other) within the respective inundation depth intervals; c Tsunami Fragility Function developed from the field survey damage data

2444 E. Mas et al. Pure Appl. Geophys.



4.1. TFF Developed Only from Field Survey Data

In this case, damage data were collected from

field survey of tsunami damaged structures. Based on

observations, the damage classification is compiled

together with maximum inundation depth measure-

ments at structure locations. Adequate measurement

techniques need to be followed as suggested by

UNESCO-IOC (2014). Figure 5a shows the plot of

the damage data within the study area gathered by

Paulik et al. (2019) during field survey. We used this

information to construct a TFF for the area of study.

Following the OLS model methodology and the

reclassification of the data as shown in Table 2 and

Fig. 4, we plotted the histogram of number of

structures per group of inundation depths represented

by its median value (Fig. 5b). Finally, a TFF is

developed through regression analysis of the discrete

set of damage probabilities and median of inundation

depths of groups. The fitting calculation resulted in a

correlation coefficient of R2 ¼ 0:92, with 0.318 and

0.748 as the mean and standard deviations of the

function, respectively. The resulting function and the

points for fitting are plotted in Fig. 5c.

4.2. TFF Developed Through Visual Interpretation

of Damage from Satellite Images

In this case, damage data are obtained through

visual interpretation of pre- and postdisaster optical

satellite images where, despite the top-view limita-

tions in identifying front-view damages, this method

can directly identify washed-away or destroyed

structures. Here, we used the preliminary report of

building damage classifications provided by the

Copernicus Emergency Management System (EMS)

and published on the 2nd of October, 2018 (Coper-

nicus EMS 2018). Copernicus EMS damage data for

the area of study are shown in Fig. 6a, with damage

Figure 6
a Map of the damage data classified from visual inspection of satellite images (Copernicus EMS 2018); b histogram of two classes of

structures (i.e., damaged and other) within the respective inundation depth intervals; c Tsunami Fragility Function developed from the visual

inspection of damage in satellite imagery

Vol. 177, (2020) Characteristics of Tsunami Fragility Functions 2445



classified according to three levels: (i) destroyed, (ii)

damaged and (iii) possibly damaged. We reclassified

this information into (i) destroyed and (ii) other,

following the criteria described in Table 2 and Fig. 4.

The histogram in Fig. 6b shows a number of

structures damaged at very low inundation depths;

thus, in Fig. 6c, an initial damage probability at zero

inundation level is observed. Several possible expla-

nations for this result can be discussed as follows:

– Damage misclassification: Due to the limitation on

optical imagery resolution and the bias of the user

performing the classification, structures at lower

inundation levels might have been interpreted as

’destroyed’ when the actual level of damage was

significantly lower.

– Inundation depth surface: In places where no clear

field survey data on maximum run-up or flow depth

were available, the interpolation algorithm might

insert errors with considerably lower values

regardless of the damage classification of the

structures nearby.

– Explanatory variable: In this case, only tsunami

inundation depth is used to correlate the damage to

structures; however, because correlation does not

imply causation, it is possible that the damage

observed at lower depths could have been pro-

duced by other sources, such as the earthquake

itself, the tsunami flow or tsunami debris (Song

et al. 2017).

In addition, the empirical TFF related the structure

damage to the maximum inundation flow depth

measured after the disaster, while the damage might

actually have occurred before the flow depth or flow

velocity reached maximum values. In that case, the

damage probability is underestimated. Unfortunately,

methods to verify the time of damage of a large

number of structures exposed to tsunami forces are

very limited. A discussion on this matter can be found

in Suppasri et al. (2019).

Despite the unsettling damage probability at depth

zero, in this case the data were best fit to a normal

cumulative distribution, with a high correlation

coefficient R2 ¼ 0:97, and plotted as shown in

Fig. 6c using the resulting mean (1.287) and standard

deviation (1.210).

