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From Constructive Field Theory
to Fractional Stochastic Calculus.
(I) An introduction: Rough Path Theory
and Perturbative Heuristics

Jacques Magnen and Jérémie Unterberger

Abstract. Let B = (B1(t), . . . , Bd(t)) be a d-dimensional fractional
Brownian motion with Hurst index α ≤ 1/4, or more generally a Gaussian
process whose paths have the same local regularity. Defining properly
iterated integrals of B is a difficult task because of the low Hölder reg-
ularity index of its paths. Yet rough path theory shows it is the key to
the construction of a stochastic calculus with respect to B, or to solving
differential equations driven by B. We intend to show in a forthcoming
series of papers how to desingularize iterated integrals by a weak sin-
gular non-Gaussian perturbation of the Gaussian measure defined by a
limit in law procedure. Convergence is proved by using “standard” tools
of constructive field theory, in particular cluster expansions and renor-
malization. These powerful tools allow optimal estimates of the moments
and call for an extension of the Gaussian tools such as for instance the
Malliavin calculus. This first paper aims to be both a presentation of the
basics of rough path theory to physicists, and of perturbative field theory
to probabilists; it is only heuristic, in particular because the desingular-
ization of iterated integrals is really a non-perturbative effect. It is also
meant to be a general motivating introduction to the subject, with some
insights into quantum field theory and stochastic calculus. The interested
reader should read for a second time the companion article (Magnen and
Unterberger in From constructive theory to fractional stochastic calculus.
(II) The rough path for 1

6
< α < 1

4
: constructive proof of convergence,

2011, preprint) for the constructive proofs.

0. Introduction

A major achievement of the probabilistic school since the middle of the twen-
tieth century is the study of diffusion equations, in connection with Brownian
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motion or more generally Markov processes—and also with partial differen-
tial equations, through the Feynman-Kac formula—with many applications in
physics and chemistry [44]. One of the main tools is stochastic calculus with
respect to semi-martingales M . An adapted integral such as

∫ t

s
X(u)dM(u)

may be understood as a limit in some sense to be defined. Classically one
uses piecewise linear interpolations,

∑
s≤t1<···<tN ≤tX(ti)(M(ti+1)−M(ti)) or

∑
s≤t1<···<tN ≤t

X(ti)+X(ti+1)
2 (M(ti+1)−M(ti)); these approximations define in

the limit N → ∞ the Itô, resp. Stratonovich integral. The latter one is actually
obtained, e.g. if M = W is Brownian motion and X(t) = f(Wt) with f smooth
as the limit limε→0

∫ t

s
f(Wε(u))dWε(u) for any smooth approximation (Wε)ε>0

of W converging a.s. to W (see [47], or [21, p. 169]). The Stratonovich integral∫ t

s
X(u)dStratoM(u) has an advantage over the Itô integral in that it agrees

with the fundamental theorem of calculus, namely, F (M(t)) = F (M(s)) +∫ t

s
F ′(M(u))dStratoM(u).

The semi-martingale approach fails altogether when considering stochas-
tic processes with lower regularity. Brownian motion, and more generally semi-
martingales (up to time reparametrization), are (1/2)−-Hölder, i.e. α-Hölder
for any α < 1/2.1 Processes with α-Hölder paths, where α � 1/2, are maybe
less common in nature but still deserve interest. Among these, the family of
multifractional Gaussian processes is perhaps the most widely studied [35], but
one may also cite diffusions on fractals [19], sub- or superdiffusions in porous
media [14,23] and the fascinating multi-fractal random measures/walks in con-
nection with turbulence and two-dimensional Liouville quantum gravity [3,6].
Many models in hydrodynamics take as input a space–time noise which is
often chosen coloured in space [20]. In this respect, let us mention in particu-
lar the Kraichnan model for passive advection of scalars, for which anomalous
correlation exponents [2,7,22] may be expanded in α for α → 0.

