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Quantitative Mixing for Locally Hamiltonian
Flows with Saddle Loops on Compact
Surfaces

Davide Ravotti

Abstract. Given a compact surface M with a smooth area form ω, we
consider an open and dense subset of the set of smooth closed 1-forms on
M with isolated zeros which admit at least one saddle loop homologous
to zero and we prove that almost every element in the former induces a
mixing flow on each minimal component. Moreover, we provide an esti-
mate of the speed of the decay of correlations for smooth functions with
compact support on the complement of the set of singularities. This result
is achieved by proving a quantitative version for the case of finitely many
singularities of a theorem by Ulcigrai (Ergod Theory Dyn Syst 27(3):991–
1035, 2007), stating that any suspension flow with one asymmetric loga-
rithmic singularity over almost every interval exchange transformation is
mixing. In particular, the quantitative mixing estimate we prove applies
to asymmetric logarithmic suspension flows over rotations, which were
shown to be mixing by Sinai and Khanin.

1. Introduction

Let us consider a smooth compact connected orientable surface M, together
with a smooth area form ω. Any smooth closed 1-form induces a smooth
area-preserving flow on M, which is given locally by the solution of some
Hamiltonian equations (see Sect. 2 for definitions); it is hence called locally
Hamiltonian flow or multi-valued Hamiltonian flow.

The study of such flows was initiated by Novikov [23], motivated by some
problems in solid-state physics. Orbits of locally Hamiltonian flows can be seen
as hyperplane sections of periodic manifolds, as pointed out by Arnold [1], who
studied the case when M is the 2-dimensional torus T

2. He proved that T
2

can be decomposed into finitely many regions filled with periodic trajectories
and one minimal ergodic component; in the same paper he asked whether the
restriction of the flow to this ergodic component is mixing. We recall that a
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flow {ϕt}t∈R on a measure space (X,μ) is mixing if for any measurable sets
A,B ⊂ X we have

lim
t→∞ μ(ϕt(A) ∩ B) = μ(A)μ(B),

i.e. if the events A and B become asymptotically independent. By choosing an
appropriate Poincaré section, the flow on this ergodic component is isomorphic
to a suspension flow over a circle rotation with a roof function with asymmetric
logarithmic singularities. The question posed by Arnold was answered by Sinai
and Khanin [25], who proved that, under a full-measure Diophantine condition
on the rotation angle, the flow is mixing. This condition was weakened by
Kochergin [12–15].

The presence of singularities in the roof function is necessary, as well as
the asymmetry condition: in this setting, mixing does not occur for functions
of bounded variation or, assuming a full-measure Diophantine condition on
the rotation angle, for functions with symmetric logarithmic singularities; see
the results by Kochergin [8,11] respectively. Indeed, mixing is produced by
shearing of transversal segments close to singular points, which is a result of
different deceleration rates.

Similarly, if the genus g of the surface M is greater than 1, any locally
Hamiltonian flow can be decomposed into periodic components, i.e. regions
filled with periodic orbits, and minimal components, namely regions which are
the closure of a nonperiodic orbit, as it was shown independently by several
authors, see Levitt [16], Mayer [20] and Zorich [32]. The first return map of
a Poincaré section on any of the minimal components is an interval exchange
transformation (IET), namely a piecewise orientation-preserving isometry of
the interval I = [0, 1]; in particular, typical (in a measure-theoretic sense) flows
on minimal components are ergodic, since almost every IET is ergodic, due to
a classical result proved by Masur [19] and Veech [29] independently.

On the other hand, mixing depends on the type of singularities of the
first return time function: Kochergin proved mixing for suspension flows over
IETs with roof functions with power-like singularities [10]. However, this case
corresponds to degenerate zeros of the 1-form defining the locally Hamiltonian
flow; the complement of the set of these 1-forms is open and dense in the set of
1-forms with isolated zeros. Generic flows have logarithmic singularities: in this
case, if the surface M is the closure of a single orbit, i.e. if the flow is minimal,
Ulcigrai proved that almost every flow is not mixing [28], but weak mixing [27].
Here, we consider the measure class sometimes called Katok fundamental class,
described in Sect. 2. An example of an exceptional minimal mixing flow in this
set-up has been constructed recently by Chaika and Wright [3], who exhibited
a locally Hamiltonian minimal mixing flow with simple saddles on a surface of
genus 5.

In this paper we address the question of mixing when the 1-form has iso-
lated simple zeros and the flow is not minimal; typically, minimal components
are bounded by saddle loops homologous to zero (see Sect. 2 for definitions).
We prove the following result; a more precise formulation is given in Theo-
rem 3.2.
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Theorem 1.1. There exists an open and dense subset of the set of smooth
closed 1-forms on M with isolated zeros which admit at least one saddle loop
homologous to zero such that almost every 1-form in it induces a mixing locally
Hamiltonian flow on each minimal component.

Moreover, we provide an estimate on the decay of correlations for a dense
set of smooth functions, namely we prove the following theorem.

Theorem 1.2. Let {ϕt}t∈R be the locally Hamiltonian flow induced by a smooth
1-form η as in Theorem 1.1, and let M′ ⊂ M be a minimal component. Con-
sider the set C 1

c (M′) of C 1 functions on M′ with compact support in the
complement of the singularities of η. Then, there exists 0 < γ < 1 such that
for all g, h ∈ C 1

c (M′) with
∫

M′ gω = 0 we have
∣
∣
∣
∣

∫

M′
(g ◦ ϕt)h ω

∣
∣
∣
∣ ≤

Cg,h

(log t)γ
,

for some constant Cg,h > 0.

To the best of our knowledge, this is the first quantitative mixing result
for locally Hamiltonian flows, apart from a Theorem by Fayad [4], which states
that a certain class of suspension flows over irrational rotations with roof
function with power-like singularities has polynomial speed of mixing. In the
genus 1 case, Theorem 1.2 provides a quantitative version of the mixing result
by Sinai and Khanin [25]. We believe that the optimal estimate of the speed
of decay has indeed this form, namely a power of log t, although this remains
an open question.

The proof of Theorem 1.1 consists of two parts: first, we describe the open
and dense set of 1-forms we consider (with a measure class defined on it) and we
show how to represent the restriction of the induced locally Hamiltonian flows
to any of its minimal component as a suspension flow over an interval exchange
transformation with roof function with asymmetric logarithmic singularities.
Secondly, we show that for almost every IET, every such suspension flow is
mixing by proving a version of Theorem 1.2 for suspension flows. Ulcigrai
[26] treated the special case when the roof function has only one asymmetric
logarithmic singularity; in this paper, we show that her techniques can be
made quantitative and applied to this more general setting. The first step of
the proof is to obtain sharp estimates for the Birkhoff sums of the derivative
f ′ of the roof function f , see Theorem 5.5. These estimates are also used by
Kanigowski, Kulaga and Ulcigrai to prove mixing of all orders for such flows
[7]. In order to deduce the result on the decay of correlations, we apply a
bootstrap trick analogous to the one used by Forni and Ulcigrai [5] and an
estimate on the deviation of ergodic averages for typical IETs by Athreya and
Forni [2].

1.1. Outline of the Paper

In Sect. 2 we recall the definition of locally Hamiltonian flow induced by a
smooth closed 1-form, and we focus on the set of closed 1-forms with isolated
zeros; we describe some of its topological properties, and we equip it with
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Katok’s measure class. In Sect. 3 we show how to represent the locally Hamil-
tonian flows we consider as suspension flows over IETs and we discuss the
relation between Katok’s measure class and the measure on the set of IETs.
In Sect. 4 we recall some basic facts about the Rauzy–Veech Induction for
IETs (a renormalization algorithm which corresponds to inducing the IET to
a neighbourhood of zero) and in doing so we introduce some notation for the
proof of Theorem 5.5; moreover, we state a full-measure Diophantine condition
for IETs first used by Ulcigrai [26] to bound the growth of the Rauzy–Veech
cocycle matrices along a subsequence of induction times (see Theorem 4.2).
We remark that, although in general we have more than one singularity, we
do not need to induce at other points by using different renormalization algo-
rithms, but we are able to show that the Diophantine condition in [26] can
be used to treat also the case of several singularities. In Sect. 5 we state the
results on the Birkhoff sums of the roof function of the suspension flow and its
derivative (Theorem 5.5), and the quantitative estimate on the speed of the
decay of correlations for a dense set of smooth functions in the language of
suspension flows (Theorem 5.6); we also deduce Theorems 1.2 and 3.1 from it.
Section 6 is devoted to the proof of Theorem 5.6, which is carried out in sev-
eral steps: we first define partitions of the unit interval analogous to the ones
used by Ulcigrai [26], with explicit bounds on their size, and then we apply
a bootstrap trick to reduce the problem to estimate the deviations of ergodic
averages for IETs, for which we apply a result by Athreya and Forni [2]. In
Appendix 7 we prove Theorem 5.5.

2. Locally Hamiltonian Flows

Let M be a smooth compact connected orientable surface of genus g and fix
a smooth area form ω on M. For any point p ∈ M and for any choice of
local coordinates supported on a neighbourhood U of p, we can write ω =
ω�U= V (x, y) dx∧dy, where V (x, y) is a C∞ function; moreover ωp �= 0. Fix a
smooth closed 1-form η on M; here and henceforth, we only consider 1-forms
η with isolated zeros (sometimes called singularities). Then, η determines a
flow {ϕt}t∈R in the following way: consider the vector field W defined by the
relation W� ω = η, where � denotes the contraction operator; the point ϕt(p)
is given by following for time t the smooth integral curve passing through p.
Explicitly, for any point p there exists a simply connected neighbourhood U
of p such that η�U= dH for a smooth function H(x, y) defined on U . Clearly,
H is uniquely determined up to a constant factor. Then, the relation defining
W translates as

V (x, y) (Wx dy − Wy dx) = ∂xH dx + ∂yH dy,

i.e. W �U= ((∂yH)∂x − (∂xH)∂y) /V . Notice that, since M is compact, the
flow is defined for any t ∈ R.
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The 1-form η vanishes along any integral curve, namely denoting by
ϕ(p) : t → ϕt(p) the integral curve through p, we have that η�ϕ(p)= 0. Indeed,
d
dtH(ϕt(p)) = ∇H · ϕ̇t(p) = 0, meaning that H is constant along ϕ(p). We say
that ϕ(p) is a leaf of η and η determines a foliation of the surface M.

The function H is globally defined on M if and only if the 1-form η is
exact, and, in this case, H is said to be a (global) Hamiltonian of the system.
In general, the relation η = dH holds locally: for this reason {ϕt}t∈R is called
the locally Hamiltonian flow associated to η.

Let π : M̃ → M be the universal cover of M; then, the pullback π∗η
is a closed 1-form on M̃, since d(π∗η) = π∗ dη = 0. The fact that M̃ is
simply connected implies that there exists a global Hamiltonian H̃ on M̃ and
the values of H̃ at different pre-images p1, p2 ∈ π−1(p) differ by the periods,
i.e. the values of H̃(p2)−H̃(p1) =

∫ p2

p1
π∗η =

∫
γ

η, where γ ∈ π1(M, p) is a loop
in M with base point p which lifts to a path connecting p1 to p2. Therefore,
there exists a multi-valued function H = H̃ ◦ π−1 on M, which is well-defined
as a function

H : M → R

/{∫
γ

η: γ ∈ π1(M)
}

,

being a Hamiltonian for η, since ηp = (π∗η)π−1(p)◦dπ−1
p = d(H̃ ◦π−1)p = dHp.

For this reason, the flow {ϕt}t∈R is also called the multi-valued Hamiltonian
flow associated to η.

Remark 1. The flow {ϕt}t∈R preserves both the area form ω and the 1-form
η. To see this, it is sufficient to show that the correspondent Lie derivatives
LW ω and LW η w.r.t. W vanish. Indeed, since by definition η = W� ω and η
is closed,

LW ω = W� (dω) + d(W� ω) = dη = 0,

and

LW η = W� (dη) + d(W� η) = d(W� (W� ω)) = dω(W,W ) = 0,

since ω is alternating.

2.1. Perturbations of Closed 1-Forms

Let η, η′ be two smooth closed 1-forms. We say that η′ is an
ε-perturbation of η if for any p ∈ M and for any coordinates supported on a
simply connected neighbourhood U of p, we have η�U= dH and (η′−η)�U= df ,
with ‖f‖C ∞ ≤ ε‖H‖C ∞ , where ‖·‖C ∞ denotes the C∞-norm. We want to
study the properties of generic 1-forms, namely the properties of 1-forms which
persist under small perturbations.

Let p ∈ M be a zero of η and write in local coordinates η = dH; we say
that p is a simple zero if det Hes(0,0)(H) �= 0, where Hes(0,0)(H) denotes the
Hessian matrix of H at p = (0, 0). We remark that this condition is indepen-
dent of the choice of local coordinates. A zero which is not simple is called
degenerate.
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Notation 2.1. We denote by F the set of smooth closed 1-forms on M with
isolated zeros and by A ⊂ F the subset of 1-forms with simple zeros.

Let us recall the following result by Morse, see, e.g. [21, p. 6].

Theorem 2.2. Let p ∈ M be a simple zero of η. There exist local coordinates
supported on a simply connected neighbourhood U of p = (0, 0) such that either
η�U= x dx + y dy, or η�U= −x dx − y dy, or η�U= y dx + x dy.

In the first case, p is a local minimum for any local Hamiltonian H and
we say that p is a minimum for η; for the same reason, in the second case we
say that p is a maximum for η and in the latter case we say that p is a saddle
point. With the aid of these coordinates, it is easy to check that the index of
the associated vector field at a maximum or minimum is 1, whence it is − 1
at a saddle point. By the Poincaré–Hopf Theorem, if η has only simple zeros,
then #minima + #maxima − #saddles = χ(M), where χ(M) = 2 − 2g is the
Euler characteristic of M.

If p is a maximum or a minimum for η, locally the leaves of η are closed
curves homologous to zero. Hence, p is the centre of a disc filled with “parallel”
leaves; the maximal disc of this type, which will be called an island for η, is
bounded by a closed leaf γ0 homologous to zero. The closed curve γ0 must
contain at least one critical point for η, which has to be a saddle if η has only
simple zeros. A leaf γ0 as above is called a saddle leaf, namely a saddle leaf
is a leaf γ = ϕ(x) such that limt→∞ ϕt(x) = q1 and limt→−∞ ϕt(x) = q2,
where q1, q2 are a saddle points. If q1 = q2 we say that ϕ(x) is a saddle loop;
otherwise, we say that ϕ(x) is a saddle connection.

We describe some topological properties of the sets A and F .

Lemma 2.3. Let As,l be the set of 1-forms in A with s saddle points and l
minima or maxima. Then, each As,l is open and their union A is dense in F .

