Skip to main content
Log in

Effects of Conjugate Gradient Methods and Step-Length Formulas on the Multiscale Full Waveform Inversion in Time Domain: Numerical Experiments

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We carry out full waveform inversion (FWI) in time domain based on an alternative frequency-band selection strategy that allows us to implement the method with success. This strategy aims at decomposing the seismic data within partially overlapped frequency intervals by carrying out a concatenated treatment of the wavelet to largely avoid redundant frequency information to adapt to wavelength or wavenumber coverage. A pertinent numerical test proves the effectiveness of this strategy. Based on this strategy, we comparatively analyze the effects of update parameters for the nonlinear conjugate gradient (CG) method and step-length formulas on the multiscale FWI through several numerical tests. The investigations of up to eight versions of the nonlinear CG method with and without Gaussian white noise make clear that the HS (Hestenes and Stiefel in J Res Natl Bur Stand Sect 5:409–436, 1952), CD (Fletcher in Practical methods of optimization vol. 1: unconstrained optimization, Wiley, New York, 1987), and PRP (Polak and Ribière in Revue Francaise Informat Recherche Opertionelle, 3e Année 16:35–43, 1969; Polyak in USSR Comput Math Math Phys 9:94–112, 1969) versions are more efficient among the eight versions, while the DY (Dai and Yuan in SIAM J Optim 10:177–182, 1999) version always yields inaccurate result, because it overestimates the deeper parts of the model. The application of FWI algorithms using distinct step-length formulas, such as the direct method (Direct), the parabolic search method (Search), and the two-point quadratic interpolation method (Interp), proves that the Interp is more efficient for noise-free data, while the Direct is more efficient for Gaussian white noise data. In contrast, the Search is less efficient because of its slow convergence. In general, the three step-length formulas are robust or partly insensitive to Gaussian white noise and the complexity of the model. When the initial velocity model deviates far from the real model or the data are contaminated by noise, the objective function values of the Direct and Interp are oscillating at the beginning of the inversion, whereas that of the Search decreases consistently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Boonyasiriwat, C., Valasek, P., Routh, P., Cao, W., Schuster, G. T., & Macy, B. (2009). An efficient multiscale method for time-domain waveform tomography. Geophysics, 74, WCC59–WCC68.

    Article  Google Scholar 

  • Brenders, A., Pratt, R., Charles, S. (2009). Waveform tomography of 2-D seismic data in the Canadian foothills—data preconditioning by exponential time-damping. In 71st annual international conference and exhibition, EAGE, extended abstracts U041.

  • Brossier, R., Operto, S., & Virieux, J. (2009). Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74, WCC105–WCC118.

    Article  Google Scholar 

  • Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Its Applications, 6, 7690.

    Google Scholar 

  • Bunks, C., Salek, F. M., Zaleski, S., & Chavent, G. (1995). Multiscale seismic waveform inversion. Geophysics, 60, 1457–1473.

    Article  Google Scholar 

  • Dai, Y. H., & Yuan, Y. (1999). A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10, 177–182.

    Article  Google Scholar 

  • Davis, T. A., & Duff, I. S. (1997). An unsymmetric pattern multifrontal method for sparse LU factorization. SIAM Journal on Matrix Analysis and Applications, 18, 140–158.

    Article  Google Scholar 

  • Fichtner, A., Trampert, J., Cupillard, P., Saygin, E., Taymaz, T., Capdeville, Y., et al. (2013). Multiscale full waveform inversion. Geophysical Journal International, 194, 534–556.

    Article  Google Scholar 

  • Fletcher, R. (1970). A new approach to variable metric algorithms. Computer Journal, 13, 317322.

    Article  Google Scholar 

  • Fletcher, R. (1987). Practical methods of optimization vol. 1: Unconstrained optimization. New York: Wiley.

    Google Scholar 

  • Fletcher, R., & Reeves, C. (1964). Function minimization by conjugate gradients. The Computer Journal, 7, 149–154.

    Article  Google Scholar 

  • Goldfarb, D. (1970). A family of variable metric updates derived by variational means. Mathematics of Computation, 24, 2326.

    Article  Google Scholar 

  • Guitton, A., Ayeni, G., & DÍaz, E. (2012). Constrained full-waveform inversion by model reparameterization. Geophysics, 77, R117–R127.

    Article  Google Scholar 

  • Guitton, A., & Symes, W. W. (2003). Robust inversion of seismic data using the Huber norm. Geophysics, 68, 1310–1319.