4.3. TFF Developed Using Machine Learning

Classification

In this case, damage data were obtained through

machine learning classification using a remote sens-

ing approach proposed by Adriano et al. (2019). The

work uses a multisensor and multitemporal approach

for damage classification. A multisensor approach

means, in this case, the use of synthetic aperture radar

(SAR) imagery (i.e., Sentinel-1 and ALOS-2 PAL-

SAR-2 datasets) and optical imagery (i.e., Sentinel-2

and PlanetScope datasets), while multitemporal refers

to pre- and postevent acquisitions. The machine

learning-based approach used a canonical correlation

forest algorithm (Rainforth and Wood 2015) to

classify building damage. Since the method used

building data provided by OpenStreetMap, a larger

number of structures were available here, though in

some cases polygons that are not correlated to actual

buildings might also be present. Figure 7a shows the

damage classification in the area of study accom-

plished by applying Copernicus EMS classes. In

Adriano et al. (2019), the same classes are used in

order to enable training and verification of their

method with the Copernicus data. The reclassification

for TFF development is shown in Table 2 and Fig. 4.

Similar to the visual interpretation method, the

histogram shown in Fig. 7b and the TFF of Fig. 7c

present an unexpected damage probability at zero

inundation. We believe that this TFF is estimating

damage probabilities at zero inundation depth for

similar reasons described for the TFF produced from

VI data. Nevertheless, in this case, a slightly higher

correlation coefficient than before, R2 ¼ 0:98, was

obtained for a normal cumulative distribution with

mean of 1.612 and standard deviation of 1.126.

5. Discussion

5.1. TFFs of Three Types of Damage Data

Three sets of damage data were used to develop

tsunami fragility functions (TFFs) for building struc-

tures affected by the 2018 Sulawesi tsunami at Palu

in Indonesia. Figure 8 shows the results of developing

TFFs with these data: (i) posttsunami field survey

data (FS), (ii) Copernicus EMS visual damage
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interpretation data (VI), and (iii) machine learning-

based remote sensing (MLRS) classification of

building damage data. The former uses tsunami

inundation depth measured in the field at the same

locations of the structures, while the latter two are

correlated to a tsunami inundation surface con-

structed from the aggregation of several

measurements in the field. Recall that since the

survey points are not located exactly at the sites of the

classified structures, the interpolation of an inunda-

tion depth surface becomes necessary.

First, we observe that the FS approach led to a

more consistent function than did VI and MLRS,

particularly due to the initial damage probability

observed at the zero inundation depth in the latter two

methods. One of the reasons that the FS approach

does not present a damage probability at zero

inundation depth might be the geospatial character-

istics of the sample, where most of the surveyed

points are located within the inundation area a certain

distance from the inundation limit. The inundation

limit is the zone of uncertainty and error of misclas-

sification observed with the VI and MLRS methods.

The reasons, as mentioned before, might be related to

Figure 7
a Map of the damage data classified through machine learning and remote sensing of multisensor and multitemporal satellite images (Adriano

et al. 2019); b histogram of two classes of structures (i.e., damaged and other) within the respective inundation depth intervals; c Tsunami

Fragility Function developed from the damage data classified by machine learning and remote sensing

Figure 8
Tsunami Fragility Function (TFF) developed from different sources

of damage data
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the misclassification of damage near the tsunami

inundation limit where flow depth is minimal. On the

other hand, these structures might have been correctly

classified as damaged buildings; however, the source

of damage could have been the strong ground motion

from the earthquake alone. Unfortunately, it remains

a challenging task to clearly distinguish sources of

the resulting damage during a field survey or a

postevent remote-sensing-based survey. In addition,

the use of an inundation depth surface, interpolated

from points not located exactly where each structure

with corresponding available damage information

was, might have introduced errors into the dataset

with respect to the regression. Additionally, there is a

limitation in constructing a TFF with only one

explanatory variable when other effects could have

contributed significantly to the damage of structures

near the inundation limit. This was also pointed out

by Charvet et al. (2017), Aránguiz et al. (2018), Song

et al. (2017).

However, while the TFF developed with the FS

data resulted in an apparently better description of the

damage in the area, with lower uncertainty of damage

classification, this method requires high levels of

management and organization and is time-consum-

ing. Moreover, survey teams may be at risk when

entering recently devastated areas and might con-

tribute to social anxiety and false expectations of

disaster relief. In contrast, VI and MLRS are remote-

based approaches that pose no risk and are noninva-

sive. The first, VI, has shown higher accuracy in the

past (Mas et al. 2015), but it is also time-consuming,

and multiple biases are inserted when it involves

multiple users. Moreover, when weather conditions

are not favorable, optical images might be covered by

clouds and VI cannot be conducted.