Proof. The last assertion is classical, see, e.g. [24, Corollary 1.29], but we
present a proof for the sake of completeness. We first show that A is open. By
contradiction, suppose that there exists a sequence of 1-forms (ηn) converging
to η ∈ A such that each ηn admits a degenerate zero pn. Since M is compact,
we can assume pn → p for some p ∈ M. Let U be a simply connected neigh-
bourhood of p and consider a sequence of local Hamiltonians Hn for ηn on U
which converges in the C∞-norm to a local Hamiltonian H for η. Therefore,
0 = det Hespn

(Hn) → det Hesp(H) �= 0, which is the desired contradiction.
We now show that the sets As,l are open. Consider η ∈ As,l with zeros

p1, . . . , ps+l. Any sufficiently small perturbation η′ of η has only simple zeros
p′
1, . . . , p

′
s+l with p′

i close to pi. The type of the zero p′
i depends on the sign of

the trace and of the determinant of the Hessian matrix of a local Hamiltonian
at p′

i, which are continuous maps in the C∞-topology; hence, the type of zero
of pi and p′

i is the same. Thus, each As,l is open.
To prove A is dense, we show that for all degenerate zeros p of η ∈ F ,

there exist arbitrarily small perturbations η′ which coincide with η outside a
neighbourhood U of p and have only simple zeros in U . Let p be a degenerate
zero of η and fix an open simply connected neighbourhood U of p. Sard’s
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Theorem applied to η : M → T ∗M implies that there exist regular values
ηq ∈ T ∗

q M, with q arbitrarily close to p. Fix a regular value ηq and let V
be a simply connected neighbourhood of p containing q compactly contained
in U . Any choice of local coordinates on U gives a trivialization T ∗M�U=
U × R

2, which we implicitly use to extend ηq to a constant 1-form on U .
Finally, consider a “bump” function f : M → R whose support is contained
in U and such that f�V= 1; the 1-form η′ = η − fηq satisfies the claim. �

As we just saw in Lemma 2.3, the number and type of zeros of a 1-
form η ∈ A are invariant under small perturbations; the following lemma
ensures that certain closed leaves are stable as well. Let us recall that a loop
is homologous to zero in M if and only if it disconnects the surface.

Lemma 2.4. If a saddle loop γ is homologous to zero, then it is stable under
small perturbations.

Proof. Let γ be a saddle loop homologous to zero passing through a saddle p
of η, and let η′ be a ε-perturbation of η. We consider the connected component
M′ of M not containing leaves passing through p: leaves close to γ are homo-
topic one to the other; hence, we have a cylinder (or an island, if M′ contains
only a maximum or minimum for η) filled with closed “parallel” leaves, each of
which is homologous to zero. On this cylinder, the integrals of η and η′ along
any closed curve are zero; thus, they admit Hamiltonians H and H + f . If ε is
sufficiently small, the level sets for H + f are again closed curves; hence, the
cylinder of closed leaves survives under small perturbations. �

In general, saddle connections and saddle loops non-homologous to zero
disappear under arbitrarily small perturbations, as shown by the following
Examples 2.5 and 2.6 respectively.

Example 2.5. Consider the function H(x, y) = y(x2 +y2 −1) and the standard
area form ω = dx ∧ dy defined on R

2. There are four critical points for dH:
the saddles (± 1, 0), the minimum (0,

√
3/3) and the maximum (0,−√

3/3);
moreover, there is a saddle connection supported on the interval (− 1, 1). Using
bump functions, define a function f equal to (ε/4)(1− (x+1)2 +y2) if (x, y) is
ε-close to (− 1, 0), and 0 if the distance between (x, y) and (− 1, 0) is greater
than 2ε. Then, it is possible to see that the perturbed 1-form d(H +f) admits
no saddle connections, see Fig. 1a, b.

The following example uses the dichotomy for the orbits of a linear flow
on the torus.

Example 2.6. Consider the torus T
2 = R

2/Z2 and construct η ∈ A1,1 in the
following way. Fix 0 < δ < 1

8 and let η be defined in the strip (2δ, 1−2δ)×(1
2 −

δ, 1
2 +δ) as (x− 1

2 )(x− 1+δ
2 ) dx+(y− 1

2 ) dy and outside (δ, 1−δ)×( 1
2 −2δ, 1

2 +2δ)
as dx; using a symmetric bump function it is possible to do so in such a
way that every orbit is periodic. The 1-form η has a minimum in (1+δ

2 , 1
2 )

and a saddle in (1
2 , 1

2 ), hence a saddle loop not homologous to zero. Take a
bump function εf(x, y) = εf(y) depending on y only such that εf(y) = ε
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Figure 1. a Orbits of the flow given by the Hamiltonian
H(x, y) = y(x2 + y2 − 1), b orbits of the flow given by the
perturbed Hamiltonian H + f

for every y ∈ [− δ, δ] mod Z and equal to 0 outside [− 2δ, 2δ] mod Z. The
perturbed form η + εf(y) dy coincides with η in [0, 1) × ( 1

2 − 2δ, 1
2 + 2δ), in

which leaves enter vertically. Outside that region, the vector field defining the
flow is εf(y)∂x − ∂y; thus, the displacement of any leaf in the x-coordinate
after winding once around the torus is given by

∫
T2 εf . Hence, for any ε such

that the previous integral is a rational number, the saddle loop is preserved;
otherwise, if

∫
εf is irrational, the saddle loop vanishes.

The previous example shows that neither the set of 1-forms in A with
saddle loops non-homologous to zero nor its complement is an open set, and
similarly if we consider saddle connections. However, both these cases are
exceptional, as we are going to describe in the next subsection.
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2.2. Measure Class

We want to define a measure class (namely a notion of null sets and full-
measure sets) on each open set As,l; later it will be restricted to an open
and dense subset. Let Σ = Σ(η) be the finite set of singular points of a
given η ∈ As,l and fix a basis γ1, . . . , γm of the first relative homology group
H1(M,Σ,R); here m = 2g + l + s−1. If η′ is a perturbation of η, we can iden-
tify H1(M,Σ(η),R) with H1(M,Σ(η′),R) via the Gauss–Manin connection,
i.e. via the identification of the lattices H1(M,Σ(η),Z) and H1(M,Σ(η′),Z).
Define the period coordinates of η as

Θ(η) =
(∫

γ1

η, . . . ,

∫

γm

η

)

∈ R
m.

The map Θ is well-defined in a neighbourhood of η. Moreover, the next propo-
sition, which is a variation of Moser’s Homotopy Trick [22], shows it is a com-
plete invariant for isotopy classes (recall that an isotopy between η and η′ is
a family of smooth maps {ψt : M → M}t∈[0,1] such that ψ∗

1(η′) = η).

Proposition 2.7. Let η ∈ As,l be fixed. There exists a neighbourhood U of η
such that for all η′ ∈ U there is an isotopy {ψt}t∈[0,1] between η and η′ if and
only if Θ(η) = Θ(η′).

Proof. If η and η′ are isotopic, then for any element γj of the basis of
H1(M,Σ(η),Z) we have

∫

γj

η =
∫

γj

ψ∗
1η′ =

∫

ψ1◦γj

η′,

hence the claim.
Conversely, let η′ be a small perturbation of η and suppose that they have

the same period coordinates. Up to an isotopy, we can assume that Σ(η) =
Σ(η′).

Consider the convex combinations ηt = (1−t)η+tη′ for t ∈ [0, 1]. To con-
struct {ψt} such that ψ∗

t (ηt) = η0 = η, we look for a smooth non-autonomous
vector field {Xt} such that ψt is the flow induced by {Xt}. It is enough for
{Xt} to satisfy

0 =
d
dt

ψ∗
t (ηt) = ψ∗

t

(
d
dt

ηt + LXt
ηt

)

. (2.1)

The previous equation holds if d
dtηt + LXt

ηt = 0. Notice that d
dtηt = η′ − η,

which, by hypothesis, is cohomologous to zero, since the integral over any
closed loop on M is zero. Hence, there exists a global function U over M such
that d

dtηt = dU and then we can rewrite (2.1) as d(U + Xt� ηt) = 0. If Wt

denotes the vector field associated to ηt, i.e. Wt� ω = ηt, the equation to be
solved becomes −U = Xt� ηt = ω(Wt,Xt).

On the set Σ of critical points, the vector field Wt vanishes; thus, a
necessary condition for the existence of a solution is that U(p) = 0 for any
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p ∈ Σ. It is possible to choose U satisfying this condition: U is defined up to
a constant and if p, q ∈ Σ, then U(p) = U(q) because

U(p) − U(q) =
∫ p

q

dU =
∫ p

q

η −
∫ p

q

η′ = 0.

In a neighbourhood of any point q ∈ M\Σ, we have (Wt)q �= 0 since we
assumed Σ(η) = Σ(η′); by the nondegeneracy of ω, a solution Xt exists. This
concludes the proof. �

Notice that if γ is a leaf for η, then ψ1 ◦ γ is a leaf for η′, since η′�ψ1◦γ=
η′((ψ1)∗(γ̇)) = (ψ∗

1η′)(γ̇) = η�γ= 0. Therefore, ψ1 realizes an orbit equivalence
between the locally Hamiltonian flows induced by η and η′, which is C∞ away
from the critical set.

Notation 2.8. We equip As,l with the measure class Θ∗(LebRm) given by the
pullback of the Lebesgue measure LebRm on R

m via Θ.

We want to study the dynamics induced by typical 1-forms with respect
to this measure class. We remark that if η has a saddle loop non-homologous to
zero or a saddle connection, then, up to a change of basis of H1(M,Σ(η),R),
one of the coordinate of η is zero, in particular the set of such 1-forms is a null
set.

Let us remark that if the locally Hamiltonian flow is minimal, then l = 0
and − s = χ(M); in this case, as recalled in the introduction, Ulcigrai [27,28]
proved that almost every η induces a non-mixing but weakly mixing flow.

3. Suspension Flows Over IETs

In this section, we are going to represent the restriction of a locally Hamiltonian
flow {ϕt}t∈R to a minimal component as a suspension flow over an interval
exchange transformation. We recall all the relevant definitions for the reader’s
convenience.

An Interval Exchange Transformation T of d intervals (IET for short)
is an orientation-preserving piecewise isometry of the unit interval I = [0, 1],
namely it is the datum of a permutation π of d elements and a vector λ = (λi)
in the standard d-simplex Δd: the interval I is partitioned into the subintervals
Ij = I

(0)
j = [aj−1, aj) of length λj and the subintervals I

(0)
j after applying T are

ordered according to the permutation π. Formally, let aj =
∑

k≤j λk and a′
j =∑

k≤π(j) λπ−1(k) and define T (x) = x − aj−1 + a′
j−1 for x ∈ [aj−1, aj−1 + λi).

We refer to [30] or [31] for a background on IETs.
Given a strictly positive function f ∈ L1([0, 1]), a suspension flow over an

IET with roof function f is defined in the following way. Consider the quotient
space

X := {(x, y) ∈ [0, 1] × R: 0 ≤ y ≤ f(x)} /∼ , (3.1)

where ∼ denotes the equivalence relation generated by the pairs {(x, f(x)),
(T (x), 0)}. We define the suspension flow {φt}t∈R over ([0, 1], T,dx) with roof
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function f to be the flow on X given by φt(x, y) = (x, y+t) for −y ≤ t ≤ f(x)−
y, and then extended to all times t ∈ R via the identification ∼. Intuitively, a
point (x, y) ∈ X under the action of the flow moves vertically with unit speed
up to the point (x, f(x)), which is identified with (T (x), 0); after this “jump”,
it continues in the same way.

The flow {φt}t∈R can be described explicitly. For any function g : I → R

and for r ≥ 0, denote by Sr(g)(x) the rth Birkhoff sum of g along the orbit of
x ∈ I, i.e.

Sr(g)(x) :=
r−1∑

i=0

g(T ix);

then, for t ≥ 0,

φt(x, 0) =
(
T r(x,t)x, t − Sr(x,t)(f)(x)

)
, (3.2)

where r(x, t) denotes the maximum r ≥ 0 such that Sr(f)(x) ≤ t.
The set of suspension flows we are going to consider consists of the ones

for which the roof function f has asymmetric logarithmic singularities, namely
it satisfies the following properties:

(a) f is not defined on the d − 1 points a1, a2, . . . , ad−1 ∈ (0, 1);
(b) f ∈ C∞

(
[0, 1]\⋃d−1

i=1 {ai}
)
;

(c) there exists min f(x) > 0, where the minimum is taken over the domain
of definition of f ;

(d) for each j = 1, . . . , d − 1 there exist positive constants C+
j , C−

j and a
neighbourhood Uj of aj such that

f(x) = C+
j |log(x − aj)| + e(x), for x ∈ Uj , x > aj ,

f(x) = C−
j |log(aj − x)| + ẽ(x), for x ∈ Uj , x < aj ;

where e, ẽ are smooth bounded functions on [0, 1]. Moreover, C+ �= C−, where
C+ :=

∑
j C+

j and C− :=
∑

j C−
j .

Our main result is the following; it was proved by Ulcigrai [26] in the
case the roof function f has one asymmetric logarithmic singularity at the
origin. In this paper, we generalize her techniques to the case of finitely many
singularities.

Theorem 3.1. For almost every IET T and for any f with asymmetric loga-
rithmic singularities, the suspension flow {φt}t∈R over ([0, 1], T,dx) with roof
function f is mixing.

The asymmetry condition in (d) is the key property to produce mixing.
From this result, we deduce mixing for typical locally Hamiltonian flows with
asymmetric saddle loops, namely the following result.

Theorem 3.2. There exists an open and dense set A′
s,l ⊂ As,l of smooth 1-

forms with s saddle points and l minima or maxima such that for almost
every η ∈ A′

s,l with at least one saddle loop homologous to zero and for any
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minimal component M′ ⊂ M, the restriction of the induced flow {ϕt}t∈R to
M′ is mixing.

The sets A′
s,l are the subsets of As,l for which the asymmetry condi-

tion in (d) is satisfied; we are going to construct them explicitly in the next
subsection. Theorem 3.2 follows from Theorem 3.1 by constructing an appro-
priate Poincaré section, showing that the first return map is an IET and, if the
locally Hamiltonian flow is induced by a 1-form in A′

s,l, then the first return
time function f has asymmetric logarithmic singularities.

3.1. Proof of Theorem 3.2

Let η ∈ As,l; as we remarked in Sect. 2.2, 1-forms with saddle connections
are a zero measure set; therefore, we can assume η has no saddle connections.
Let M1, . . . ,Mk be the minimal components, and let Mk+1, . . . ,Mk+l the
islands, i.e. the periodic components containing a minimum or a maximum of
η (in addition there can be cylinders of periodic orbits, but we do not label
them). Each Mi is bounded by saddle loops homologous to zero. Denote by
p1,i, . . . , psi,i the singularities of η contained in the closure of Mi, which are
saddles, and let {q1, . . . ql}, with qi ∈ Mk+i, be the set of maxima or minima
of η, which is possibly empty if l = 0.