We concentrate in this article on multiscale Gaussian processes (the ter-
minology is ours) with scaling dimension or more or less equivalently Hölder
regularity α ∈ (0, 1/2), the best-known example of which being fractional
Brownian motion (fBm for short) with Hurst index α,Bα(t) or simply B(t).2

We consider more precisely a two-dimensional fBm, B(t) = (B1(t), B2(t)),
with independent, identically distributed components.3 The covariance kernel
EBi(s)Bj(t) = 1

2δi,j(|s|2α + |t|2α − |t − s|2α) is that of an integrated coloured
noise in the physical terminology.4 It is a process with long-range, negative
correlations, which is quite unusual from a statistical physics point of view;
but the emphasis here is on the short-distance (or ultra-violet) behaviour, not
on the long-distance one.

1 Recall that a continuous path X : [0, T ] → R is α-Hölder, α ∈ (0, 1), if

sups,t∈[0,T ]
|Xt−Xs|
|t−s|α < ∞.

2 It is (up to a constant) the unique self-similar Gaussian process with stationary increments.
The last property implies that its derivative is a (distribution-valued) stationary field.
3 The one-dimensional case is very different and much simpler and has been treated in [15].
4 In other words (informally at least) EB′

i(s)B
′
j(t) ∼ −cα|t − s|2α−2 instead of δ(t − s).
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The simplest non-trivial stochastic integral is then

A(s, t) :=

t∫

s

dB1(t1)

t1∫

s

dB2(t2) =

t∫

s

(B2(u) −B2(s))dB1(u), (0.1)

a twice-iterated integral, where B = (B1(t), B2(t)) is a two-component fBm
with independent, identically distributed components. Since

t∫

s

dB1(t1)

t1∫

s

dB2(t2) +

t∫

s

dB2(t2)

t2∫

s

dB1(t1)

= (B1(t) −B1(s))(B2(t) −B2(s)),

one is mainly interested in the antisymmetrized quantity (measuring a signed
area, as follows from the Green–Riemann formula),

LA(s, t) :=

t∫

s

dB1(t1)

t1∫

s

dB2(t2) −
t∫

s

dB2(t2)

t2∫

s

dB1(t1)

=

t∫

s

(B2(u) −B2(s))dB1(u) − (B1(u) −B1(s))dB2(u), (0.2)

called Lévy area. The corresponding Stratonovich integral, obtained as a limit
either by linear interpolation or by more refined Gaussian approximations
[5,33,38,39], has been shown to diverge as soon as α ≤ 1/4.

This seemingly no-go theorem, although clear and derived by straight-
forward computations that we reproduce in short in Sect. 0, appears to be a
puzzle when put in front of the results of rough path theory [10,16,25–28]. The
essential idea conveyed by this theory—we shall make this precise in Sect. 2—
is that a path Γ : R → R

d with Hölder regularity index α ∈ (0, 1) must be seen
as the projection onto the d first components of some “essentially arbitrary”
rough path over Γ, denoted by boldface letters,

Γ : R
2 � (s, t) �→ Γst := (Γ1

st, . . . ,Γ
N
st) ∈ R

d × R
d2 × · · · × R

dN

, (0.3)

N = 	1/α
,5 which may be interpreted as iterated integrals of Γ in a limiting
sense, namely,

Γ1
st = lim

ε→0

t∫

s

dΓε(t1) = Γ(t) − Γ(s),

Γ2
st = lim

ε→0

t∫

s

dΓε(t1) ⊗
t1∫

s

dΓε(t2), . . . (0.4)

ΓN
st = lim

ε→0

t∫

s

dΓε(t1) ⊗ · · · ⊗
tN−1∫

s

dΓε(tN )

5 Where � . � stands for the integer part of its argument.
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for some smooth family of approximations (Γε)ε>0 of Γ. The limit must be
understood in a Hölder norm sense, as explained in Sect. 2. In other words,
there exist infinitely many different families of approximations of B leading to
as many different definitions of its iterated integrals! Alas, Gaussian approx-
imations are unfortunately seemingly unable to produce such a definition for
fBm with Hurst index α ≤ 1/4.

Our project in this series of papers is to define an explicit rough path over
fBm with arbitrary Hurst index, or more generally multiscale Gaussian fields
(see companion article [31]) by an explicit, probabilistically meaningful limit-
ing procedure, thus solving at last the problem of constructing a full-fledged,
Stratonovich-like integration with respect to fBm.