    Article  Google Scholar 

  • Hager, W. W., & Zhang, H. C. (2005). A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM Journal on Optimization, 16, 170–192.

    Article  Google Scholar 

  • Hager, W. W., & Zhang, H. C. (2006). A survey of nonlinear conjugate gradient methods. Pacific Journal of Optimization, 2, 335–358.

    Google Scholar 

  • Hestenes, M. R., & Stiefel, E. L. (1952). Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, Section, 5, 409–436.

    Article  Google Scholar 

  • Hu, W., Abubakar, A., & Habashy, T. M. (2009). Simultaneous multifrequency inversion of full-waveform seismic data. Geophysics, 74, R1–R14.

    Article  Google Scholar 

  • Hu, P., & Wang, Z. (2014). A non-monotone line search combination technique for unconstrained optimization. The Open Electrical and Electronic Engineering Journal, 8, 218–221.

    Article  Google Scholar 

  • Kvoren, Z., Mosegaard, K., Landa, E., Thore, P., & Tarantola, A. (1991). Monte Carlo estimation and resolution analysis of seismic background velocities. Journal of Geophysical Research, 96, 20289–20299.

    Article  Google Scholar 

  • Lambert, J. H. (1758). Observationes variae in Mathesin Puram. Acta Helvetica, physico mathematico anatomico botanico medica, 3, 128–168.

    Google Scholar 

  • Liao, Q., & McMechan, G. A. (1996). Multifrequency viscoacoustic modeling and inversion. Geophysics, 61, 1371–1378.

    Article  Google Scholar 

  • Liu, Q., & Gu, Y. J. (2012). Seismic imaging: From classical to adjoint tomography. Tectonophysics, 566–567, 31–66.

    Article  Google Scholar 

  • Liu, Y., Liu, S., Zhang, M., & Ma, D. (2012). An improved perfectly matched layer absorbing boundary condition for second order elastic wave equation (in Chinese). Progress in Geophysics, 27, 2113–2122.

    Google Scholar 

  • Liu, Y., & Storey, C. (1991). Efficient generalized conjugate gradient algorithms, part 1: Theory. Journal of Optimization Theory and Applications, 69, 129–137.

    Article  Google Scholar 

  • Liu, Q., & Tromp, J. (2006). Finite-frequency kernels based on adjoint methods. Bulletin of the Seismological Society of America, 96, 2383–2397.

    Article  Google Scholar 

  • Liu, Q., & Tromp, J. (2008). Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods. Geophysical Journal International, 174, 265–286.

    Article  Google Scholar 

  • Liu, H., Wang, H., & Ni, Q. (2014). On Hager and Zhang’s conjugate gradient method with guaranteed descent. Applied Mathematics and Computation, 236, 400–407.

    Article  Google Scholar 

  • Malinowski, M., & Operto, S. (2008). Quantitative imaging of the Permo-Mesozoic complex and its basement by frequency domain waveform tomography of wide-aperture seismic data from the Polish basin. Geophysical Prospecting, 56, 805–825.

    Article  Google Scholar 

  • Métivier, L., Bretaudeau, F., Brossier, R., Virieux, J., & Operto, S. (2014). Full waveform inversion and the truncated Newton method: quantitative imaging of complex subsurface structures. Geophysical Prospecting, 62, 123.

    Article  Google Scholar 

  • Mora, P. (1987). Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics, 54, 1211–1228.

    Article  Google Scholar 

  • Mosegaard, K., & Tarantola, A. (1995). Monte Carlo sampling of solutions to inverse problems. Journal of Geophysical Research, 100, 12431–12447.

    Article  Google Scholar 

  • Mulder, W., & Plessix, R. E. (2008). Exploring some issues in acoustic full waveform inversion. Geophysical Prospecting, 56, 827–841.

    Article  Google Scholar 

  • Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 95, 339–353.

    Google Scholar 

  • Nocedal, J., & Wright, S. J. (1999). Numerical optimization. Berlin: Springer.

    Book  Google Scholar 

  • Pageot, D., Operto, S., Vallée, M., Brossier, R., & Virieux, J. (2013). A parametric analysis of two-dimensional elastic full waveform inversion of teleseismic data for lithospheric imaging. Geophysical Journal International, 193, 1479–1505.

    Article  Google Scholar 

  • Pan, W., Innanen, K. A., Margrave, G. F., Fehler, M. C., Fang, X., & Li, J. (2016). Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion. Geophysics, 81, R275–R291.