Step 1: Poincaré Section Let us consider one of the minimal components Mi.
We first show that we can find a Poincaré section I so that the first return
map T : I → I is an IET of di intervals, where

(
k∑

i=1

di

)

+ l + (k − 1) = 2g + (l + s) − 1 = rankH1(M,Σ,Z). (3.3)

Fix a segment I ′ ⊂ Mi transverse to the flow containing no critical points and
whose endpoints a and b lie on outgoing saddle leaves. Let a1, . . . , adi−1 ∈ I ′

be the pullbacks of the saddle points via the flow, namely the points aj ∈ I ′ are
such that limt→∞ ϕt(aj) = pr,i for some r = 1, . . . , si and ϕt(aj) /∈ I ′ for any
t > 0, see Fig. 2. Up to relabelling, we can suppose that the points are labelled
in consecutive order, namely the segment [a, aj ] ⊂ I ′ with endpoints a and aj

is contained in [a, aj+1] for all j = 1, . . . , di − 2. Let a0 be the closest point to
a1 contained in [a, a1] which lies in an outgoing saddle leaf and similarly let adi

be the closest point to ad1−1 contained in [adi−1, b] which lies in an outgoing
saddle leaf. We consider the segment I = [a0, adi

], see Fig. 2.
Let T : I → I be the first return map of ϕt to I and f : I → R>0 the

first return time function. Clearly, T is not defined on {a1, . . . , adi−1}, since
the return time of those points is infinite. Consider the connected component
Ij of I\{a1, . . . , adi−1} bounded by aj−1 and aj . For any z ∈ Ij and for any
0 ≤ t ≤ f(z), by compactness, the point ϕt(z) is bounded away from the
singularities; thus, the map ϕt is continuous at z. In particular, T is continuous
at any z ∈ Ij and T (Ij) is a connected segment in I. Since I is transverse to
the flow, we have that

∫
I
η �= 0; up to reversing the orientation we can assume

that
∫

I
η > 0. Moreover, since there are no critical points of η in the interior
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•

• •

◦

◦ ◦
•

a a0

a1 · · · aj · · ·
adi b

γj

σj

Figure 2. Example of the construction of the Poincaré sec-
tion; in blue one of the curves γj and in green its dual σj

of I, the integral of η is an increasing function, i.e.
∫ z1

a0
η <
∫ z2

a0
η whenever the

segment [a0, z1] is strictly contained in [a0, z2]. The 1-form η defines a measure
on I, which it is easy to see it is T -invariant. By considering the coordinates
on I given by z �→ ∫ z

a0
η/(
∫

I
η), we can identify I = [0, 1] and η�I with the

Lebesgue measure Leb on I. The map T �Ij
is an isometry for any j = 1, . . . , di;

thus, T is an IET of di intervals.
Let us prove (3.3). By construction, di − 1 is the number of pullbacks of

the saddle points: each saddle with a saddle loop homologous to zero admits
one pullback, whence the other saddles have two. Each of the former is uniquely
paired with a minimum or a maximum or with another minimal component
via a cylinder of periodic orbits; hence, there are exactly l + 2(k − 1) of them.
We deduce

∑k
i=1(di − 1) + l + 2k − 2 = 2s; therefore, (

∑
i di) + l + (k − 1) =

2s + 1 = 2g + (s + l) − 1 = rankH1(M,Σ,Z) by Poincaré–Hopf formula.

Step 2: Return Time Function We now investigate the first return time function
f . Clearly, f is smooth in I\{a1, . . . , adi−1} and blows to infinity at the points
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aj . Since f �= 0 on I by hypothesis, it admits a minimum min f(x) > 0. In
order to understand the type of singularities of f , we have to compute the
time spent by an orbit travelling close to a saddle point p. By Theorem 2.2,
we can suppose that a local Hamiltonian at p = (0, 0) is H(x, y) = xy and the
area form ω = V (x, y) dx ∧ dy. Let (x(t), y(t)) be an orbit of the flow; as we
have already remarked, H is constant along it, H(x(t), y(t)) = c. The vector
field is given by W = x

V (x,y)∂x − y
V (x,y)∂y, so that the time spent for traveling

from a point (z, c/z) to (c/z, z) is

T =
∫ T

0

dt =
∫ T

0

V (x, c/x)ẋ
x

dt =
∫ c/a

a

V (x, c/x)
x

dx.

Lemma A.1 in [6] yields that T = −V (0, 0) log c + e(c, a), where e is a smooth
function of bounded variation. Therefore, when the “energy level” c approaches
0, or equivalently when the leaf gets close to the saddle leaf, the time spent
close to p blows up as |log c|. Denote by C1, . . . , Csi

the constants given by
T (c)/ |log c| as c → 0 for all the saddle points p1,i, . . . , psi,i. Suppose that aj

corresponds to a saddle pr,i belonging to a saddle loop homologous to zero.
Since there are no saddle connections, there exists a small neighbourhood U ⊂
I of aj which contains points that do not come close to any other singularity
of η before coming back to I. Because of the saddle loop, the logarithmic
singularity of f at aj has different constants: points in I ∩ U on different sides
of aj travel either once or twice near pr,i. Namely, for some smooth bounded
functions e, ẽ we either have

f(x) = −Cj log |x − aj | + e(x), for x ∈ I ∩ U , x > aj

f(x) = − 2Cj log |aj − x| + ẽ(x), for x ∈ I ∩ U , x < aj ,

or similar equalities with the conditions x > aj and x < aj reversed. On the
other hand, if the point aj corresponds to a singularity pr,i with no saddle loop,
then the constants on different sides of aj are the same. We remark that this
phenomenon was discovered by Arnold [1] in the genus one case and exploited
by Sinai and Khanin [25] to prove mixing.

Step 3: Asymmetry For property (d) to hold, the sum of the constants on the
left side of the singularities has to be different from the one on the right.

Notation 3.3. Let A′
s,l be the subset of As,l of smooth 1-forms such that no

linear combination of the Cj with coefficients in {−1, 0, 1} equals zero.

In particular, for all η ∈ A′
s,l, we have that C+ �= C−. Let us show

that it is an open and dense set. Let p = pj,i be a singularity of η. For any
small perturbation of η, there exists a change of coordinates ψ close to the
identity such that we can write the Hamiltonian for the perturbed 1-form as
H ′ = x′y′. Thus, the return time is T (c) = −V (0, 0)|det J(ψ)p| log c+ ẽ, where
J(ψ)p is the Jacobian matrix of ψ at p and ẽ is another smooth function of
bounded variation. If η /∈ A′

s,l, fix a saddle p and for any ε > 0 consider
the perturbed local Hamiltonian H ′ = (1 − ε2)xy at p; then ψ(x, y) = ((1 −
ε)x, (1 + ε)y) so that |det J(ψ)p| = 1 − ε2. Since the other constants Cj are
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the same, it is possible to choose arbitrarily small ε such that η′ ∈ A′
s,l,

which is hence dense. In order to see that A′
s,l is open, let xy + f(x, y) be

the perturbed Hamiltonian at a singularity, with ‖f‖C ∞ < ε and let (x′, y′) =
ψ(x, y) = (ψ1(x, y), ψ2(x, y)) the associated change of coordinates as above.
Then, f(x, y) = ψ1(x, y)ψ2(x, y) − xy = P ◦ (Id −ψ)(x, y), where P denotes
the product P (x, y) = xy. Thus, there exists ε′ > 0 such that ‖Id −ψ‖C ∞ < ε′

on a neighbourhood of p; hence, |det J(ψ)p| ∈ [1 − ε′, 1 + ε′]. Since this holds
for any singularity p, the set A′

s,l is open.

Step 4: Full-Measure Sets Finally, we have to prove that if a property holds for
almost every IET, then it holds for almost every η ∈ A′

s,l w.r.t. the measure
class defined in Notation 2.8. Fix the minimal component Mi, let M̃i be
the open neighbourhood of Mi obtained by adding all cylinders or islands
of periodic orbits adjacent to Mi. Let Σi the set of singularities in M̃i, or
equivalently in the closure of Mi.

For each interval Ij as above, let γj be a path starting from a point x ∈ Ij

different from aj−1, aj , moving along the orbit of x up to the first return to
I and closing it up in I, see Fig. 2. Set Bi = {γj : 1 ≤ j ≤ di}. Let {ξr} be
the set of the boundary components of Mi. By [31, Lemma 2.17], Bi ∪ {ξr} is
a generating set for H1(M̃i,Z). Moreover, a proof analogous to [31, Lemma
2.18] shows that any loop around a singularity is a linear combination of the
γj (if the singularity is not contained in a saddle loop), and of the γj and ξr

(if the singularity pr,i is contained in a saddle loop). In particular, Bi ∪ {ξr} is
a generating set for H1(M̃i\Σi,Z).

Lemma 3.4. Let Bi be as above. There exists a basis B of H1(M\Σ,Z) given
by the disjoint union of the Bi together with the homology classes of the loops
ξ bounding the M̃i.

Proof. Consider two minimal components Ma and Mb separated by a cylinder
of periodic orbits; the same proof applies if Mb is an island containing a
maximum or a minimum. Notice that M̃a ∩M̃b is a cylinder of periodic orbits
containing no singularity. Let ξa ∈ H1(M̃a\Σa,Z) and ξb ∈ H1(M̃b\Σb,Z) the
boundary components in M̃a∩M̃b. We remark that ξa and ξb are homologous.
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Let i, j, ĩ, j̃ be the inclusion maps in the following diagram.

M̃a ∪ M̃b\Σa ∪ Σb

M̃a\Σa

ĩ

��������������
M̃b\Σb

j̃

��������������

M̃a ∩ M̃b

i

������������� j

�������������

The Mayer–Vietoris sequence

· · · −→ H1(M̃a ∩ M̃b,Z)
(i∗,j∗)−−−−→ H1(M̃a\Σa,Z) ⊕ H1(M̃b\Σb,Z)

ĩ∗−j̃∗−−−−→
ĩ∗−j̃∗−−−−→ H1(M̃a ∪ M̃b\Σa ∪ Σb,Z) ∂∗−→ H0(M̃a ∩ M̃b,Z)

(i∗,j∗)−−−−→ · · ·

is exact. We have that H1(M̃a ∩ M̃b,Z) = 〈ξ〉, where ξ = ξa =
ξb, and the image im(i∗, j∗) is equal to 〈(ξa, ξb)〉. By exactness, it fol-
lows that H1(M̃a\Σa,Z) ⊕ H1(M̃b\Σb,Z)/〈(ξa, ξb)〉 � im(̃i∗ − j̃∗). Since
(i∗, j∗) : H0(M̃a ∩ M̃b,Z) → H0(M̃a\Σa,Z) ⊕ H0(M̃b\Σb,Z) is injective,
im(∂∗) = {0}, then ker(∂∗) = H1(M̃a ∪ M̃b\Σa ∪ Σb,Z) = im(̃i∗ − j̃∗). We
have obtained that

H1(M̃a\Σa,Z) ⊕ H1(M̃b\Σb,Z)/〈(ξa, ξb)〉 � H1(M̃a ∪ M̃b\Σa ∪ Σb,Z)

in particular, the set Ba ∪ Bb is contained in a generating set for H1(M̃a ∪
M̃b\Σa∪Σb,Z) and the union is disjoint in the image, i.e. they all give distinct
elements.

Iterate this process for all components. The generating set we obtain is
the disjoint union of the Bi together with the homology classes of the loops
ξ bounding the M̃i. Since the cardinality of Bi is di, the cardinality of the
set obtained is

∑k
i=1 di + l + (k − 1). By formula (3.3), it equals the rank of

H1(M\Σ,Z); hence, it is a basis. �

Corollary 3.5. Every full-measure set of length vectors λ ∈ Δd corresponds to
a full-measure set of 1-forms η ∈ A′

s,l.

Proof. It is sufficient to show that for any fixed η ∈ A′
s,l we can choose a basis

of H1(M,Σ,Z) such that the lengths of the subintervals of the induced IETs
on all minimal components appear as some of the coordinates of Θ(η).

Let B be the basis of H1(M\Σ,Z) given by Lemma 3.4. Denote by
M̂ the surface obtained from M by removing a small ball centred at
each singularity. By the Excision Theorem, H1(M,Σ,Z) � H1(M̂, ∂M̂,Z)
and the Poincaré–Lefschetz duality implies that the latter is isomorphic to
H1(M̂,Z) � H1(M\Σ,Z). At the homology level, we then have a per-
fect pairing given by the intersection form. Consider the basis {σj}, where
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σj ∈ H1(M,Σ,Z) is the dual path to γj , see Fig. 2. If σj ⊂ Mi, the associ-
ated period coordinates are given by

∫
σj

η = (aj − aj−1)
∫

I
η, which are the

lengths of the subintervals defining the IET T on I ⊂ Mi (up to the constant∫
I
η). �

Theorem 3.1 implies that for every permutation π, for almost every length
vector λ ∈ Δd and for every function f with asymmetric logarithmic singular-
ities the suspension flow over T = (π, λ) with roof function f is mixing. By
Corollary 3.5, consider the correspondent full-measure set of 1-forms η ∈ A′

s,l.
By the previous steps, the restriction of the induced locally Hamiltonian flow
to any minimal component can be represented as a suspension flow over an
IET with roof function with asymmetric logarithmic singularities, which is
mixing by Theorem 3.1. This concludes the proof.

4. Rauzy–Veech Induction and Diophantine Conditions

The Rauzy–Veech algorithm is an inducing scheme which produces a sequence
of IETs defined on nested subintervals of [0, 1] shrinking towards zero. We
assume some familiarity with the Rauzy–Veech Induction, referring to [31] for
details. We introduce some notation and terminology that we will use in the
proof of Theorem 3.1.

We will denote by RT the IET obtained in one step of the algorithm and,
for any n ≥ 0, we let T (n) := RnT . The map T (n) is defined on a subinterval
I(n) ⊂ I of length λ(n). Let λ(n) ∈ (λ(n))−1Δd be the vector whose components
λ

(n)
j are the lengths of the subintervals I

(n)
j ⊂ I(n) defining T (n); it satisfies

the following relation

λ(n) = (A(n))−1λ, with A(n) ∈ SLd(Z).

We can write

A(n) = A0 · · · An−1 := A(T ) · · · A(T (n−1)),

where (A(n))−1 is a matrix cocycle (sometimes called the Rauzy–Veech lengths
cocycle). For m < n, define also

A(m,n) = Am · · · An−1 = A(T (m)) · · · A(T (n−1)),

so that

λ(n) = (A(m,n))−1λ(m). (4.1)

Denote by h
(n)
j the first return time of any x ∈ I

(n)
j to the induced

interval I(n) and by h(n) the vector whose components are h
(n)
j ; let h(n) be the

maximum h
(n)
j for j = 1, . . . , d. The following result is well-known.

Lemma 4.1. The (i, j)-entry A
(n)
i,j of A(n) is equal to the number of visits of

any point x ∈ I
(n)
j to Ii up to the first return time h

(n)
j to I(n). In particular,

h
(n)
j =
∑d

i=1 A
(n)
i,j .
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Let Z
(n)
j be the orbit of the interval I

(n)
j up to the first return time to

I(n), namely

Z
(n)
j :=

h
(n)
j −1⋃

r=0

T rI
(n)
j .

We remark that the above is a disjoint union of intervals by definition of first
return time. For 0 ≤ r < h

(n)
j , let F

(n)
j,r := T r(I(n)

j ). The intervals F
(n)
j,r form a

partition of I, that we will denote Z(n).

Remark 2. Because of the definition of the Rauzy–Veech Induction, the par-
tition Z(n) = {F

(n)
j,r : 0 ≤ r < h

(n)
j , 1 ≤ j ≤ d} is a refinement of the partition

Z(n−1); in particular, for any n ≥ 0, each point ak for 0 ≤ k ≤ d belongs to
the boundary of some F

(n)
j,r .

We say that any IET for which the result below holds satisfies the mix-
ing Diophantine condition with integrability power τ ; it was proved by Ulci-
grai [26]. We recall that the Hilbert distance dH on the positive orthant of Rd

is defined by dH(a, b) = log(max{ai/bi}/min{ai/bi}) for any positive vectors
a, b ∈ R

d.

Theorem 4.2 ([26, Proposition 3.2] Mixing DC). Let 1 < τ < 2. For almost
every IET there exist a sequence {nl}l∈N and constants ν, κ > 1, 0 < D < 1,
D′ > 0 and l ∈ N such that for every l ∈ N we have:

(i) ν−1 ≤ λ
(nl)
i /λ

(nl)
j ≤ ν for all 1 ≤ i, j ≤ d;

(ii) κ−1 ≤ h
(nl)
i /h

(nl)
j ≤ κ for all 1 ≤ i, j ≤ d;

(iii) A(nl,nl+l) > 0 and, if dH denotes the Hilbert distance on the positive
orthant in R

d,

dH

(
A(nl,nl+l)a,A(nl,nl+l)b

)
≤ min{DdH(a, b),D′},

for any vectors a, b in the positive orthant of Rd;
(iv) liml→∞ l−τ‖A(nl,nl+1)‖ = 0.