On the other hand, MLRS is a novel approach that

is gaining momentum; throughout its improvement,

higher accuracy comparable to VI has been achieved

(Moya et al. 2018a, 2020). We compared the damage

interpretation from the VI and MLRS methods for the

same locations of structures available by FS. The

summary of accuracy assessments for both methods

are in Tables 3 and 4. The tables suggest that the

overall and the balanced accuracy are similar in cases

of both VI and MLRS. Thus, considering the field

survey data as the baseline for accuracy assessment,

both methods exhibit satisfactory classification accu-

racy. With such high accuracy and the increasing

development of radar sensors, remote sensing and

machine learning algorithms offer a promising future

for rapid damage mapping (Syifa et al. 2019). Recall

that the machine learning classifier used in MLRS

was calibrated with the data from the VI; therefore, it

is expected that both the VI and the MLRS results

should have the same level of accuracy. The

relevance of machine learning algorithms is that they

can be rapidly applied to cover the entire tsunami-

affected area, given that the inundation depth is also

available; thus, much more data could be available to

construct a more reliable TFF. This damage assess-

ment is critical during the first stages of the disaster

response. A clear topic for future discussion would be

the dependency on training data to build a reliable

model. Some efforts to avoid the dependence of this

information have been reported elsewhere (Moya

et al. 2018b).

In addition, since remote sensing approaches are

limited by the top-view for damage interpretation, it

Table 3

Accuracy assessment of damage data from visual interpretation

with respect to the field survey

Visual interpretation

Recall Precision F1 score

Destroyed Other Destroyed Other Destroyed Other

0.71 0.69 0.46 0.87 0.56 0.77

Overall accuracy: 0.70 Balanced accuracy: 0.66

Table 4

Accuracy assessment of damage data from machine learning

remote sensing with respect to the field survey

Machine learning and remote sensing

Recall Precision F1 score

Destroyed Other Destroyed Other Destroyed Other

0.81 0.68 0.38 0.94 0.52 0.79

Overall accuracy: 0.71 Balanced accuracy: 0.66
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is expected that underestimation of damage might

occur. However, in this case, overall overestimation

was observed. Looking deeper into this contradiction

to our hypothesis, we found that among the remaining

30% of non-accurate classification in the VI, 22%

was due to underestimation (i.e. the VI classified a

structure on a lower damage level than the field

survey), and 8% was due to overestimation. The

hypothesis thus holds for the point-by-point

comparison of methods; however, it still does not

explain the overall overestimation in the final TFF.

Upon examining Fig. 6, one notices that a highly

damaged area to the east side of the bay is

concentrated at lower inundation depths (i.e. closer

to the inundation limit). Here, Fig. 9 shows that the

VI method from Copernicus EMS classified this area

as damaged for this event; however, inspecting

photographs from Google Street View revealed that

Figure 9
a Reclassified visual interpretation of damage provided by Copernicus EMS and the tsunami inundation surface in the background; b damage

data from (a) with a Google satellite image as background; c Palu Bay. The yellow inset shows the locations of areas in (a) and (b); d Google

Street View screenshot from September 2017, where an apparently abandoned structure is present; e Google Street View screenshot from

August 2018, where the structure is no longer present before the tsunami event
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the conditions of apparent damage were present even

before the event. It is most certain that including all

these data into developing the TFF yielded the

overestimation observed in Fig. 8. While this mis-

classification affected the lower limits of the damage

probability, the upper limits are still consistent with

the TFF developed from survey data. The TFF from

FS was constructed from data focused on higher to

intermediate levels of inundation; therefore, the

uncertainties occurring at lower levels of inundation

are not present and the TFF holds as consistent and

reliable to represent the damage probability of this

event.

Another interesting finding within this particular

case of misclassification was that although the MLRS

classification used the VI data for training the

classifier, it also included side-looking SAR images,

which improved the classification as shown in

Fig. 10. MLRS classified the areas misclassified by

the VI method as nondamaged. This verifies the

remarkable advantage of the machine learning and

remote sensing approach, where an automatic classi-

fier surpassed a human classifier.