Let us explain our strategy for 1/6 < α < 1/4. Roughly speaking, our
rough path is obtained by making B = (B(1), B(2)) interact through a weak
but singular quartic, non-local interaction, which plays the rôle of a squared
kinetic momentum, or bending energy, and makes its Lévy area—and at the
same time the iterated integrals of higher order—finite. Following the com-
mon use of quantum field theory, this is implemented by multiplying (proba-
bilists would say: penalizing) the Gaussian measure by the exponential weight
e− 1

2 c′
α

∫ ∫ Lint(φ1,φ2)(t1,t2)|t1−t2|−4αdt1dt2 ,6 with

Lint(φ1, φ2)(t1, t2) = λ2
{
(∂A+)(t1)(∂A+)(t2) + (∂A−)(t1)(∂A−)(t2)

}
, (0.5)

where λ (the coupling parameter) is a small, positive constant; φ1, φ2 are the
(infra-red divergent) stationary fields associated with B1, B2, with covariance
kernel as in Eq. (1.4), and similarly, A± are stationary left- and right-turning
fields, built out of φ1, φ2 and representing the singular part of the Lévy area
(see Sect. 1 for details). As usual in quantum field theory, one considers first
the truncated measure obtained by an “ultra-violet cut-off” and on a finite
“volume” (or finite horizon, in the probabilistic terminology) V = [−T, T ],
i.e. one multiplies the Fourier transforms of the fields φ1, φ2 by some cut-off
function with compact support in [−Mρ,Mρ] (for some fixed constant M > 1)
and integrates over V ; see Definition 3.1 for the precise procedure. Then ∂A±

are replaced by the truncated quantities (∂A±)→ρ built out of the cut-off fields
φ→ρ. The truncated interacting Lagrangian reads

1
2
c′α

∫ ∫

V ×V

|t1 − t2|−4αL→ρ
int (φ1, φ2)(t1, t2)dt1dt2 +

∫

V

L→ρ
bdry

:=
1
2
c′αλ

2

∫ ∫

V ×V

|t1 − t2|−4α
{
(∂A+)→ρ(t1)(∂A+)→ρ(t2)

+(∂A−)→ρ(t1)(∂A−)→ρ(t2)
}

dt1dt2 +
∫

V

L→ρ
bdry, (0.6)

where L→ρ
bdry is some singular “Fourier boundary term” multiplied by an eva-

nescent factor M−κρ (κ > 0), which cures unwanted difficulties due to the

6 The unessential constant c′
α is fixed, e.g. by demanding that the Fourier transform of the

kernel c′
α|t1 − t2|−4α is the function |ξ|4α−1.



Vol. 12 (2011) From Constructive Field Theory 1203

ultra-violet cut-off.7 When ρ and V are finite, the underlying Gaussian fields
are smooth, which ensures the existence of the penalized measure. The asser-
tion is that the penalized measures converge weakly when ρ, |V | → ∞ to some
well-defined, unique measure, while the truncated iterated integrals themselves
converge in law to a rough path over B.

Note that the statistical weight is maximal when ∂A+ = ∂A− = 0, i.e. for
sample paths which are “essentially” straight lines. Another way to motivate
this interaction (following an image due to A. Lejay) is to understand that
the divergence of the Lévy area is due to the accumulation in a small region
of space of small loops [25]; the statistical weight is unfavourable to such an
accumulation. On the other hand, the law of the quantities in the first-order
Gaussian chaos, characterized by the n-point functions

〈Bi1(x1) · · ·Bin
(xn)〉λ

=
1
Z

E

[
Bi1(x1) · · ·Bin

(xn)e− 1
2 c′

α

∫ ∫ Lint(φ1,φ2)(t1,t2)|t1−t2|−4αdt1dt2
]
, (0.7)

i1, . . . , in = 1, 2, where

Z := E

[
e− 1

2 c′
α

∫ ∫ Lint(φ1,φ2)(t1,t2)|t1−t2|−4αdt1dt2
]

(0.8)

is a normalization constant playing the rôle of a partition function, is insen-
sitive to the interaction.8 Thus we have built a rough path over fBm. This
conveys the idea that the paths have been straightened by removing in aver-
age small bubbles of scale M−ρ. In doing so, the paths of the limiting process
when ρ → ∞ are indistinguishable from those of B, but higher-order integrals
have been corrected so as to become finite.