Moreover, any IET satisfying these properties is uniquely ergodic.

Corollary 4.3 ([26, Lemmas 3.1, 3.2 and 3.3]). Consider the sequence {nl}l∈N

given by Theorem 4.2; the following properties hold.
(i) For each i, j ∈ {1, . . . , d},

1

dνκh
(nl)
j

≤ λ
(nl)
i ≤ κν

h(nl)
.

(ii) For any fixed i ∈ N,

h(nl)

h(nl+il)
≤ κ

di
.

(iii) For any fixed i ∈ N, log‖A(nl,nl+i)‖ = o(log h(nl)).
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Proof. Kac’s Theorem implies that
∑

j h
(nl)
j λ

(nl)
j = 1, from which it follows

maxj h
(nl)
j λ

(nl)
j ≥ 1/d and minj h

(nl)
j λ

(nl)
j ≤ 1. These inequalities together

with properties (i) and (ii) in Theorem 4.2 yield the first claim (i). The matrix
A(nl,nl+l) has positive integer entries by (iii) in Theorem 4.2, so minj h

(nl+il)

j ≥
di minj h

(nl)
j , from which (ii) follows. Finally, (iii) is obtained by combining

(iv) in Theorem 4.2 and log h(nl) ≥ �l/l� log d, which is a consequence of (ii)
above. �

5. The Quantitative Mixing Estimates

In order to prove mixing for the suspension flow {φt}t∈R, we show that, for a
dense set of smooth functions, the correlations tend to zero and we provide an
upper bound for the speed of decay, see Theorem 5.6 below.

The first step is to estimate the growth of the Birkhoff sums of the deriva-
tive f ′ of the roof function f , see Theorem 5.5. For this part (see Appendix 7),
we follow the same strategy used by Ulcigrai [26], namely using the mixing
Diophantine condition of Theorem 4.2, we prove that “most” points in any
orbit equidistribute in I and we bound the error given by the other points.
In the second part (see Sect. 6), we construct a family of partitions of the
unit interval following the strategy used by Ulcigrai [26, §4] providing explicit
bounds on their size; they are used to define a subset of the phase space of
the suspension flow on which we can estimate the shearing of transversal seg-
ments. We then use a bootstrap trick similar to the one introduced by Forni
and Ulcigrai [5] to reduce the study of speed of decay of correlations to the
deviations of ergodic averages for IETs and finally we apply the following result
by Athreya and Forni [2].

Theorem 5.1. ([2, Theorem 1.1]) Let S be a compact surface, and let Ω be a
connected component of a stratum of the moduli space of unit-area holomorphic
differentials on S. There exists a θ > 0 such that the following holds. For all
ω ∈ Ω, there is a measurable function Kω : S

1 → R>0 such that for almost all
α ∈ S

1, for all functions f in the standard Sobolev space H 1(S) and for all
nonsingular x ∈ S,

∣
∣
∣
∣
∣

∫ T

0

f ◦ ϕα,t(x) dt − T

∫
f dAω

∣
∣
∣
∣
∣
≤ Kω(α)‖f‖H 1(S)T

1−θ, (5.1)

where ϕα,t is the directional flow on S in direction α and Aω is the area form
on S associated to ω.

Let C r(�Ij) be the space of functions h : I → R such that the restriction
of h to the interior of each Ij can be extended to a C r function on the closure of
Ij . In [18, §3], Marmi, Moussa and Yoccoz introduced the boundary operator1

B : C 0(�Ij) → R
s to characterize which functions in C 1(�Ij) are induced by

functions on a suspension over the interval exchange transformation, see [18,

1 In their paper, it is denoted by ∂.
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Proposition 8.5]. We recall their result for the reader’s convenience. Given an
IET T = T (π, λ) of d intervals, define the permutation π̂ on {1, . . . , d}×{L,R}
by

π̂(i, R) = (i + 1, L) for 1 ≤ i ≤ d − 1 and π̂(d,R) = (π−1(d), R),

π̂(i, L) = (π−1(π(i) − 1), R) for i �= π−1(1) and π̂(π−1(1), L) = (1, L).

The cycles of π̂ are canonically associated to the singularities of any suspension
over T via Veech’s zippered rectangles. The boundary operator B is given by

(Bh)C =
∑

v∈C

ε(v)h(v),

where C is any cycle in π̂, ε(v) = −1 if v = (i, L) and ε(v) = +1 if v = (i, R)
and h(v) is the limit of h at the left (resp., right) endpoint of the i-th interval
if v = (i, L) (resp., if v = (i, R)); see [18, Definition 3.1]. They proved the
following result.

Proposition 5.2 ([18, Proposition 8.5]). Let S be a suspension over T via
Veech’s zippered rectangles and let C r

c (S) be the space of C r functions over S
with compact support in the complement of the singularities. For f ∈ C r

c (S),
define

If(x) =
∫ τ(x)

0

f ◦ ϕt(x) dt,

where τ(x) is the first return time of x to the interval I and ϕt(x) is the vertical
flow on S. Then, I maps C r

c (S) continuously into C r(�Ij) and its image is
the subspace of functions h satisfying Bh = B(∂xh) = · · · = B(∂r

xh) = 0.

Corollary 5.3. For every permutation π of d elements there exists 0 ≤ θ < 1
such that for almost every IET T = T (π, λ), for every h ∈ C 1(�Ij) satisfying
Bh = B(∂xh) = 0, there exists Ch > 0 for which

∣
∣
∣
∣Sr(h)(x) − r

∫ 1

0

h(x) dx

∣
∣
∣
∣ ≤ Chrθ,

uniformly on x ∈ I.

Proof. Since almost every translation surface S has a Veech’s zippered rec-
tangle presentation (see [30, Proposition 3.30]), Theorem 5.1 implies that for
almost every IET T there exists a suspension S over T via zippered rectangles
such that an estimate like (5.1) holds for the vertical flow {ϕt}. Let h be as
in the statement of the corollary. By Proposition 5.2, there exists a function
f ∈ C 1

c (S) such that If = h. The conclusion follows from (5.1). �

Notation 5.4. We define M to be the set of IETs which satisfy the mixing
Diophantine condition of Theorem 4.2 and Q to be the set of IETs for which
the conclusion of Corollary 5.3 holds. We remark that M ∩Q has full measure.
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Consider the auxiliary functions uk, vk, ũk, ṽk : I → R>0 obtained by
restricting to I the 1-periodic functions defined by

uk(x) = 1 − log(x − ak), ũk(x) = −u′
k(x) =

1
x − ak

for x ∈ (ak, ak + 1],

and

vk(x) = 1 − log(ak − x), ṽk(x) = v′
k(x) =

1
ak − x

for x ∈ [ak − 1, ak),

for k = 1, . . . , d − 1. It will be convenient to identify functions over I with
1-periodic functions over R.

Fix τ ′ such that τ/2 < τ ′ < 1, where 1 < τ < 2 is the integrability power
of T of Theorem 4.2, and define the sequence

σl =
(

log‖A(nl,nl+1)‖
log h(nl)

)τ ′

.

The set of points for which we are able to obtain good bounds for the Birkhoff
sums of f ′ and f ′′ contains those points whose T -orbit up to time �σlh

(nl+1)�
stay σlλ

(nl)-away from all the singularities, namely the complement of the set

Σl =
d−1⋃

k=1

Σl(k), where Σl(k) =
	σlh

(nl+1)
⋃

i=0

T−i{x ∈ I: |ak − x| ≤ σlλ
(nl)}.

(5.2)

We will show in Proposition 6.4 that Leb(Σl) → 0 as l goes to infinity. The
estimates we need are the following; the proof is given in Appendix 7. Ulcigrai
proved an analogous statement for the case of one singularity at zero, see [26,
Corollaries 3.4, 3.5]; the proof in Sect. 7 follows her strategy, which is adapted
to obtain also uniform bounds on the Birkhoff sums of f .

Theorem 5.5. Consider T ∈ M and let f be a roof function with asymmetric
logarithmic singularities; let C = −C+ + C− = −∑j C+

j +
∑

j C−
j . Define

Ũ(r, x) := max
1≤k≤d−1

max
0≤i<r

ũk(T ix), Ṽ (r, x) := max
1≤k≤d−1

max
0≤i<r

ṽk(T ix).

For any ε > 0 there exists r > 0 such that for r ≥ r if h(nl) ≤ r < h(nl+1),
x /∈ Σl and x is not a singularity of Sr(f), then

Sr(f)(x) ≤ 2r + const max
1≤k≤d−1

max
0≤i<r

∣
∣log
∣
∣T ix0 − ak

∣
∣
∣
∣

Sr(f ′)(x) ≤ (C + ε)r log r + (C− + 1)(�κ� + 2)Ṽ (r, x)

Sr(f ′)(x) ≥ (C − ε)r log r − (C+ + 1)(�κ� + 2)Ũ(r, x)

|Sr(f ′′)(x)| ≤ (2max{Ũ(r, x), Ṽ (r, x)} + 1)(C+ + C− + ε)

× (r log r + (�κ� + 2)(Ũ(r, x) + Ṽ (r, x))
)
,

where we recall κ is given in Theorem 4.2.
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The previous estimates are interesting in their own right, since they are
used by Kanigowski et al. [7] to strengthen mixing to mixing of all orders for
a full-measure set of flows. In the proof of Theorem 5.6 below, we will exploit
them only for a fixed 0 < ε < |C|.

We recall from (3.1) that X is the phase space of the suspension flow
{φt}. Let Φ: X → M′ be the measurable isomorphism between {φt} and the
locally Hamiltonian flow {ϕt} on the minimal component M′. We prove a
bound on the speed of the decay of correlations for the pullbacks of functions
in C 1

c (M′).

Theorem 5.6. Let {φt}t∈R be a suspension flow over an IET T ∈ M ∩ Q
with roof function with asymmetric logarithmic singularities. Then, there exists
0 < γ < 1 such that for all g, h ∈ Φ∗(C 1

c (M′)) with
∫

X g d Leb = 0 we have
∣
∣
∣
∣

∫

X
(g ◦ φt)h d Leb

∣
∣
∣
∣ ≤

Cg,h

(log t)γ
,

for some constant Cg,h > 0.

Theorem 1.2 is an immediate consequence of Theorem 5.6.

Proof of Theorem 3.1. We show that Theorem 5.6 implies Theorem 3.1. It
is sufficient to prove that Φ∗(C 1

c (M′)) is dense in L2(X ). We claim that
Φ∗(C 1

c (M′)) contains the dense subspace C 1
c (X ) of C 1 functions with compact

support on X . Indeed, we show that for any compact set K ⊂ M′\Σ in the
complement of the singularities, Φ is a diffeomorphism between Φ−1(K) and
Φ(Φ−1(K)) ⊆ K.

For any p ∈ Φ(Φ−1(K)), choose local coordinates around p such that the
vector field generating flow {ϕt} is ∂y; then, if ω = V (x, y) dx ∧ dy, we have
that η = −V (x, y) dx. On X , the 1-form η equals dx; in these coordinates,
Φ is the solution to the well-defined system of ODEs ∂xΦ = −1/(V ◦ Φ) and
∂yΦ = 0. By compactness, the C∞-norm of V is uniformly bounded, and so is
the C∞-norm of Φ; thus, Φ is a diffeomorphism. �

Remark 3. The argument above shows that any g ∈ Φ∗(C 1
c (M′)) is a C 1

function on X . Moreover, define the operator I as in Proposition 5.2, namely

(Ig)(x) =
∫ f(x)

0

g(x, y) dy. (5.3)

The same proof as [18, Proposition 8.5] shows that Ig ∈ C 1(�Ij) and B(Ig) =
B(∂x(Ig)) = 0, in particular Ig satisfies the hypotheses of Corollary 5.3.

6. Proof of Theorem 5.6

The first part of the proof consists of defining a subset X(t) ⊂ X on which
we can estimate the shearing of segments transverse to the flow in the flow
direction. The construction of X(t) follows the lines of [26, §4], although here
we need to make all estimates explicit. In the second part of the proof, we
reduce correlations to integrals along long pieces of orbits by a bootstrap trick
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analogous to [5] and we conclude by applying the result by Athreya and Forni
on the deviations of ergodic averages in the form of Corollary 5.3.

Within this section, we will always assume that f has asymmetric loga-
rithmic singularities and T ∈ M ∩ Q.

6.1. Preliminary Partitions

Let R(t) := �t/m� + 2, where m = min{1,min f}. A partial partition P is
a collection of pairwise disjoint subintervals J = [a, b) of the unit interval
I = [0, 1].

Proposition 6.1. Let 0 < α < 1. For each M > 1 there exists t0 > 0 and partial
partitions Pp(t) for t ≥ t0 such that 1 − Leb(Pp(t)) = O ((log t)−α) and for
each J ∈ Pp(t) we have

(i) T j is continuous on J for each 0 ≤ j ≤ R(t);
(ii) 1

t(log t)α ≤ Leb(J) ≤ 2
t(log t)α ;

(iii) dist(T jJ, ak) ≥ M
t(log t)α for 0 ≤ j ≤ R(t);

(iv) f(T jx) ≤ Cf log t for each 0 ≤ j ≤ R(t) and for all x ∈ J , where Cf > 0
is a fixed constant.

Proof. Let P0(t) be the partition of I into continuity intervals for TR(t). Con-
sider the set

U1 =
d⋃

k=0

R(t)⋃

j=0

{

x ∈ I:
∣
∣x − T−jak

∣
∣ ≤ 2M

t(log t)α

}

,

and let P1(t) be obtained from P0(t) by removing all partition elements fully
contained in U1. Then,

1 − Leb(P1(t)) ≤ Leb(U1) ≤ (d + 1)
(

t

m
+ 3
)

4M

t(log t)α
= O
(
(log t)−α

)
.

Any J ∈ P1(t) contains at least one point outside U1; therefore, since the
endpoints of J are centres of the balls in U1, we have Leb(J) ≥ 4M/(t(log t)α).
Let

U2 =
d⋃

k=0

R(t)⋃

j=0

T−j

{

x ∈ I: |x − ak| ≤ M

t(log t)α

}

,

and let P2(t) = P1(t)\U2. As before we have that

Leb(P1(t)) − Leb(P2(t)) ≤ Leb(U2) = O
(
(log t)−α

)
.

By construction, property (iii) is satisfied. Moreover, any interval J ∈ P2(t)
is either an interval in P1(t) or is obtained from one of them by cutting an
interval of length at most M/(t(log t)α) on one or both sides; hence, Leb(J) ≥
2M/(t(log t)α). Cut each interval J ∈ P2(t) in such a way that (ii) is satisfied
and call Pp(t) the resulting partition. Finally, there exists a constant C ′

f such
that, by (iii), for all x ∈ Pp(t) and all 0 ≤ j ≤ R(t) we have f(T jx) ≤
C ′

f log(t(log t)α) ≤ (C ′
f + 1) log t, up to increasing t0. Thus, (iv) holds with

Cf = C ′
f + 1. �
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Rough Lower Bound on r(x, t) We want to bound the number r(x, t) of iter-
ations of T up to time t [see (3.2)]. From the definition, r(x, t) ≤ R(t). By
property (iv) in Proposition 6.1,

t < Sr(x,t)+1(f)(x) ≤ Cf (r(x, t) + 1) log t,

which, up to enlarging t0 if necessary, implies

r(x, t) >
t

2Cf log t
, (6.1)

uniformly for x ∈ Pp(t).