Overall, as one can notice in Fig. 8, TFF results of

three types of damage data are similar above the 1-m

inundation depth. Since tsunami hazards and damage

are very limited at lower inundation depths, one can

still argue that the VI and MLRS methods are highly

advantageous for fair estimation of tsunami damage

probability in higher ranges of inundation depth. This

is understandable since higher damage conditions can

be better observed from satellite images.

5.2. Sulawesi–Palu TFF Compared to Other TFFs

Now, let us concentrate on the TFF developed

with the FS data. We found that the shape of the

function is consistent with TFFs developed from

previous tsunami events. In particular, we cite the

TFF developed after the 1993 Nansei-oki Hokkaido

earthquake using the damage data from the Okushiri

area (Koshimura and Kayaba 2010) (Fig. 11). Sim-

ilarities might be due to the condition and

characteristics of structures, which were primarily

wooden in Okushiri (Koshimura and Kayaba 2010)

and composed of light timber framed with sheet

metal walls and roofing in the case of Palu City

(Kijewski-Correa and Robertson 2018). Nevertheless,

a slightly lower probability of damage was observed

in the area of study compared to that observed in

Okushiri. On the other hand, Koshimura et al.

(2009b) developed TFF after the 2004 Indian Ocean

tsunami with the damage data collected from Banda

Aceh. Figure 11 shows the comparison of the Banda

Aceh and the Palu TFF. At the time of the tsunami in

2004, Banda Aceh presented mainly nonengineered

Figure 10
The reclassified damage data from a Field Survey; b Visual Interpretation; c Machine Learning-Remote Sensing
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reinforced concrete, confined masonry, and timber-

framed buildings (Saatcioglu et al. 2006), which may

explain the differences in probability damage at low

level inundation depths. For instance, at 2-m inunda-

tion depth, Banda Aceh TFF shows a 0.19 damage

probability, while a 0.69 rate of damage can be

expected at the same level in Palu City. The

differences in ’fragility’ between materials and

construction on these two areas are reflected in the

TFF. Interestingly, though, both TFFs reach nearly

100% damage probability around the 5-to-6-m inun-

dation depth. In Palu, a maximum of 5-to-6-m

tsunami height was observed, while 7 to 9-m

maximum height was estimated for Banda Aceh

Figure 11
Comparison of TFFs. Left: Okushiri vs. Sulawesi–Palu events; Right: Banda Aceh vs. Sulawesi–Palu events

Table 5

Summary of observations from the comparison of TFFs developed from three different sources of damage data

Source of data Benefits Limitations

Field survey (FS) � Shows higher consistency at lower inundation

depth levels where little to no damage is expected.

� Requires high levels of management, organization and

coordination, thus becoming a time-consuming task.

� Lower uncertainty and higher detail of damage

classification.

� May disrupt disaster relief or create social expectations in

affected areas.

� May place research teams at risk of harm.

Visual interpretation

(VI) from satellite

images

� Large coverage with high classification accuracy

(approximately 70% accuracy in this study).

� Uncertainty and inaccuracies, in particular at lower

inundation depth levels, of damage classification.

� Noninvasive approach. Conducted remotely so that

no direct social stress was exerted in affected

areas.

� Satellite images taken by optical remote sensors can be

affected by clouds or aerosol optical thickness in bad

weather.

� Damage classification is biased by the visual interpretation

of the producer.

� It is time-consuming and resource intensive.

Machine learning

remote sensing

(MLRS)

� Large coverage with high classification accuracy

(approximately 71% accuracy in this study).

� Uncertainty and inaccuracies, in particular at lower

inundation depth levels, of damage classification.

� Noninvasive approach. Conducted remotely so that

no direct social stress was exerted in affected

areas.

� May surpass human-based classifications when

combining multiple sources of satellite imagery

data.

� Nonbiased classification (at least with respect to the
producer or human interpreter).

� Rapid and requires limited resources.
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(Koshimura et al. 2009b). Regardless of the differ-

ences in maximum values surveyed in Palu and

Banda Aceh, both TFFs reach the highest probability

at 5-to-6-m depth. Thus, at least for Indonesian

structures, it is recommended that 5 to 6 m of

inundation depth should be considered as the critical

level for any kind of structure exposed to tsunami.