Starting from the above field-theoretic description, the proof of finiteness
and Hölder regularity of the Lévy area for λ > 0 small enough follows, despite
some specific features, the broad scheme of constructive field theory, see, e.g.
the monographies [1,32,37]. Constructive field theory is a program originally
advocated in the sixties by Wightman [46], the aim of which was to give explicit
examples of field theories with a non-trivial interaction; see Glimm and Jaffe’s
book [13] for an introduction and references therein for an extensive bibliogra-
phy. In this work we use the bosonic multi-scale cluster expansion developed
in [9] more than 20 years ago which seems to us the most appropriate for these
probabilistic models; it reduces to the minimum the use of abstract combi-
natorial identities and algebra, to the benefit of a very intuitive and visual
(though sometimes heavy) tree expansion.

The main theorem may be stated as follows. As a rule, we denote in this
article by E[. . .] the Gaussian expectation and by 〈. . . 〉λ,V,ρ the expectation

7 The exact form of L→ρ
bdry requires detailed constructive explanations and will not be re-

quired here. It is to be found in the companion article [31].
8 In the two preceding equations, E

[
· e− 1

2 c′
α

∫ ∫ Lint(φ1,φ2)(t1,t2)|t1−t2|−4αdt1dt2
]

stands for

the limit of E

[

· e
− 1

2 c′
α

∫ ∫
V ×V L→ρ

int (φ1,φ2)(t1,t2)|t1−t2|−4αdt1dt2+
∫
V L→ρ

bdry

]

when ρ, |V | → ∞
as we explained above.
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with respect to the λ-weighted interaction measure with scale ρ ultraviolet cut-
off restricted to a compact interval V , so that in particular E[. . .] = 〈· · · 〉0,R,∞.

Theorem 0.1. Assume α ∈ (1
6 ,

1
4 ). Consider for λ > 0 small enough the family

of probability measures (also called (φ, ∂φ, σ)-model)

Pλ,V,ρ(φ1, φ2)

= e− 1
2 c′

α

∫ ∫
dt1dt2|t1−t2|−4αL→ρ

int (φ1,φ2)(t1,t2)−
∫ L→ρ

bdrydμ→ρ(φ1)dμ→ρ(φ2), (0.9)

where dμ→ρ(φi) = dμ(φ→ρ
i ) is a Gaussian measure obtained by an ultra-violet

cut-off at Fourier momentum |ξ| ≈ Mρ (M > 1), see Definition 3.1. Then
(Pλ,V,ρ)V,ρ converges in law when |V |, ρ → ∞ to some measure Pλ, and the
associated iterated integrals

t∫

s

dφ→ρ
i1

(t1)

t1∫

s

dφ→ρ
i2

(t2), . . . ,

t∫

s

dφ→ρ
i1

(t1)

t1∫

s

dφ→ρ
i2

(t2) · · ·
tn−1∫

s

dφ→ρ
in

(tn), . . .

converge in law to a rough path over B.

The result is not difficult to understand heuristically, at least for quantum
field theory experts, if one resorts to the non-rigorous perturbation theory (see
Sects. 3 and 4). First, by a Hubbard–Stratonovich transformation (a functional
Fourier transform), one replaces the non-local interaction L(φ1, φ2)(t1, t2)|t1 −
t2|−4α with a local interaction L(φ1, φ2, σ)(t) depending on a two-component
exchange particle field σ = (σ+(t), σ−(t)). Then a Schwinger–Dyson identity
(a functional integration by parts) relates the moments of A to those of σ.
Simple power-counting arguments show that a connected 2n-point function of
σ alone is superficially divergent if and only if 1 − 4nα ≥ 0. Thus, restricting
to α > 1/8, one only needs to renormalize the two-point function. Since the
renormalized propagator of σ is screened by a positive, infinite mass term, the
theory is free once one has integrated out the σ-field and hence one retrieves
the underlying Gaussian theory (φ1, φ2). The Schwinger–Dyson identity then
shows that the two-point functions of A have been made finite. Finally, simple
arguments (not developed here) yield the convergence of higher-order iterated
integrals in the interacting theory provided α > 1/6.