6.2. Stretching Partitions

We refine the partitions Pp(t) in order for Theorem 5.5 to hold. Let l(t) ∈ N

be such that h(nl(t)) ≤ R(t) < h(nl(t)+1).

Lemma 6.2. If t
2Cf log t ≤ r(x, t) ≤ R(t), then h(nl(t)−L(t)) ≤ r(x, t) < h(nl(t)+1)

for all x ∈ Pp(t), where L(t) = O(log log t).

Proof. By Corollary 4.3(ii), for each L ∈ N we have

h(nl(t)−Ll) ≤ κ

dL
h(nl(t)) ≤ κ

dL
R(t) ≤ 2κt

mdL
.

It is sufficient to choose L minimal such that 2κt/(mdL) < t/(2Cf log t); this
case is achieved with an L(t) = Ll = O(log log t). �

Lemma 6.3. We have that l(t) = O(log t) and, for any ε > 0, l(t)−1 =
O
(
(log t)− 1

1+ε

)
.

Proof. By Corollary 4.3(ii) we have

d	l(t)/l
 ≤ κh(nl(t)) ≤ κR(t) ≤ 2κt

m
,

so that l(t) = O(log t). For the other inequality, we use the Diophantine con-
dition (iv) in Theorem 4.2 to get

log h(nl(t)+1) ≤ log(normaA(n0,nl(t)+1)) ≤ log(‖A(nl(t),nl(t)+1)‖ · · · ‖A(n0,n1)‖)

=
l(t)∑

i=0

log(‖A(ni,ni+1)‖) = O

⎛

⎝
l(t)∑

i=1

log(iτ )

⎞

⎠

= O

(∫ l(t)+1

1

log x dx

)

= O(l(t) log l(t)) = O(l(t)1+ε).

The conclusion follows from log h(nl(t)+1) ≥ log R(t) ≥ log t. �

We now assume C+ > C−; the proof in the other case is analogous.

Proposition 6.4. Suppose C+ > C−. There exist t1 ≥ t0, constants C ′, C̃ ′,
C ′′ > 0 and a family of refined partitions Ps(t) ⊂ Pp(t) for all t ≥ t1, with
1−Leb(Ps(t)) = O((log t)−α′

) for some 0 < α′ < 1, such that for all x ∈ Ps(t)
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(i) Sr(x,t)(f)(x) ≤ 3t,
(ii) Sr(x,t)(f ′)(x) ≤ −C ′t log t,

(iii)
∣
∣Sr(x,t)(f ′)(x)

∣
∣ ≤ C̃ ′t log t,

(iv) Sr(x,t)(f ′′)(x) ≤ C′′
M t2(log t)1+α.

Proof. Recall the definition of Σl in (5.2) and that r(x, t) is the number of
iterations of T applied to x up to time t. Theorem 5.5 provides bounds for
the Birkhoff sums Sr(x,t)(f)(x) and Sr(x,t)(f ′)(x) for all x /∈ Σl, where l is
such that h(nl) ≤ r(x, t) < h(nl+1). By Lemma 6.2 we know that h(nl(t)−L(t)) ≤
r(x, t) < h(nl(t)+1) for all x ∈ Pp(t), hence to make sure we can apply Theorem
5.5, it is sufficient to remove all sets Σl, with l(t) − L(t) ≤ l ≤ l(t). Thus, we
define

Σ̂(t) =
d−1⋃

k=1

l(t)⋃

l=l(t)−L(t)

Σl(k).

Let Ps(t) be obtained from Pp(t) by removing all intervals which intersect
Σ̂(t). We estimate the total measure of Ps(t). If J ∈ Pp(t) intersects Σ̂(t),
then either J ⊂ Σ̂(t) or T jJ contains some point of the form ak ± σlλ

(nl) for
some 0 ≤ j ≤ R(t) and l(t) − L(t) ≤ l ≤ l(t). Therefore, by Lemma 6.2,

Leb(Pp(t)) − Leb(Ps(t)) ≤ Leb(Σ̂(t)) +
2

t(log t)α
(R(t) + 1)2d(L(t) + 1)

= Leb(Σ̂(t)) + O

(
log log t

(log t)α

)

= Leb(Σ̂(t)) + O
(
(log t)−α1

)
,

for some α1 < α. From Corollary 4.3 we get

Leb(Σ̂(t)) = O
(
L(t)σ2

l(t)λ
(nl(t))h(nl(t)+1)

)
= O

(

L(t)σ2
l(t)

h(nl(t)+1)

h(nl(t))

)

= O
(
L(t)σ2

l(t)‖A(nl(t),nl(t)+1)‖
)

= O

(

L(t)
(log l(t))2τ ′

l(t)2τ ′−τ

)

= O

(
L(t)
l(t)α2

)

,

for some α2 > 0, since 2τ ′ > τ .
From Lemma 6.3, we deduce that

Leb(Σ̂(t)) = O

(
log log t

(log t)
α2
1+ε

)

= O
(
(log t)−α3

)
,

for some α3 > 0, so that

1 − Leb(Ps(t))

≤ (1 − Leb(Pp(t))) + (Leb(Pp(t)) − Leb(Ps(t))) = O
(
(log t)−α′)

,

for some 0 < α′ ≤ min{α1, α3}.
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Fix 0 < ε < −C = C+ − C−. By (6.1), we have r(x, t) ≥ t/(2Cf log t) ≥
t1/(2Cf log t1); let us choose t1 such that the latter is greater than r in Theo-
rem 5.5. By construction, the estimates on the Birkhoff sums of f and f ′ hold
for all x ∈ Ps(t).

Lemma 6.5. For all x ∈ Ps(t) we have that t/3 ≤ r(x, t) ≤ R(t) ≤ 2t/m.

Proof. We only have to prove the lower bound. By definition and by the uni-
form estimates on the Birkhoff sums of f in Theorem 5.5 we have

t < Sr(x,t)+1(f)(x) ≤ 2(r(x, t) + 1) + const max
0≤i≤r(x,t)

f(T ix).

Since f(T ix) ≤ Cf log t for all x ∈ Ps(t) by Proposition 6.1(iv), the conclusion
follows up to increasing t1. �

Let us show (ii). From the fact that |x − ak|−1 ≤ t(log t)α/M , we have
that

Sr(x,t)(f ′)(x) ≤ (C + ε)r(x, t) log r(x, t)
(

1 + O

(
t(log t)α

r(x, t) log r(x, t)

))

.

By Lemma 6.5,

O

(
t(log t)α

r(x, t) log r(x, t)

)

= O
(
(log t)α−1

)
;

therefore, we deduce (ii) with −C ′ = (C+ε)/4 < 0. Proceeding in an analogous
way, one gets (i), (iii) and (iv). �

6.3. Final Partition and Mixing Set

Proposition 6.6. There exist α′′ > 0 and t2 ≥ t1 such that for all t ≥ t2
there exists a family of refined partitions Pf (t) ⊂ Ps(t) with 1 − Leb(Pf (t)) =
O((log t)−α′′

) such that for all x ∈ J = [a, b) ∈ Pf (t) we have

min
1≤k≤d

|T rx − ak| ≥ 1
(log t)2

, (6.2)

for all r(a, t) ≤ r ≤ r(a, t) + 2Cf

m log t.

Proof. Let K(t) = � 2Cf

m log t� + 1 and define

U3 =
d−1⋃

k=1

K(t)⋃

i=−K(t)

T i

{

x ∈ I: |x − ak| ≤ 1
(log t)2

}

.

Since T±K(t) is an IET of at most d(K(t) + 1) intervals, the set U3 consists of
at most O

(
K(t)2
)

intervals. Let

U4 =
{

x ∈ I: dist(x,U3) ≤ 2
t(log t)α

}

, and U5 = T−1
t U4,
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where Tt(x) = T r(t,x)x. The measure of U4 is bounded by the measure of U3

plus the number of intervals in U3 times 4/(t(log t)α), namely

Leb(U4) ≤ Leb(U3) + O

(
K(t)2

t(log t)α

)

≤ d(2K(t) + 1)
(log t)2

+ O

(
(log t)2−α

t

)

= O
(
(log t)−1

)
.

We apply the following lemma by Kochergin.

Lemma 6.7 ([9, Lemma 1.3]). For any measurable set U ⊂ I,

Leb(T−1
t U) ≤

∫

U

(
f(x)
m

+ 1
)

dx.

The previous result and the Cauchy–Schwarz inequality give us

Leb(U5) ≤
∫

U4

(
f(x)
m

+ 1
)

dx≤
(

1 +
‖f‖2

m

)

Leb(U4)1/2 = O
(
(log t)−1/2

)
,

since f ∈ L2(I).
Let Pf (t) be obtained from Ps(t) by removing all intervals J ∈ Ps(t)

such that J ⊂ U5. Then, 1 − Leb(Pf (t)) ≤ 1 − Leb(Ps(t)) + O((log t)−1/2) =
O((log t)−α′′

) for some α′′ > 0.
We show that the conclusion holds for all J = [a, b) ∈ Pf (t). By con-

struction, there exists y ∈ J such that T r(y,t)y /∈ U4, therefore, using Propo-
sition 6.1(ii), T r(y,t)x /∈ U3 for all x ∈ J . In particular, for all x ∈ J , the
inequality (6.2) is satisfied for all r(y, t) − K(t) ≤ r ≤ r(y, t) + K(t). To
conclude, we notice that, arguing as in [26, Corollary 4.2], we have

r(a, t) ≤ r(y, t) ≤ r(a, t) + sup
z∈J

Sr(z,t)(f ′)(z)
t(log t)α

≤ r(a, t) + O
(
(log t)1−α

) ≤ r(a, t) + K(t),

for t ≥ t2, for some t2 ≥ t1. Hence r(y, t) − K(t) ≤ r(a, t) and r(a, t) + K(t) ≤
r(y, t) + K(t). �

We now define the subset X(t) of X on which we can estimate the corre-
lations. It consists of full vertical translates of intervals J ∈ Pf (t), namely we
consider

X(t) =
⋃

J∈Pf (t)

{

(x, y): x ∈ J, 0 ≤ y ≤ inf
x∈J

f(x)
}

.

We can bound the measure of X(t) by

Leb(X(t)) ≥ 1 −
∫

I\Pf (t)

f(x) dx −
∑

J∈Pf (t)

∫

J

(f(x) − inf
J

f) dx.

Since f ∈ L2(I), Cauchy–Schwarz inequality yields
∫

I\Pf (t)

f(x) dx ≤ ‖f‖2 Leb(I\Pf (t))1/2 = O
(
(log t)−α′′/2

)
.
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On the other hand, by the mean value theorem and Proposition 6.1(ii),
∑

J∈Pf (t)

∫

J

(f(x) − inf
J

f) dx =
∑

J∈Pf (t)

Leb(J)(f(xJ ) − inf
J

f)

≤ 2
t(log t)α

∑

J∈Pf (t)

∣
∣
∣f(xJ) − inf

J
f
∣
∣
∣

≤ 2
t(log t)α

· Var(f |Pf (t));

where Var(f |Pf (t)) denotes the variation of f restricted to Pf (t). Since f has
logarithmic singularities at the points ak and dist(Pf (t), ak) ≥ 1/(t(log t)α),
the variation is of order Var(f |Pf (t)) = O (log(t(log t)α)). Hence,

1 − Leb(X(t)) = O
(
(log t)−β

)
,

for some 0 < β ≤ α′′.

6.4. Decay of Correlations

In this proof of mixing, shearing is the key phenomenon. We show that the
speed of decay of correlations can be reduced to the speed of equidistribution
of the flow by an argument in the spirit of Marcus [17], using a bootstrap trick
inspired by [5]. The geometric mechanism is the following: each horizontal
segment {(x, y): x ∈ J ∈ Pf (t)} in X(t) gets sheared along the flow direction
and approximates a long segment of an orbit of the flow φt, see Fig. 3.

Consider an interval J = [a, b) ∈ Pf (t) and let ξJ (s) = (s, 0) for a ≤ s <
b. On J the function r(·, t) is non-decreasing (non-increasing, if C− > C+).
To see this, let x < y; then, since Sr(x,t)(f ′) < 0, the function Sr(x,t)(f) is
decreasing, hence Sr(x,t)(f)(y) < Sr(x,t)(f)(x) ≤ t. By definition of r(·, t), it
follows that r(y, t) ≥ r(x, t). Moreover, r(·, t) assumes finitely many different
values r(a, t), r(a, t) + 1, . . . , r(a, t) + N(J); more precisely there exist u0 =
a < u1 < · · · < uN(J) < uN(J)+1 = b such that r(x, t) = r(a, t) + i for all x ∈
[ui, ui+1). Denote ξi = ξJ |[ui,ui+1). For a < u < b, define also ξ[a,u) = ξJ |[a,u)

and let N(u) be the maximum i such that ui < u.
For all a < u < b the curve φt ◦ ξ[a,u) splits into N(u) distinct curves

φt ◦ ξi on which the value of r(x, t) is constant. The tangent vector is given by

d
ds

φt ◦ ξ[a,u)(s) =
d
ds

(T r(s,t)(s), t − Sr(s,t)(f)(s)) = (1,−Sr(s,t)(f ′)(s)).

(6.3)

In particular, for any (x, y) ∈ X(t) we have

[(φt)∗(∂x)]�(x,y)= ∂x�(x,y) −Sr(x,t+y)(f ′)(x)∂y�(x,y) . (6.4)

The total “vertical stretch” Δf(u) of φt ◦ ξ[a,u) is the sum of all the vertical
stretches of the curves φt ◦ ξi; by definition, it equals

Δf(u) =
∫

φt◦ξ[a,u)

|dy| =
∫ u

a

∣
∣Sr(s,t)(f ′)(s)

∣
∣ ds,
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φt(a, 0)

φt ◦ ξ1

γ1

γi

γN(u)

φt ◦ ξN(u)

φt ◦ ξi

φt(b, 0)φt+Δt(u)(a, 0)

T r(a,t)+ia T r(a,t)+iui

Figure 3. The curve φt ◦ξ[a,u) splits into N(u) curves φt ◦ξi.
In red, the orbit segment γ

and, by Proposition 6.4(iii),

Δf(u) ≤ (u − a) sup
a≤s<u

∣
∣Sr(s,t)(f ′)(s)

∣
∣ ≤ C̃ ′(t log t)(u − a) ≤ 2C̃ ′(log t)1−α;

(6.5)

in particular we get

N(u) ≤
⌊

Δf(u)
m

⌋

+ 2 ≤ 4C̃ ′

m
(log t)1−α. (6.6)

Let also Δt(u) = Sr(u,t)(f)(a) − Sr(u,t)(f)(u) be the delay accumulated by
the endpoints a and u. In Fig. 3, Δf(u) is the sum of the vertical lengths
of the curves φt ◦ ξi, whence Δt(u) equals the length of the orbit segment
γ. By the mean value theorem, there exists z ∈ [a, u] such that Δt(u) =
−Sr(u,t)(f ′)(z)(u − a). Theorem 5.5 and Lemma 6.5 yield

Δt(u) = O

(

(t log t)
2

t(log t)α

)

= O
(
(log t)1−α

)
. (6.7)

We estimate the decay of correlations

〈g ◦ φt, h〉 =
∫

X
(g ◦ φt)h d Leb,
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for g, h as in the statement of the theorem. We have that
∣
∣
∣
∣

∫

X
(g ◦ φt)h d Leb

∣
∣
∣
∣ ≤
∣
∣
∣
∣
∣

∫

X(t)

(g ◦ φt)h d Leb

∣
∣
∣
∣
∣
+ Leb(X\X(t))‖g‖∞‖h‖∞

=

∣
∣
∣
∣
∣

∫

X(t)

(g ◦ φt)h d Leb

∣
∣
∣
∣
∣
+ O
(
(log t)−β

)
.