    Article  Google Scholar 

  • Pan, W., Innanen, K. A., Liao, W. (2017). Accelerating Hessian-free Gauss-Newton full-waveform inversion via l-BFGS preconditioned conjugate-gradient algorithm. Geophysics, 82, R49–R64.

    Article  Google Scholar 

  • Pica, A., Diet, J. P., & Tarantola, A. (1990). Nonlinear inversion of seismic reflection data in a laterally invariant medium. Geophysics, 55, 284–292.

    Article  Google Scholar 

  • Plessix, R. É. (2006). A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophysical Journal International, 167, 495–503.

    Article  Google Scholar 

  • Plessix, R. É., & Li, Y. (2013). Waveform acoustic impedance inversion with spectral shaping. Geophysical Journal International, 195, 301–314.

    Article  Google Scholar 

  • Polak, E., & Ribière, G. (1969). Note sur la convergence de directions conjugées. Revue Francaise Informat Recherche Opertionelle, 3e Année, 16, 35–43.

    Google Scholar 

  • Polyak, B. T. (1969). The conjugate gradient method in extreme problems. USSR Computational Mathematics and Mathematical Physics, 9, 94–112.

    Article  Google Scholar 

  • Pratt, R. G. (1990). Frequency-domain elastic wave modeling by finite differences: A tool for cross-hole seismic imaging. Geophysics, 55, 626–632.

    Article  Google Scholar 

  • Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, part 1: Theory and verification in a physical scale model. Geophysics, 64, 888–901.

    Article  Google Scholar 

  • Pratt, R. G., Shin, C., & Hicks, G. (1998). Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion. Geophysical Journal International, 13, 341–362.

    Article  Google Scholar 

  • Pratt, R. G., & Worthington, M. H. (1990). Inverse theory applied to multisource cross-hole tomography: Part 1. Acoustic wave-equation method. Geophysical Prospecting, 38, 287–310.

    Article  Google Scholar 

  • Ravaut, C., Operto, S., Improta, L., Virieux, J., Herrero, A., & dell’Aversana, P. (2004). Multiscale imaging of complex structures from multifold wide-aperture seismic data by frequency-domain full-wavefield inversions: Application to a thrust belt. Geophysical Journal International, 159, 1032–1056.

    Article  Google Scholar 

  • Rothman, D. (1985). Nonlinear inversion, statistical mechanics, and residual statics estimation. Geophysics, 50, 2784–2796.

    Article  Google Scholar 

  • Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, 24, 647656.

    Google Scholar 

  • Sheng, J., Leeds, A., Buddensiek, M., & Schuster, G. T. (2006). Early arrival waveform tomography on near-surface refraction data. Geophysics, 71, U47–U57.

    Article  Google Scholar 

  • Shipp, R., & Singh, S. C. (2002). Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophysical Journal International, 151, 325–344.

    Article  Google Scholar 

  • Sirgue, L., & Pratt, R. G. (2004). Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies. Geophysics, 69, 231–248.

    Article  Google Scholar 

  • Song, Z. M., Williamson, P. R., & Pratt, R. G. (1995). Frequency-domain acoustic-wave modeling and inversion of crosshole data: Part II—Inversion method, synthetic experiments, and real-data results. Geophysics, 60, 796–809.

    Article  Google Scholar 

  • Symes, W. (2008). Migration velocity analysis and waveform inversion. Geophysical Prospecting, 56, 765–790.

    Article  Google Scholar 

  • Tape, C., Liu, Q., & Tromp, J. (2007). Finite-frequency tomography using adjoint methodsmethodology and examples using membrane surface waves. Geophysical Journal International, 168, 1105–1129.

    Article  Google Scholar 

  • Tarantola, A. (1984). Inversion of seismic reflection data in the acoustic approximation. Geophysics, 49, 1259–1266.

    Article  Google Scholar 

  • Tarantola, A. (1986). A strategy for nonlinear inversion of seimic data. Geophysics, 51, 1893–1903.

    Article  Google Scholar 

  • Tarantola, A. (1988). Theoretical background for inversion of seismic waveforms, including elasticity and attenuation. Pure and Applied Geophysics, 128, 365–399.

    Article  Google Scholar 

  • ten Kroode, F., Bergler, S., Corsten, C., de Maag, J. W., Strijbos, F., & Tijhof, H. (2013). Broadband seismic data—The importance of low frequencies. Geophysics, 78, WA3–WA14.