Whereas these heuristic arguments are not difficult to follow in princi-
ple, they do not constitute at all a proof. Theorem 0.1 is proved in the com-
panion article [31] by following—as explained above—the general scheme of
constructive field theory. Although the constructive method is really a multi-
scale refinement of the previous arguments, explaining it precisely is actually
a formidable task, which is in general very much model-dependent, whereas
perturbative renormalization always follows more or less the same lines; briefly
said, the difference lies in the difference between a formal power series expan-
sion and an analytic proof of convergence for a given quantity. This task we
perform at long length and in great generality in the companion article, with
the view of making constructive arguments into classical mathematical tools
which probabilists may eventually reemploy.

Here is an outline of the article.
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We begin in Sect. 1 by recalling classical arguments (due to the second
author) explaining the divergence of the Lévy area for α ≤ 1/4, which is
the starting point for all the story [38]; Fourier normal ordering [41,42]—an
indispensable tool for the sequel—is introduced there. Section 2 is a brief intro-
duction into rough path theory, mainly for non-experts. Sections 2.1 and 2.2
are standard and may be skipped by experts, whereas Sect. 2.3—a brief sum-
mary of the previous contributions of the second author to the subject—gives
the context in which this series of papers arose.

The heart of the article is Sects. 3 and 4. Our problem is recast into a
quantum field theoretic language in Sect. 3; we take the opportunity to explain
the basis of quantum field theory and renormalization at the same time. The
interaction term is introduced at this point, where it comes out naturally.
Finally, Sect. 4 is dedicated to a heuristic perturbative “proof” of the conver-
gence of the Lévy area of the interacting process and serves also in some sense
as an introduction to the companion paper [31].

1. A Fourier Analysis of the Lévy Area

The quantity we want to define in the case of fractional Brownian motion is
the following:

Definition 1.1 (Lévy area). The Lévy area of a two-dimensional path Γ :
R → R

2 between s and t is the area between the straight line connecting
(Γ1(s),Γ2(s)) to (Γ1(t),Γ2(t)) and the curve {(Γ1(u),Γ2(u)); s ≤ u ≤ t}. It is
given by the following antisymmetric quantity,

LAΓ(s, t) :=

t∫

s

dΓ1(t1)

t1∫

s

dΓ2(t2) −
t∫

s

dΓ2(t2)

t2∫

s

dΓ1(t1). (1.1)

The purpose of this section is to show by using Fourier analysis why the
Lévy area of fBm diverges when α ≤ 1/4. This is hopefully understandable to
physicists and also profitable to probabilists who are aware of other proofs of
this fact, originally proved in [5], because Fourier analysis is essential in the
analysis of Feynman graphs which shall be needed in Sect. 4. We follow here
the computations made in [41] or [40].

Definition 1.2 (Harmonizable representation of fBm). Let W (ξ), ξ ∈ R be a
complex Brownian motion9 such that W (−ξ) = −W (ξ), and

Bt := (2πcα)− 1
2

+∞∫

−∞

eitξ − 1
iξ

|ξ| 1
2 −αdW (ξ), t ∈ R. (1.2)

The field Bt, t ∈ R is called fractional Brownian motion.10 Its paths are
almost surely α− Hölder, i.e. (α− ε)-Hölder for every ε > 0. It has dependent

9 Formally, 〈W ′(ξ1)W ′(ξ2)〉 = 0 and 〈W ′(ξ1)W ′(ξ2)〉 = δ(ξ1 − ξ2) if ξ1, ξ2 > 0.
10 The constant cα is conventionally chosen so that E(Bt − Bs)2 = |t − s|2α.
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but identically distributed (or in other words, stationary) increments Bt −Bs.
In order to gain translation invariance, we shall rather use the closely related
stationary process

φ(t) :=

+∞∫

−∞

eitξ

iξ
|ξ| 1

2 −αdW (ξ), t ∈ R (1.3)