(6.8)

By Fubini’s Theorem
∫

X(t)

(g ◦ φt)h d Leb =
∑

J∈Pf (t)

∫ yJ

0

∫ b

a

(g ◦ φt+y ◦ ξJ(s))(h ◦ φy ◦ ξJ (s)) ds dy,

(6.9)

where J = [a, b) and yJ = infJ f .
Fix any 0 ≤ y ≤ yJ and let g = g ◦ φy and h = h ◦ φy. Integration by

parts gives
∣
∣
∣
∣

∫ b

a

(g ◦ φt ◦ ξJ (s))(h ◦ ξJ (s)) ds

∣
∣
∣
∣

=

∣
∣
∣
∣

( ∫ b

a

g ◦ φt ◦ ξJ (s) ds
)
h(b, y) −

∫ b

a

(∫ u

a

g ◦ φt ◦ ξJ(s) ds
)
(∂xh ◦ ξJ(u)) du

∣
∣
∣
∣

≤ ‖h‖∞

∣
∣
∣
∣

∫ b

a

g ◦ φt ◦ ξJ(s) ds

∣
∣
∣
∣+ ‖∂xh‖∞ Leb(J) sup

a≤u≤b

∣
∣
∣
∣

∫ u

a

g ◦ φt ◦ ξJ(s) ds

∣
∣
∣
∣

We have that ‖h‖∞ = ‖h‖∞ and, by (6.4), Theorem 5.5 and Proposition
6.1(iv),

‖∂xh‖∞ ≤ max
(x,y)∈X(t)

∣
∣Sr(x,y+y)(f ′)(x)

∣
∣ ‖h‖C 1

= O

(

max
(x,y)∈X(t)

r(x, y + y) log r(x, y + y)
)

= O(log t log log t).

(6.10)

Since Leb(J) ≤ 2/(t(log t)α), we obtain
∣
∣
∣
∣
∣

∫ b

a

(g ◦ φt ◦ ξJ (s))(h ◦ ξJ(s)) ds

∣
∣
∣
∣
∣
= (‖h‖∞ + 1) sup

a≤u≤b

∣
∣
∣
∣

∫ u

a

g ◦ φt ◦ ξJ (s) ds

∣
∣
∣
∣ .

The following is our bootstrap trick.

Lemma 6.8. There exists C > 0 such that

sup
a≤u≤b

∣
∣
∣
∣

∫ u

a

g ◦ φt ◦ ξJ (s) ds

∣
∣
∣
∣ ≤

C

t log t
sup

a≤u≤b

∣
∣
∣
∣
∣

∫

φt◦ξ[a,u)

g dy

∣
∣
∣
∣
∣
.

Proof. Fix ε > 0 and let a ≤ � ≤ b,
∫ �

a

g ◦ φt ◦ ξJ(s) ds =
∫ �

a

(g ◦ φt ◦ ξJ(s))
(

− Sr(s,t)(f ′)(s)
(C ′ + ε)t log t

)
ds

+
∫ �

0

(g ◦ φt ◦ ξJ (s))
(
1 +

Sr(s,t)(f ′)(s)
(C ′ + ε)t log t

)
ds.
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By (6.3), the first summand equals
∫ �

a

(g ◦ φt ◦ ξJ(s))
(

− Sr(s,t)(f ′)(s)
(C ′ + ε)t log t

)
ds =

1
(C ′ + ε)t log t

∫

φt◦ξ[a,�)

g dy.

Integration by parts of the second summand gives
∫ �

a

(g ◦ φt ◦ ξJ (s))
(
1 +

Sr(s,t)(f ′)(s)
(C ′ + ε)t log t

)
ds

=
(
1 +

Sr(�,t)(f ′)(�)
(C ′ + ε)t log t

)∫ �

a

g ◦ φt ◦ ξJ(s) ds

−
∫ �

a

d
ds

(
1 +

Sr(s,t)(f ′)(s)
(C ′ + ε)t log t

)(∫ s

a

g ◦ φt ◦ ξJ(u) du
)

ds

=
(
1 +

Sr(�,t)(f ′)(�)
(C ′ + ε)t log t

)∫ �

a

g ◦ φt ◦ ξJ(s) ds

−
∫ �

a

(Sr(s,t)(f ′′)(s)
(C ′ + ε)t log t

)(∫ s

a

g ◦ φt ◦ ξJ(u) du
)

ds

Thus,
∣
∣
∣
∣
∣

∫ �

a

g ◦ φt ◦ ξJ(s) ds

∣
∣
∣
∣
∣
≤ 1

(C ′ + ε)t log t

∣
∣
∣
∣
∣

∫

φt◦ξ[a,�)

g dy

∣
∣
∣
∣
∣

+
∣
∣
∣
∣1 +

Sr(�,t)(f ′)(�)
(C ′ + ε)t log t

∣
∣
∣
∣

∣
∣
∣
∣
∣

∫ �

a

g ◦ φt ◦ ξJ (s) ds

∣
∣
∣
∣
∣

+
∣
∣
∣
∣ max
a≤u≤�

Sr(u,t)(f ′′)(u)
(C ′ + ε)t log t

· (� − a)
∣
∣
∣
∣ sup

a≤u≤�

∣
∣
∣
∣

∫ u

a

g ◦ φt ◦ ξJ (s) ds

∣
∣
∣
∣

By Proposition 6.4(ii), (iv) and � − a ≤ b − a ≤ 2/(t(log t)α), we get
∣
∣
∣
∣
∣

∫ �

a

g ◦ φt ◦ ξJ(s) ds

∣
∣
∣
∣
∣
≤ 1

(C ′ + ε)t log t

∣
∣
∣
∣
∣

∫

φt◦ξ[a,�)

g ◦ φy dy

∣
∣
∣
∣
∣

+
(
1 − C ′

C ′ + ε
+

C ′′

(C ′ + ε)M

)
sup

a≤u≤�

∣
∣
∣
∣

∫ u

a

g ◦ φt ◦ ξJ (s) ds

∣
∣
∣
∣ .

Since this is true for any a ≤ � ≤ b, we can consider the supremum on both
sides and, after rearranging the terms,

(
C ′ − C ′′

M

)
sup

a≤u≤b

∣
∣
∣
∣

∫ u

a

g ◦ φt ◦ ξJ(s) ds

∣
∣
∣
∣ ≤

1
t log t

sup
a≤u≤b

∣
∣
∣
∣
∣

∫

φt◦ξ[a,u)

g dy

∣
∣
∣
∣
∣
.

The conclusion follows by choosing M > 1 so that C−1 = C ′ −C ′′/M > 0. �

We now compare the integral of g along the curve φt ◦ ξ[a,u) with the
integral of g along the orbit segment starting from φt(a, 0) of length Δt(u).
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Lemma 6.9. Let γ(s) = φt+s(a, 0), 0 ≤ s < Δt(u), be the orbit segment of
length Δt(u) starting from φt(a, 0). We have

∣
∣
∣
∣
∣

∫

φt◦ξ[a,u)

g dy

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣

∫

γ

g dy

∣
∣
∣
∣+ O
(
(log t)−1

)
. (6.11)

Proof. For all 1 ≤ i ≤ N(u), we compare the integral of g along the curve
φt ◦ξi with the integral of g along an appropriate orbit segment. If i �= 1, N(u),
consider γi(s) = φs(T r(a,t)+ia, 0), for 0 ≤ s < f(T r(a,t)+ia); define also γ1(s) =
φt+s(a, 0), for 0 ≤ s < Sr(a,t)+1(f)(a) − t and γN(u)(s) = φs(T r(a,t)+N(u)a, 0),
for 0 ≤ s < t − Sr(u,t)(f)(u). Fix 0 ≤ i ≤ N(u) and join the starting points
of φt ◦ ξi and γi by an horizontal segment and the end points by the curve
ζi(s) = (T r(a,t)+is, f(T r(a,t)+is)), a ≤ s ≤ ui+1, if i �= N(u) and by another
horizontal segment, if i = N(u). See Fig. 3.

We remark that the integral over any horizontal segment of g dy is zero.
By Green’s Theorem,
∣
∣
∣
∣

∫

φt◦ξi

g dy −
∫

γi

g dy

∣
∣
∣
∣ ≤
∣
∣
∣
∣

∫

ζi

g dy

∣
∣
∣
∣+ ‖∂xg‖∞

∫ T r(a,t)+iui+1

T r(a,t)+ia

f(x) dx. (6.12)

Since r(a, t)+ i ≤ r(b, t) ≤ R(t), by Proposition 6.1(i), T r(a,t)+i is an isometry,
hence

∫ T r(a,t)+iui+1

T r(a,t)+ia

f(x) dx ≤ ‖f‖2 Leb([T r(a,t)+ia, T r(a,t)+iui+1])1/2

≤ 2‖f‖2

(t(log t)α)1/2
.

Reasoning as in (6.10), ‖∂xg‖∞ = O(log t log log t), thus the second term in
(6.12) is O

(
(log t)2−α/2/t1/2

)
. Moreover, by (6.6) we can apply Proposition 6.6

to deduce f ′(T r(a,t)+ix) = O
(
(log t)2

)
, so that

∣
∣
∣
∣

∫

ζi

g dy

∣
∣
∣
∣ ≤ ‖g‖∞

∫ ui+1

a

∣
∣
∣f ′(T r(a,t)+ix)

∣
∣
∣ dx = O

(
(log t)2

t(log t)α

)

.

Summing over all i = 0, . . . , N(u) we conclude using (6.6)
∣
∣
∣
∣
∣

∫

φt◦ξ[a,u)

g dy −
∫

γ

g dy

∣
∣
∣
∣
∣
≤

N(u)∑

i=0

(∣
∣
∣
∣

∫

ζi

g dy

∣
∣
∣
∣+ ‖∂xg‖∞

∫ T r(a,t)+iui+1

T r(a,t)+ia

f(x) dx

)

= N(u)O
(

(log t)2

t(log t)α
+

(log t)2−α/2

t1/2

)

=O
(
(log t)−1

)
.

�

By definition, the integral of g along the orbit segment γ equals the
integral of g along φy ◦ γ. The latter can be expressed as a Birkhoff sum of
Ig =

∫ f(x)

0
g(x, y) dy [see (5.3)] plus an error term arising from the initial
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and final point of the orbit segment φy ◦ γ, namely, recalling the definition
Tt(x) = T r(x,t)x,

∣
∣
∣
∣

∫

γ

g dy

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∫

φy◦γ

g dy

∣
∣
∣
∣
∣
≤ Sr(Tt+y(a),Δt(u))(Ig)(Tt+y(a))

+ ‖g‖∞(f(Tt+ya) + f(Tt+y+Δt(u)a)).

We recall from Remark 3 that Ig satisfies the hypotheses of Corollary 5.3. We
claim that

f(T r(a,t+y)a) + f(T r(a,t+y+Δt(u))a) = O(log log t). (6.13)

Indeed, by the cocycle relation for Birkhoff sums we have
Sr(a,t)+	(y+Δt(u))/m
+2(f)(a)

= Sr(a,t)+1(f)(a) + S	(y+Δt(u))/m
+1(f)(T r(a,t)+1a)

> t + (�(y + Δt(u))/m� + 1)m > t + y + Δt(u);

hence,

r(a, t) ≤ r(a, t + y) ≤ r(a, t + y + Δt(u)) ≤ r(a, t) + �(y + Δt(u))/m� + 2.

By Proposition 6.1(iv), y ≤ Cf log t; hence, by (6.7), the latter summand above
is bounded by r(a, t) + 2Cf

m log t, up to enlarging t2. Proposition 6.6 yields the
Claim (6.13).

Therefore, by (6.13), Corollary 5.3 and (6.5),
∣
∣
∣
∣

∫

γ

g dy

∣
∣
∣
∣ ≤ Sr(Tt+y(a),Δt(u))(Ig)(Tt+y(a)) + O(log log t)

= O
(
(r(Tt+y(a),Δt(u)))θ + log log t

)
= O
(
(Δt(u))θ + log log t

)

= O
(
(log t)θ(1−α) + log log t

)
= O
(
(log t)θ(1−α)

)
. (6.14)

From Lemma 6.8, (6.11) and (6.14), we obtain

sup
a≤u≤b

∣
∣
∣
∣

∫ u

a

g ◦ φt ◦ ξJ (s) ds

∣
∣
∣
∣ ≤

C

t log t
sup

a≤u≤b

∣
∣
∣
∣
∣

∫

φt◦ξ[a,u)

g dy

∣
∣
∣
∣
∣

≤ C

t log t

(∣
∣
∣
∣

∫

γ

g dy

∣
∣
∣
∣+ O
(
(log t)−1

)
)

= O

(
(log t)θ(1−α)

t log t

)

.

From (6.9), we deduce
∣
∣
∣
∣
∣

∫

X(t)

(g ◦ φt)h d Leb

∣
∣
∣
∣
∣
= O

(
(log t)θ(1−α)

t log t

) ∑

J∈Pf (t)

∫ yJ

0

Leb(J)
Leb(J)

dy

= O

(
(log t)θ(1−α)

t log t
(t(log t)α)

) ∑

J∈Pf (t)

∫ yJ

0

Leb(J) dy

= O

(
1

(log t)(1−θ)(1−α)

)

,

which, combined with (6.8), concludes the proof.
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7. Appendix: Estimates of Birkhoff Sums

In appendix we will prove the bounds on the Birkhoff sums of the roof function
f and of its derivatives f ′ and f ′′ in Theorem 5.5. The proof is a generalization
to the case of finitely many singularities of a result by Ulcigrai [26, Corollaries
3.4, 3.5].

We first consider the auxiliary functions uk, vk, ũk, ṽk introduced in
Sect. 5.

7.1. Special Birkhoff Sums

Fix ε′ > 0 and w and w̃ to be either uk or vk and either ũk or ṽk respectively
for fixed k. Let l,D,D′ be given by Theorem 4.2; for ε > 0 (which will be
determined later) choose L1, L2 ∈ N such that DL1D′ < ε and ν(d−1)−L2 < ε.
Assume l0 ≥ l(1 + L1 + L2) and introduce the past steps

l−1 := l0 − L1l, l−2 = l0 − (L1 + L2)l.

Consider a point x0 ∈ I
(nl0 )

j0
⊂ I(nl0 ); we want to estimate the Birkhoff sums

of w and w̃ at x0 along Z
(nl0 )

j0
, namely the sums

Sr0(w)(x0) =
r0−1∑

i=0

w(T ix0), and Sr0(w̃)(x0) =
r0−1∑

i=0

w̃(T ix0),

where r0 := h
(nl0 )

j0
. Sums of this type will be called special Birkhoff sums. We

will prove that

Sr0(w)(x0) ≤ (1 + ε′)r0

∫ 1

0

w(x) dx + max
0≤i<r0

w(T ix0). (7.1)

and

(1 − ε′)r0 log h(nl0 ) ≤ Sr0(w̃)(x0) ≤ (1 + ε′)r0 log h(nl0 ) + max
0≤i<r0

w̃(T ix0),

(7.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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where, we recall, h(nl0 ) = max{h
(nl0 )

j : 1 ≤ j ≤ d}.
By Remark 2, at each step n the singularity ak of w and of w̃ belongs to

the boundary of two adjacent elements of the partition Z(n) defined in Sect. 4.
Denote by F

(n)
sing the element of Z(n) which has ak as left endpoint if w = uk

or as right endpoint if w = vk, and similarly when we consider w̃ instead of
w. Outside F

(n)
sing the value of w is bounded by 1 − log λ

(n)
sing and the value of

w̃ is bounded by 1/λ
(n)
sing, where λ

(n)
sing is the length of F

(n)
sing. Remark that, by

construction, F
(n)
sing ⊂ F

(m)
sing for n > m; decompose the initial interval I = I(0)

into the three pairwise disjoint sets I(0) = A � B � C, with

A = F
(nl0 )

sing , B = F
(nl−2 )

sing \F
(nl0 )

sing , C = I(0)\F
(nl−2 )

sing .