    Article  Google Scholar 

  • Tromp, J., Tape, C., & Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160, 195–216.

    Article  Google Scholar 

  • Vigh, D., & Starr, E. W. (2008). 3D prestack plane-wave, full-waveform inversion. Geophysics, 73, VE135–VE144.

    Article  Google Scholar 

  • Vigh, D., Starr, W., & Kapoor, J. (2009). Developing earth models with full waveform inversion. The Leading Edge, 28, 432–435.

    Article  Google Scholar 

  • Wang, Y. (2015). The Ricker wavelet and the Lambert W function. Geophysical Journal International, 200, 111–115.

    Article  Google Scholar 

  • Wu, S., Wang, Y., Zheng, Y., & Chang, X. (2015). Limited-memory BFGS based least-squares pre-stack Kirchhoff depth migration. Geophysical Journal International, 202, 738–747.

    Article  Google Scholar 

  • Zhang, Y., Ratcliffe, A., Roberts, G., & Duan, L. (2014). Amplitude-preserving reverse time migration: From reflectivity to velocity and impedance inversion. Geophysics, 79, S271–S283.

    Article  Google Scholar 

  • Zhou, W., Brossier, R., Operto, S., & Virieux, J. (2015). Full waveform inversion of diving and reflected waves for velocity model building with impedance inversion based on scale separation. Geophysical Journal International, 202, 1535–1554.

    Article  Google Scholar 

  • Zhou, B., & Greenhalgh, S. A. (2011). Computing the sensitivity kernel for 2.5-D seismic waveform inversion in heterogeneous, anisotropic median. Pure and Applied Geophysics, 168, 1729–1748.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Computer Simulation Laboratory of IGGCAS for allocation of computing time. We thank Colin Farquharson and two anonymous reviewers for insightful comments and suggestions, which greatly improved the manuscript. The authors thank the useful discussions with Qiancheng Liu. We are greatful to Jinhai Zhang for his assistance and the facilities given in the course of this work. We gratefully acknowledge the financial support for this work contributed by the National key research and development program of China (Grants Nos. 2016YFC0600101, 2016YFC0600201 and 2016YFC0600402), the China Earthquake Administration (Grant No. 201408023), the National Natural Science Foundation of China (Grants Nos. 41604076, 41674102, 41604075, 41674095, 41522401, 41174075, 41474068, and 41374062), and the first class general financial grant from China Postdoctoral Science Foundation (Grant No. 2016M600128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youshan Liu.

Appendices

Appendix 1

1.1 Frequency Width of the Ricker wavelet

The expression of the Ricker wavelet in time domain is as follows:

$$ R\left( t \right) = \left( {1 - 2\pi^{2} f_{0}^{2} \left( {t - t_{0} } \right)^{2} } \right)\exp \left( { - \pi^{2} f_{0}^{2} \left( {t - t_{0} } \right)^{2} } \right), $$
(28)

where t is time; \( t_{0} \) is the delayed time; \( f_{0} \) is the dominant frequency. The Fourier transform of the Ricker wavelet is as follows:

$$ F\left( \omega \right) = \frac{{\sqrt \pi \omega^{2} }}{{\omega_{c}^{3} }}\exp \left( { - \frac{{\omega^{2} }}{{\omega_{c}^{2} }} + i\omega t_{0} } \right), $$
(29)

where \( \omega \) is the angular frequency; \( \omega_{c} = 2\pi f_{0} \) is the angular frequency corresponding to the maximum amplitude. The amplitude spectrum is

$$ A\left( \omega \right) = \frac{{\sqrt \pi \omega^{2} }}{{\omega_{c}^{3} }}\exp \left( { - \frac{{\omega^{2} }}{{\omega_{c}^{2} }}} \right). $$
(30)

To determine the frequency width of the Ricker wavelet, we take the first derivative of (29) with respect to \( \omega \), and after denoting the maximum amplitude of the Ricker wavelet by \( A\left( {\omega_{c} } \right) \), we obtain

$$ A\left( \omega \right) = \frac{1}{2}A\left( {\omega_{c} } \right). $$
(31)

Substituting (31) into (30), we have

$$ \frac{{\omega^{2} }}{{\omega_{c}^{2} }}\exp \left( { - \frac{{\omega^{2} }}{{\omega_{c}^{2} }}} \right) = \frac{1}{2}e^{ - 1} , $$
(32)