– with covariance

〈φ(x)φ(y)〉 =
∫

eiξ(x−y) 1
|ξ|1+2α

dξ (1.4)

– which is infrared divergent, i.e. divergent around ξ = 0. However, the incre-
ments φ(t) − φ(s) = Bt −Bs are well-defined for any (s, t) ∈ R

2.
In order to understand the analytic properties of the Lévy area of fBm,

we shall resort to a Fourier transform. One obtains, using the harmonizable
representation of fBm,

A(s, t) :=

t∫

s

dB1(t1)

t1∫

s

dB2(t2)

=
1

2πcα

∫
dW1(ξ1)dW2(ξ2)
|ξ1|α−1/2|ξ2|α−1/2

t∫

s

dt1

t1∫

s

dt2 · ei(t1ξ1+t2ξ2). (1.5)

The Lévy area LA(s, t) := LAB(s, t) is obtained from this twice-iterated
integral by antisymmetrization. Note that LA(s, t) is homogeneous of degree
2α in |t − s| since B(ct) − B(cs), c > 0 has same law as cα(B(t) − B(s)) by
self-similarity.

Evaluating the integral in the right-hand side yields an expression which
is not homogeneous in ξ. Hence it is preferable to define instead the follow-
ing stationary quantity called skeleton integral, which depends only on one
variable,

A(t) :=

t∫
dB1(t1)

t1∫
dB2(t2)

=
1

2πcα

∫
dW1(ξ1)dW2(ξ2)
|ξ1|α−1/2|ξ2|α−1/2

t∫
dt1

t1∫
dt2 · ei(t1ξ1+t2ξ2)

=
1

2πcα

∫
dW1(ξ1)dW2(ξ2)
|ξ1|α−1/2|ξ2|α−1/2

· eit(ξ1+ξ2)

[i(ξ1 + ξ2)][iξ2]
, (1.6)

where by definition
∫ t eiuξdu = eitξ

iξ . From A(t) and the one-dimensional skel-
eton integral

φi(t) = (2πcα)− 1
2

t∫
dBi(u) =

∫
dWi(ξ)
|ξ|α−1/2

· eitξ

iξ
, (1.7)
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which is the above-defined infra-red divergent stationary process associated
with B, one easily retrieves A(s, t) since

A(s, t) =

t∫

s

dB1(t1)

⎛

⎝
t1∫

dB2(t2) −
s∫
dB2(t2)

⎞

⎠

= A(t) − A(s) + A∂(s, t), (1.8)

where (2πcα)
1
2 A∂(s, t) := (B1(t) − B1(s))φ2(s) (called boundary term) is a

product of first-order integrals.
One may easily estimate these quantities in each sector |ξ1| ≷ |ξ2|. In

practice, it turns out that estimates are easiest to get after a permutation
of the integrals (applying Fubini’s theorem) such that (for twice or multiple
iterated integrals equally well) innermost (or rightmost) integrals bear highest
Fourier frequencies; this is the essence of Fourier normal ordering [8,42,43].
This gives a somewhat different decomposition with respect to (1.8) since∫ t

s
dB1(t1)

∫ t1
s

dB2(t2) is rewritten as − ∫ t

s
dB2(t2)

∫ t2
t

dB1(t1) in the “nega-
tive” sector |ξ1| > |ξ2|. After some elementary computations, one gets the
following:

Lemma 1.3. Let

A+(t)

:= 2πcα

t∫
dt1

t1∫
dt2F−1

(
(ξ1, ξ2) �→ 1|ξ1|<|ξ2|(FB′

1)(ξ1)(FB′
2)(ξ2)

)
(t1, t2)

=
∫

|ξ1|<|ξ2|

dW1(ξ1)dW2(ξ2)
|ξ1|α−1/2|ξ2|α−1/2

· eit(ξ1+ξ2)

[i(ξ1 + ξ2)][iξ2]
(1.9)

and

A−(t)

:= 2πcα

t∫
dt2

t2∫
dt1F−1

(
(ξ1, ξ2) �→ 1|ξ2|<|ξ1|(FB′

1)(ξ1)(FB′
2)(ξ2)

)
(t1, t2)