Using the partition above, we can write

Sr0(w)(x0) =
∑

T ix0∈A

w(T ix0) +
∑

T ix0∈B

w(T ix0) +
∑

T ix0∈C

w(T ix0), (7.3)

and similarly for w̃. Notice that the first summand is not zero if and only if
there exists r ≤ r0 such that T rx0 ∈ F

(nl0 )

sing , i.e. if and only if F
(nl0 )

sing ⊂ Z
(nl0 )

j0
;

in this case, it equals w(T rx0).
We refer to the summands in (7.3) as singular term, gap error and main

contribution respectively.

Gap Error We first consider w̃. Let b = #{T ix0 ∈ B}; we will approximate
the gap error with the sum of w̃ over an arithmetic progression of length b. For
any T ix0 ∈ B we have w̃(T ix0) ≤ 1/λ

(nl0 )

sing and, since T ix0 and T jx0 belong
to different elements of Z(nl0 ) when i �= j, for i, j ≤ r0 also

∣
∣T ix0 − T jx0

∣
∣ ≥

λ
(nl0 )

j0
≥ (dκνr0)−1 by Corollary 4.3(i). Up to rearranging the sequence {T ix0 ∈

B: 0 ≤ i < r0} in increasing order of T ix0−ak if w̃ = ũk (decreasing, if w̃ = ṽk)
and calling it xi, we have

xi ≥ λ
(nl0 )

sing +
i

dκνr0
.

By monotonicity of w̃ it follows that

0 ≤
∑

T ix0∈B

w̃(T ix0) =
∑

T ix0∈B

1
xi

≤
b∑

i=0

(

λ
(nl0 )

sing +
i

dκνr0

)−1

.

Using the trivial fact that for any continuous and decreasing function h,
∑b

i=0 h(i) ≤ h(0) +
∫ b

0
h(x) dx and dκνr0λ

(nl0 )

sing ≥ 1 by Corollary 4.3(i), we
get

0 ≤
∑

T ix0∈B

w̃(T ix0) ≤ 1

λ
(nl0 )

sing

+
∫ b

0

(

λ
(nl0 )

sing +
x

dκνr0

)−1

dx

≤ dκνr0 + dκνr0 log

(

1 +
b

dκνr0λ
(nl0 )

sing

)

≤ dκνr0(1 + log(b + 1)).
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Since B ⊂ F
(nl−2 )

sing , we have that b ≤ #{T ix0 ∈ Z
(nl0 )

j0
∩ F

(nl−2 )

sing }. Let

α ∈ {1, . . . , d} be such that F
(nl−2 )

sing ⊂ Z
(nl−2 )
α ; the number of T ix0 ∈ Z

(nl0 )

j0

contained in F
(nl−2 )

sing equals the number of those contained in I
(nl−2 )
α . Thus, by

Lemma 4.1,

b ≤ #{T ix0 ∈ Z
(nl0 )

j0
∩ I

(nl−2 )
α } = A

(nl−2 ,nl0 )

α,j0
≤ ‖A(nl−2 ,nl0 )‖. (7.4)

From the asymptotic behaviour (iii) in Corollary 4.3, we obtain
∑

T ix0∈B w̃(T ix0)

r0 log h(nl0 )
≤ dκνr0(1 + log(‖A(nl−2 ,nl0 )‖ + 1))

r0 log h(nl0 )
→ 0,

so, for l0 large enough, we conclude

0 ≤
∑

T ix0∈B

w̃(T ix0) ≤ ε(r0 log h(nl0 )). (7.5)

We can carry out analogous computations for w. In this case,

0 ≤
∑

T ix0∈B

w(T ix0) =
∑

T ix0∈B

(1 − log T ix0) ≤ b(1 − log λ
(nl0 )

sing ) = O(b log r0).

Corollary 4.3(ii) implies that l0 = O(log r0); hence by (7.4), the Diophantine
condition in Theorem 4.2(iv) and the definition of l−2 we obtain

b ≤ ‖A(nl−2 ,nl0 )‖ ≤ l
(L1+L2)lτ
0 = O

(
(log r0)(L1+L2)lτ

)
.

In particular, for l0 large enough we conclude

0 ≤
∑

T ix0∈B

w(T ix0) ≤ εr0. (7.6)

Main Contribution Consider the partition Z(nl−1 ) restricted to the set C. We
will exploit the fact that the partition elements are nicely distributed in Z(nl0 )

to approximate the special Birkhoff sum of w and w̃ by the respective integrals
over C, and then bound the latters.

For any Fα ∈ Z(nl−1 ) ∩ C, Fα ⊂ Z
(nl−1 )

jα
with jα ∈ {1, . . . , d}, choose

points xα, x̃α ∈ Fα given by the mean value theorem, namely such that

w(xα) =
1

λ
(nl−1 )
α

∫

Fα

w(x) dx, w̃(x̃α) =
1

λ
(nl−1 )
α

∫

Fα

w̃(x) dx,

with λ
(nl−1 )
α = Leb(Fα). We now show that for any T ix0 ∈ Fα,

1 − ε ≤ w(T ix0)
w(xα)

≤ 1 + ε, 1 − ε ≤ w̃(T ix0)
w̃(x̃α)

≤ 1 + ε. (7.7)

Since w ≥ 1 and for all x ∈ Fα ⊂ C we have |x − ak| ≥ λ
(nl−2 )

sing , again by the
mean value theorem we have

∣
∣
∣
∣
w(T ix0)
w(xα)

− 1
∣
∣
∣
∣ ≤
∣
∣
∣max

C
w′
∣
∣
∣λ

(nl−1 )
α ≤ λ

(nl−1 )
α

λ
(nl−2 )

sing

.
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Considering w̃, up to replacing Fα with Fα +1 or Fα − 1, we can suppose that
w̃(x) = 1/ |x − ak| for x ∈ Fα. Then,

w̃(T ix0)
w̃(x̃α)

=
∣
∣
∣
∣

x̃α − ak

T ix0 − ak

∣
∣
∣
∣ ≤

supx∈Fα
|x − ak|

infx∈Fα
|x − ak|

= 1 +
λ

(nl−1 )
α

infx∈Fα
|x − ak| ≤ 1 +

λ
(nl−1 )
α

λ
(nl−2 )

sing

,

and similarly

w̃(T ix0)
w̃(x̃α)

=
∣
∣
∣
∣

x̃α − ak

T ix0 − ak

∣
∣
∣
∣ ≥

infx∈Fα
|x − ak|

supx∈Fα
|x − ak|

= 1 − λ
(nl−1 )
α

supx∈Fα
|x − ak| ≥ 1 − λ

(nl−1 )
α

λ
(nl−2 )

sing

.

Thus, it is sufficient to prove that λ
(nl−1 )
α /λ

(nl−2 )

sing < ε. The length vectors are
related by the cocycle property (4.1), namely by the definition of l−2,

λ(nl−2 ) = A(nl−2 ,nl−1 )λ(nl−1 ) =
L2−1∏

j=0

A
(nl−2+jl,nl−2+(j+1)l)λ(nl−1 ),

and each of those d× d matrices is strictly positive with integer coefficients by
(iii) in Theorem 4.2. Therefore

λ
(nl−2 )

sing ≥ dL2 min
j

λ
(nl−1 )

j ≥ dL2

ν
λ

(nl−1 )
α ,

which implies λ
(nl−1 )
α /λ

(nl−2 )

sing ≤ νd−L2 < ε by the choice of L2. Hence, the
claim (7.7) is now proved.

Rewriting
∑

T ix0∈C

w(T ix0) =
∑

Zα⊂C

∑

T ix0∈Fα

w(T ix0),

we get from (7.7)

(1 − ε)
∑

Fα⊂C

#{T ix0 ∈ Fα}w(xα) ≤
∑

T ix0∈C

w(T ix0)

≤ (1 + ε)
∑

Fα⊂C

#{T ix0 ∈ Fα}w(xα).

Exactly as in the previous paragraph, #{T ix0 ∈ Fα} = #{T ix0 ∈ I
(nl−1 )

jα
} =

A
(nl−1 ,nl0 )

jα,j0
. We apply the following lemma by Ulcigrai.

Lemma 7.1 ([26, Lemma 3.4]). For each 1 ≤ i, j ≤ d,

e−2DL1D′
λ

(nl−1 )

i ≤ A
(nl−1 ,nl0 )

i,j

h
(nl0 )

j

≤ e2DL1D′
λ

(nl−1 )

i .
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By the initial choice of L1, this implies that e−2ελ
(nl−1 )

jα
r0 ≤ A

(nl−1 ,nl0 )

jα,j0

≤ e2ελ
(nl−1 )

jα
r0. We get

∑

T ix0∈C

w(T ix0) ≤ (1 + ε)
∑

Fα⊂C

A
(nl−1 ,nl0 )

jα,j0
w(xα)

≤ e2ε(1 + ε)
∑

Fα⊂C

λ
(nl−1 )

jα
r0w(xα) = e2ε(1 + ε)r0

∑

Fα⊂C

∫

Fα

w(x) dx

= e2ε(1 + ε)r0

∫

C

w(x) dx. (7.8)

The same computations can be carried out for w̃, obtaining

e−2ε(1 − ε)r0

∫

C

w̃(x) dx ≤
∑

T ix0∈C

w̃(T ix0) ≤ e2ε(1 + ε)r0

∫

C

w̃(x) dx.

(7.9)

Recalling C = I(0)\Z
(nl−2 )

sing , we have to estimate the integral
∫

I(0)\Z
(nl−2

)

sing

w̃(x) dx = log
1

λ
(nl−2 )

sing

.

Since λ
(nl−2 )

sing ≥ λ
(nl0 )

sing ≥ 1/(dκνh(nl0 )) by Corollary 4.3(i), we have the upper
bound

log
1

λ
(nl−2 )

sing

≤ log(dκνh(nl0 )) =
(

1 +
log(dκν)
log h(nl0 )

)

log h(nl0 ) ≤ (1 + ε) log h(nl0 ),

(7.10)

for l0 sufficiently large. On the other hand, adding and subtracting log h(nl0 ),
we obtain the lower bound

log
1

λ
(nl−2 )

sing

± log h(nl0 ) = log h(nl0 )

⎛

⎝1 − log(h(nl0 )λ
(nl−2 )

sing )

log h(nl0 )

⎞

⎠

≥ log h(nl0 )

(

1 − log(κνh(nl0 )/h(nl−2 ))
log h(nl0 )

)

≥ log h(nl0 )

(

1 − log(κν‖A(nl−2 ,nl0 )‖)
log h(nl0 )

)

, (7.11)

where we used the cocycle relation h(nl0 ) = (A(nl−2 ,nl0 ))T h(nl−2 ) to obtain
h(nl0 ) ≤ ‖A(nl−2 ,nl0 )‖h(nl−2 ). The term in brackets goes to 1 as l0 goes to infin-
ity because of Corollary 4.3(iii), thus for l0 sufficiently large we have obtained

log 1/λ
(nl−2 )

sing ≥ (1 − ε) log h(nl0 ).
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Combining the bounds (7.9) with the estimates (7.10) and (7.11), we
deduce

e−2ε(1 − ε)2r0 log h(nl0 ) ≤
∑

T ix0∈C

w̃(T ix0) ≤ e2ε(1 + ε)2r0 log h(nl0 ). (7.12)

Final Estimates Choose ε > 0 such that e2ε(1 + ε)2 + ε < 1 + ε′ and e−2ε(1 −
ε)2 > 1 − ε′. As we have already remarked, the singular terms are nonzero if
and only if F

(nl0 )

sing ⊂ Z
(nl0 )

j0
, in which case it equals max0≤i<r0 w(T ix0) and

max0≤i<r0 w̃(T ix0) respectively. Together with the estimates of the gap error
(7.6) and (7.5) and of the main contribution (7.8) and (7.12), this proves the
estimates (7.1) and (7.2) for the special Birkhoff sums.

7.2. General Case

Fix ε′′ > 0, r ∈ N and take l such that h(nl) ≤ r < h(nl+1). In this section we
want to estimate Birkhoff sums Sr(w)(x0) and Sr(w̃)(x0) for any orbit length
r, namely we will prove that for any r sufficiently large and for any x /∈ Σl(k),

Sr(w)(x0) ≤ (1 + ε′′)r
∫ 1

0

w(x) dx + (�κ� + 2) max
0≤i<r

w(T ix0), (7.13)

and

(1 − ε′′)r log r ≤ Sr(w̃)(x0) ≤ (1 + ε′′)r log r + (�κ� + 2) max
0≤i<r

w̃(T ix0).

(7.14)

The idea is to decompose Sr(w) and Sr(w̃) into special Birkhoff sums of pre-
vious steps nli . To have control of the sum, however, we have to throw away
the set Σl(k) of points which go too close to the singularity, whose measure is
small, see Proposition 6.4.

Notation 7.2. Let Or(x) = {T ix : 0 ≤ i < r}. We introduce the following nota-
tion: if x ∈ I

(n)
j , denote by x

(n)
j and x̃

(n)
j the points in O

h
(n)
j

(x)∩Z
(n)
j at which

the functions w and w̃ attain their respective maxima, and by xr and x̃r the
points such that w(xr) = max0≤i<r w(T ix0) and w̃(x̃r) = max0≤i<r w̃(T ix0).

Suppose x0 ∈ Z
(n)
j0

. By definition of the sets Z
(n)
j , there exist

0 ≤ Q = Q(n) ≤ r/ min
j

h
(n)
j and y

(n)
0 ∈ I

(n)
i0

, y
(n)
1 ∈ I

(n)
i1

, . . . , y
(n)
Q+1 ∈ I

(n)
iQ+1

,

such that the orbit Or(x0) can be decomposed as the disjoint union
Q(n)⊔

α=1

O
h
(n)
iα

(y(n)
α ) ⊂ Or(x0) ⊂

Q(n)+1⊔

α=0

O
h
(n)
iα

(y(n)
α ). (7.15)

This expression shows that we can approximate the Birkhoff sum along Or(x0)
with the sum of special Birkhoff sums. We will need three levels of approx-
imation nl−L < nl < nl+1. Fix L ∈ N such that 2κd−L/l < ε and let
y
(nl−L)
α ∈ I

(nl−L)
iα

for 0 ≤ α ≤ Q(nl−L) + 1, I
(nl)
jβ

for 0 ≤ β ≤ Q(nl) + 1

and I
(nl+1)
qγ for 0 ≤ γ ≤ Q(nl+1) + 1 be defined as above.
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By the positivity of w and (7.15), it follows
Q(nl−L)∑

α=1

S
h
(nl−L)
iα

(w)(y(nl−L)
α ) ≤ Sr(w)(x0) ≤

Q(nl−L)+1∑

α=0

S
h
(nl−L)
iα

(w)(y(nl−L)
α ),

and similarly for w̃. Let ε′ > 0 (to be determined later); each term is a special
Birkhoff sum, so, by applying the estimates (7.1) and (7.2), we get

Sr(w)(x0) ≤ (1 + ε′)
(∫ 1

0

w(x) dx
)Q(nl−L)+1∑

α=0

h
(nl−L)
iα

+
Q(nl−L)+1∑

α=0

w(x(nl−L)
iα

),

(7.16)

and

Sr(w̃)(x0) ≥ (1 − ε′)
Q(nl−L)∑

α=1

h(nl−L)
α log h(nl−L), (7.17)

Sr(w̃)(x0) ≤ (1 + ε′)
Q(nl−L)+1∑

α=0

h(nl−L)
α log h(nl−L) +

Q(nl−L)+1∑

α=0

w̃(x̃(nl−L)
iα

),

(7.18)

where x
(nl−L)
iα

and x̃
(nl−L)
iα

are the points defined in Notation 7.2 at which
the corresponding special Birkhoff sums of w and w̃ attain their respective
maxima. We refer to the first terms in the right-hand side of (7.16), (7.17) and
(7.18) as the ergodic terms and to the second terms in the right-hand side of
(7.16) and (7.18) as the resonant terms.