The solution of (32) is equivalent to the root of the following equation:

$$ x^{2} \exp \left( { - x^{2} } \right) = \frac{1}{2}e^{ - 1} , $$
(33)

where \( x = \omega /\omega_{c} \) and ‘e’ is Euler’s number. The solution of (33) leads to the well-known Lambert W function (Lambert, 1758), and with the help of the graphical method (see Fig. 21), the two roots of (33) are

$$ \left\{ \begin{aligned} \omega_{l} /\omega_{c} = c_{l} \hfill \\ \omega_{h} /\omega_{c} = c_{h} \hfill \\ \end{aligned} \right., $$
(34)

where \( c_{l} = 0.482 \) and \( c_{h} = 1.637 \) are two constants. These two limit frequencies define the frequency width of the Ricker wavelet.

Fig. 21
figure 21

Lambert function (solid line). The two circles indicate the points intersected by the horizontal dashed line that marks the value of \( e^{ - 1} /2 \), which defines the frequency bandwidth of the Ricker wavelet

Appendix 2

2.1 Frequency Band Selection Strategy

According to multiscale strategy, the seismic data and wavelets are decomposed by scale. To proceed to an adequate frequency-band selection, so that the frequency or wavelength information contained in adjacent frequency bands is less redundant, we set the equality

$$ A_{i - 1} \left( {c_{l} f_{0}^{i} } \right) = A_{i} \left( {c_{l} f_{0}^{i} } \right), $$
(35)

where \( c_{l} \) is the constant given in Appendix 1; \( f_{0}^{i} \) is the dominant frequency of the target Ricker wavelet within the higher frequency bands; \( A_{i - 1} \) and \( A_{i} \) are the amplitude spectra of the target Ricker wavelet within the lower and higher frequency bands, respectively. The subscript or superscript i denotes the frequency band index. Substituting (30) into (35), we obtain the following equation:

$$ \left( {\frac{{\omega_{c}^{i} }}{{\omega_{c}^{i - 1} }}} \right)^{3} \exp \left( { - c_{l}^{2} \left( {\frac{{\omega_{c}^{i} }}{{\omega_{c}^{i - 1} }}} \right)^{2} } \right) = \exp \left( { - c_{l}^{2} } \right), $$
(36)

where \( \omega_{c}^{i - 1} \) and \( \omega_{c}^{i} \) are the most energetic angular frequencies corresponding to the lower and higher frequency bands, respectively. The solution of (36) is equivalent to the root of the following equation:

$$ x^{3} \exp \left( { - c_{l}^{2} x^{2} } \right) = \exp \left( { - c_{l}^{2} } \right), $$
(37)

where \( x = \frac{{\omega_{c}^{i} }}{{\omega_{c}^{i - 1} }} \). Also with the help of the graphical method (see Fig. 22), the two roots of (37) and, therefore, of (36) are

$$ \omega_{c}^{i} /\omega_{c}^{i - 1} = c_{1,2} , $$
(38)

where \( c_{1} = 1 \) and \( c_{2} = 4.533 \). Obviously, \( c_{2} \) is the desired solution, so that

$$ f_{0}^{i - 1} = f_{0}^{i} /4.533. $$
(39)
Fig. 22
figure 22

\( x^{3} \exp \left( { - c_{l}^{2} x^{2} } \right) \) function (solid line). Here, the value \( c_{l} \) corresponds to the lower frequency point of the two points that define the frequency bandwidth of the Ricker wavelet (see Fig. 21). The two circles indicate the points intersected by the horizontal dashed line that marks the value of \( \exp \left( { - c_{l}^{2} } \right) \), which are the two roots of the equation \( x^{3} \exp \left( { - c_{l}^{2} x^{2} } \right) = \exp \left( { - c_{l}^{2} } \right) \)

Here, \( f_{0}^{i - 1} \) is the dominant frequency within the lower frequency band and \( f_{0}^{i} \) is the dominant frequency within the higher frequency band. This relationship expresses the recursive relation between dominant frequencies of the target wavelet within adjacent frequency bands, thus allowing the correct frequency selection to implement the multiscale strategy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Teng, J., Xu, T. et al. Effects of Conjugate Gradient Methods and Step-Length Formulas on the Multiscale Full Waveform Inversion in Time Domain: Numerical Experiments. Pure Appl. Geophys. 174, 1983–2006 (2017). https://doi.org/10.1007/s00024-017-1512-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1512-3

Keywords

Navigation