With this TFF, local authorities can generate damage

scenarios of future possible tsunami disasters (Moya

et al. 2017, 2018c) and improve preparedness and

disaster risk reduction activities.

6. Conclusions

Different sources of building damage data were

used to develop tsunami fragility functions (TFFs) for

the case of the 2018 Sulawesi tsunami at Palu in

Indonesia. TFFs from (i) posttsunami field survey

data, (ii) Copernicus EMS visual damage interpreta-

tion data and a tsunami inundation depth surface

constructed from the posttsunami field measurements,

and (iii) machine learning-based remote sensing

classification of building damage data combined with

the tsunami inundation depth surface. Based on the

analysis and comparison of the developed tsunami

fragility functions, we summarize our observations in

Table 5.

For this tsunami damage observed after the 2018

Sulawesi event in Indonesia, the FS TFF exhibits a

similar shape to the function developed after the 1993

Hokkaido Nansei-oki tsunami, with a slightly lower

damage probability between 0-to-5-m inundation

depth. However, in comparison to other TFFs

developed after events in Indonesia, for instance in

Banda Aceh after the 2004 Indian Ocean tsunami, the

characteristics of Palu structures exhibit higher fra-

gility in response to tsunamis. A two-meter

inundation depth correlates with nearly 20% proba-

bility of damage in the case of Banda Aceh, while

approximately 70% probability of damage was eval-

uated at the same depth in Palu. Furthermore, 5-to-6-

m inundation depth might be considered as the level

of maximum tsunami damage, at least for low-rise

unreinforced masonry buildings.

Acknowledgements

This study was partly funded by the Japan Science

and Technology Agency (JST) J-Rapid project num-

ber JPMJJR1803; the JST CREST project number JP-

MJCR1411; the Japan Society for the Promotion of

Science (JSPS) Kakenhi Programs (17H06108,

17H02050, and 17H01293); the Core Research

Cluster of Disaster Science at Tohoku University,

Japan (a Designated National University); the MEXT

Next Generation High-Performance Computing

Infrastructures and Applications R&D Program; and

the National Fund for Scientific, Technological and

Technological Innovation Development (Fondecyt -

Peru) [contract number 038-2019]. The collaboration

of Suppasri, A. and Pakoksung, K. was supported by

Tokio Marine & Nichido Fire Insurance Co., Ltd.;

Willis Research Network (WRN); Pacific Consultants

Co., Ltd.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format,

as long as you give appropriate credit to the original author(s) and

the source, provide a link to the Creative Commons licence, and

indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Com-

mons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative

Commons licence and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to

obtain permission directly from the copyright holder. To view a

copy of this licence, visit http://creativecommons.org/licenses/by/4.

0/.

Publisher’s Note Springer Nature remains neutral

with regard to jurisdictional claims in published maps

and institutional affiliations.

REFERENCES

Adriano, B., Mas, E., Koshimura, S., Estrada, M., & Jimenez, C.

(2014). Scenarios of earthquake and tsunami damage probability

in Callao region, Peru using tsunami fragility functions. Journal

of Disaster Research, 9(6), 968–975. https://doi.org/10.20965/

jdr.2014.p0968.

Adriano, B., Xia, J., Baier, G., Yokoya, N., & Koshimura, S.

(2019). Multi-source data fusion based on ensemble learning for

rapid building damage mapping during the 2018 Sulawesi

2452 E. Mas et al. Pure Appl. Geophys.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.20965/jdr.2014.p0968
https://doi.org/10.20965/jdr.2014.p0968


earthquake and tsunami in Palu, Indonesia. Remote Sensing,

11(7), 886. https://doi.org/10.3390/rs11070886.

Alam, M. S., Barbosa, A. R., Scott, M. H., Cox, D. T., & van de

Lindt, J. W. (2018). Development of physics-based tsunami

fragility functions considering structural member failures. Jour-

nal of Structural Engineering, 144(3), 1–17. https://doi.org/10.

1061/(ASCE)ST.1943-541X.0001953.
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