Ergodic Terms The estimates of the ergodic terms for w̃ are identical to [26,
pp. 1016-1017], and the estimate for w can be deduced from the same proof.
Explicitly, the ergodic term for w is bounded above by (1 + ε′)2r

∫
w, whence

the ergodic terms for w̃ are bounded below and above by (1 − ε′)2r log r and
by (1 + ε′)2r log r respectively.

Resonant Terms We want to estimate the resonant terms
∑

α w(x(nl−L)
iα

) and
∑

α w̃(x̃(nl−L)
iα

). First, we reduce to consider the maxima over sets Z of step nl

instead of step nl−L by comparing the sum with an arithmetic progression, as
we did in the estimates for the gap error in Sect. 7.1.

Let ε > 0. Again, we first consider w̃. Group the summands according to
the decomposition as in (7.15) of step nl, so that

Q(nl−L)+1∑

α=0

w̃(x̃(nl−L)
iα

) =
Q(nl)+1∑

β=0

∑

α : y
(nl−L)
α ∈O

h
(nl)
jβ

(y
(nl)
β )

w̃(x̃(nl−L)
iα

).

For any fixed β = 0, . . . , Q(nl) + 1, each of the points x̃
(nl−L)
iα

∈
O

h
(nl−L)
iα

(y(nl−L)
α ) appearing in the second sum in the right-hand side above

belongs to a different interval of Z
(nl)
jβ

; hence, the distance between any two
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of them is at least λ
(nl)
jβ

≥ (dκνh
(nl)
jβ

)−1. Moreover, the number of the points

x̃
(nl−L)
iα

contained in Z
(nl)
jβ

is bounded by ‖A(nl−L,nl)‖.

Fix 0 ≤ β ≤ Q(nl) + 1; we separate the point x̃
(nl)
jβ

corresponding to the

maximum of w̃ in Z
(nl)
jβ

from the others,

∑

α: y
(nl−L)
α ∈O

h
(nl)
jβ

(y
(nl)
β )

w̃(x̃(nl−L)
iα

)

= w̃(x̃(nl)
jβ

) +
∑

α: y
(nl−L)
α ∈O

h
(nl)
jβ

(y
(nl)
β ), x̃

(nl−L)
iα

�=x̃
(nl)
jβ

w̃(x̃(nl−L)
iα

).

If x̃
(nl−L)
iα

�= x̃
(nl)
jβ

, then x̃
(nl−L)
iα

does not belong to the interval of Z(nl) con-
taining ak as left endpoint if w̃ = ũk or right endpoint if w̃ = ṽk. Since w̃ has
only a one-side singularity and is monotone, the value w̃(x̃(nl−L)

iα
) is bounded

by the inverse of the distance between ak and the second closest return to
the right of ak if w̃ = ũk or to the left if w̃ = ṽk; in both cases we have
that w̃(x̃(nl−L)

iα
) ≤ 1/λ

(nl)
jβ

. Moreover,
∣
∣
∣x̃

(nl−L)
iα

− x̃
(nl−L)
iα′

∣
∣
∣ ≥ (dκνh

(nl)
jβ

)−1; thus,
we can bound the second sum above with an arithmetic progression of length
‖A(nl−L,nl)‖. Reasoning as in Sect. 7.1 we obtain

∑

α: y
(nl−L)
α ∈O

h
(nl)
jβ

(y
(nl)
β )

w̃(x̃
(nl−L)
iα

) ≤ w̃(x̃
(nl)
jβ

) +

‖A(nl−L,nl)‖∑

i=1

⎛

⎝λ
(nl)
jβ

+
i

dκνh
(nl)
jβ

⎞

⎠

−1

≤ w̃(x̃
(nl)
jβ

) + dκν log h
(nl)
jβ

(1 + log(‖A(nl−L,nl)‖ + 1)).

Therefore,

Q(nl−L)+1∑

α=0

w̃(x̃(nl−L)
iα

) ≤
Q(nl)+1∑

β=0

dκνh
(nl)
jβ

(1 + log(‖A(nl−L,nl)‖ + 1))

+
Q(nl)+1∑

β=0

w̃(x̃(nl)
jβ

).

(7.19)

The first term on the right-hand side in (7.19) has the desired asymptotic
behaviour. Indeed, from (7.15) we obtain

Q(nl)∑

β=1

h
(nl)
jβ

≤ r ≤
Q(nl)+1∑

β=0

h
(nl)
jβ

≤
Q(nl)∑

β=1

h
(nl)
jβ

+ 2h(nl) ≤ r + 2h(nl),
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so that (
∑

β h
(nl)
jβ

)/r ≤ 1 + 2h(nl)/r ≤ 3. Moreover log(‖A(nl−L,nl)‖ + 1)/
log r → 0, by Corollary 4.3(iii); for l sufficiently big we then have

dκν

⎛

⎝
Q(nl)+1∑

β=0

h
(nl)
jβ

⎞

⎠ (1 + log(‖A(nl−L,nl)‖ + 1)) ≤ εr log r. (7.20)

Therefore, (7.19) becomes

Q(nl−L)+1∑

α=0

w̃(x̃(nl−L)
iα

) ≤ εr log r +
Q(nl)+1∑

β=0

w̃(x̃(nl)
jβ

). (7.21)

The analogous approach for w yields

Q(nl−L)+1∑

α=0

w(x(nl−L)
iα

) ≤
Q(nl)+1∑

β=0

w(x(nl)
jβ

) +
Q(nl)+1∑

β=0

‖A(nl−L,nl)‖
(
1 − log(λ(nl)

jβ
)
)

≤
Q(nl)+1∑

β=0

w(x(nl)
jβ

) + 2‖A(nl−L,nl)‖(Q(nl) + 2) log h(nl).

Recalling that Q(nl) is the number of special Birkhoff sums of level nl needed
to approximate the original Birkhoff sum along Or(x0) as in (7.15), it follows
that Q(nl) ≤ r/minj h

(nl)
j ≤ κr/h(nl). By Corollary 4.3(ii), ‖A(nl−L,nl)‖ ≤

lLτ = O
(
(log h(nl))Lτ

)
; hence, we conclude

Q(nl−L)+1∑

α=0

w(x(nl−L)
iα

) = O
(( r

h(nl)

)
(log h(nl))1+Lτ

)
+

Q(nl)+1∑

β=0

w(x(nl)
jβ

)

≤ εr +
Q(nl)+1∑

β=0

w(x(nl)
jβ

).

(7.22)

Thus, it remains to bound the second summands in (7.21) and (7.22). To
do that, we proceed in two different ways depending on r being closer to h(nl+1)

or to h(nl). Recalling the definitions of σl and of Σl(k) introduced in Sect. 5,
we distinguish two cases.

Case 1 Suppose that σlh
(nl+1) ≤ r < h(nl+1). We compare the second summand

in (7.21) with an arithmetic progression and the second summand in (7.22) in
the same way as above, considering nl and nl+1 instead of nl−L and nl: we
obtain

Q(nl)+1∑

β=0

w(x(nl)
jβ

) ≤ 2‖A(nl,nl+1)‖
Q(nl+1)+1∑

γ=0

log h(nl+1) +
Q(nl+1)+1∑

γ=0

w(x(nl+1)
qγ

),

(7.23)
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and
Q(nl)+1∑

β=0

w̃(x̃(nl)
jβ

) ≤
Q(nl+1)+1∑

γ=0

dκνh(nl+1)
qγ

(1 + log(‖A(nl,nl+1)‖ + 1))

+
Q(nl+1)+1∑

γ=0

w̃(x̃(nl+1)
qγ

).

(7.24)

Since r < h(nl+1) ≤ κ minj h
(nl+1)
j , as before we have that Q(nl+1) ≤ r/ minj

h
(nl+1)
j ≤ �κ�; therefore, the second terms on the right-hand side of (7.23)

and (7.24) are bounded by (�κ� + 2)w(xr) and (�κ� + 2)w̃(x̃r), respectively.
We now bound the first summand in the right-hand side of (7.23). We have
that ‖A(nl,nl+1)‖ ≤ lτ = O

(
(log h(nl))τ

)
= O ((log r)τ ) as in the proof of

Lemma 6.3. Moreover, we use the estimate h(nl+1)/r ≤ 1/σl to get

‖A(nl,nl+1)‖
Q(nl+1)+1∑

γ=0

log h(nl+1) = O
(
(log r)1+τ − log r log σl

) ≤ εr,

since | log σl| = O(log log h(nl)) = o(log r), which is easy to check from the
definition of σl. On the other hand, as regards the first summand in the right-
hand side of (7.24), we have

dκν

(∑
γ h

(nl+1)
qγ

r

)
(1 + log(‖A(nl,nl+1)‖ + 1))

log r

≤ dκν
(�κ� + 2)

σl

(1 + log(‖A(nl,nl+1)‖ + 1))
log
(
σlh(nl+1)

) ,

which can be made arbitrary small by enlarging l. Therefore,

Q(nl)+1∑

β=0

w(x(nl)
jβ

) ≤ εr + (�κ� + 2)w(xr) (7.25)

and
Q(nl)+1∑

β=0

w̃(x̃(nl)
jβ

) ≤ εr log r + (�κ� + 2)w̃(x̃r). (7.26)

Case 2 Now suppose h(nl) ≤ r < σlh
(nl+1). If the initial point x0 /∈ Σl(k), for

any 0 ≤ i ≤ �σlh
(nl+1)� we know that

∣
∣T ix0 − ak

∣
∣ ≥ σlλ

(nl) ≥ σl/h(nl), since
1 =
∑

j h
(nl)
j λ

(nl)
j ≤ h(nl)

∑
j λ

(nl)
j = h(nl)λ(nl). In particular, we have that

w(xr) ≤ 1 + log h(nl) and w̃(x̃r) ≤ h(nl)/σl.
Obviously,

Q(nl)+1∑

β=0

w(x(nl)
jβ

) ≤ (Q(nl) + 2)w(xr),
Q(nl)+1∑

β=0

w̃(x̃(nl)
jβ

) ≤ (Q(nl) + 2)w̃(x̃r),
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and we recall Q(nl) ≤ r/ minj h
(nl)
j ≤ κr/h(nl). Therefore,

Q(nl)+1∑

β=0

w(x(nl)
jβ

) ≤
( κr

h(nl)
+ 2
)

(1 + log h(nl)) ≤ εr (7.27)

and
Q(nl)+1∑

β=0

w̃(x̃(nl)
jβ

) ≤
( κr

h(nl)
+ 2
) h(nl)

σl
=

κr + 2h(nl)

σl
.

Since h(nl) ≤ r and log r/ log h(nl) ≥ 1 we can write

Q(nl)+1∑

β=0

w̃(x̃(nl)
jβ

) ≤
(

κ + 2
σl log h(nl)

)

r log r, (7.28)

and the term in brackets can be made smaller than ε by choosing l big enough
[26, Lemma 3.9].

Final Estimates For any r as in Case 1, for any x0, by combining (7.22) with
(7.25) and (7.21) with (7.26),

Q(nl−L)+1∑

α=0

w(x(nl−L)
iα

) ≤ 2εr + (�κ� + 2)w(xr),

Q(nl−L)+1∑

α=0

w̃(x̃(nl−L)
iα

) ≤ 2εr log r + (�κ� + 2)w̃(x̃r);

whence, for any r as in Case 2 and for all x /∈ Σl(k), by combining (7.22) with
(7.27) and (7.21) with (7.26),

Q(nl−L)+1∑

α=0

w(x(nl−L)
iα

) ≤ 2εr,

Q(nl−L)+1∑

α=0

w̃(x̃(nl−L)
iα

) ≤ 2εr log r.

These estimates together with those for the ergodic terms prove (7.13) and
(7.14), choosing ε, ε′ > 0 appropriately.

7.3. Proof of Theorem 5.5

By the hypothesis on the roof function f we can write

f(x) =
d−1∑

k=1

(C+
k uk(x) + C−

k vk(x)) + e(x),

f ′(x) =
d−1∑

k=1

(−C+
k ũk(x) + C−

k ṽk(x)) + e′(x),

(7.29)

for a smooth function e. Fix ε < ε/(C+ + C−) and choose r ≥ 1 such that
if r ≥ r the estimates (7.13) and (7.14) hold with respect to ε. By unique
ergodicity of T , up to enlarging r, we have that Sr(e)(x) ≤ (1 + ε)r

∫
e.
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The estimates (7.13) imply

Sr(f)(x0) ≤ (1 + ε)r
d−1∑

k=1

(

C+
k

∫ 1

0

uk(x) dx + C−
k

∫ 1

0

vk(x) dx

)

+ (1 + ε)r
∫ 1

0

e(x) dx

≤ (1 + ε)r
∫ 1

0

f(x) dx

+ 2(d − 1)(�κ� + 2) max
1≤k≤d−1

max
0≤i<r

∣
∣log
∣
∣T ix0 − ak

∣
∣
∣
∣

≤ 2r + const max
1≤k≤d−1

max
0≤i<r

∣
∣log
∣
∣T ix0 − ak

∣
∣
∣
∣ .

Considering the derivative f ′, from the estimates (7.14) we get

Sr(f ′)(x0) ≤ −C+(1 − ε)r log r + C−(1 + ε)r log r + C−(�κ� + 2)Ṽ (r, x)

≤ (−C+ + C− + ε)r log r + C−(�κ� + 2)Ṽ (r, x),

and similarly

Sr(f ′)(x0) ≥ −C+(1 + ε)r log r − C+(�κ� + 2)Ũ(r, x) + C−(1 − ε)r log r

≤ (−C+ + C− − ε)r log r − C+(�κ� + 2)Ũ(r, x).

Let us estimate the Birkhoff sum of the second derivative f ′′. By deriving
(7.29), if x0 is not a singularity of Sr(f), we have

|Sr(f ′′)(x0)| ≤
d∑

k=1

(
C+

k Sr(ũ2
k)(x0) + C−

k Sr(ṽ2
k)(x0)

)
+ r max

x∈I
|e′′(x)| .

Since Sr(ũ2
k)(x0) ≤ (max0≤i<r ũk(T ix0)

)
Sr(ũk)(x0) and similarly for ṽk, we

get

|Sr(f ′′)(x0)| ≤ Ũ(r, x)
d∑

k=1

C+
k Sr(ũk)(x0) + Ṽ (r, x)

d∑

k=1

C−
k Sr(ṽk)(x0)

+ r max
x∈I

|e′′(x)| ,
where we recall

Ũ(r, x) := max
1≤k≤d−1

max
0≤i<r

ũk(T ix), Ṽ (r, x) := max
1≤k≤d−1

max
0≤i<r

ṽk(T ix).

Up to increasing r, we have that maxx∈I |e′′(x)| ≤ ε log r; thus, one can proceed
as before to get the desired estimate.
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