=
∫

|ξ2|<|ξ1|

dW1(ξ1)dW2(ξ2)
|ξ1|α−1/2|ξ2|α−1/2

· eit(ξ1+ξ2)

[i(ξ1 + ξ2)][iξ1]
. (1.10)

Then

A(s, t)

=
1

2πcα

{
(A+(t) − A+(s)) − (A−(t) − A−(s)) + (A+

∂ (s, t) − A−
∂ (s, t))

}
,

(1.11)
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the boundary term A+
∂ − A−

∂ being given by

A+
∂ (s, t) − A−

∂ (s, t) =

⎧
⎪⎨

⎪⎩
−

∫

|ξ1|<|ξ2|

(eitξ1 − eisξ1)eisξ2

[iξ1][iξ2]

+
∫

|ξ2|<|ξ1|

(eitξ2 − eisξ2)eitξ1

[iξ1][iξ2]

⎫
⎪⎬

⎪⎭
· dW1(ξ1)dW2(ξ2)
|ξ1|α−1/2|ξ2|α−1/2

.

(1.12)

Two lines of computations show immediately that

VarA±
∂ (s, t) �

∫
|eitξ − eisξ|2|ξ|−1−4αdξ

�
∫

|ξ|> 1
|t−s|

dξ
|ξ|1+4α

+
∫

|ξ|< 1
|t−s|

|t− s|2|ξ|2
|ξ|1+4α

dξ

� |t− s|4α, (1.13)

so that (essentially by the Kolmogorov–Centsov lemma, see Sect. 2) the Hölder
regularity indices of B1 and B2 add in the case of the boundary term, to pro-
duce a quantity which is 2α−-Hölder. (Note that the artificial infrared diver-
gence at ξ1 = 0 disappears when Taylor expanding eitξ1 − eisξ1). On the other
hand, letting ξ := ξ1+ξ2 and introducing an ultra-violet cut-off at |ξ2|= Λ � 1,
one may see for instance A+(t) as some Fourier transform with respect to
Brownian motion of the function ξ �→ ∫ Λ

|ξ−ξ2|<|ξ2|
dW2(ξ2)

ξ2

1
|ξ−ξ2|α−1/2|ξ2|α−1/2 ,

whose variance diverges like
∫ Λ dξ2

ξ4α
2

= O(Λ1−4α) or O(ln Λ) in the ultra-violet
limit Λ → ∞ as soon as α ≤ 1/4. Note that the ultraviolet divergence is in
the region |ξ1|, |ξ2| � |ξ|.

It is apparent that the central rôle in this decomposition is played by the
Fourier projection operatorD(1|ξ1|<|ξ2|) = F−1

(
1|ξ1|<|ξ2| · F( . )

)
. Since A±

∂

are obtained by Fourier projecting (B1(t)−B1(s))φ2(s), or (B2(t)−B2(s))φ1(t),
which are perfectly well-defined products of continuous fields,11 it was clear
from the onset that these would be regular terms. Hence singularities come
only from the one-time quantity A±(t), which does not split into a product of
first-order integrals, and that we shall call the singular part of the Lévy area.

2. An Introduction to Rough Paths

2.1. General Issues

Let Γ = (Γ1(t), . . . ,Γd(t)) be a smooth path with d components. As explained
in the Introduction, the Lévy area of Γ,Γ2

st(i, j) :=
∫ t

s
dΓi(t1)

∫ t1
s

dΓj(t2) is the
simplest non-trivial iterated integral of Γ. The interest for iterated integrals

11 Apart from the spurious infra-red divergence (see above).
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of Γ comes from the study of two closely related problems in the case when Γ
is not regular any more.

2.1.1. Integration Along an Irregular Path. Assume one wants to define the
integral of the (say, smooth) one-form f :=

∑d
j=1fj(x)dxj along the path Γ,

namely, the quantity
∫ t

s
fdΓ :=

∑
j

∫ t

s
fj(Γ(u))dΓj(u). Since Γ is not differen-

tiable, dΓj(u) may not be understood as dΓj

du · du, and the very mean-
ing of this quantity is unclear. Unfortunately, the Riemann-type sum∑

j

∑n−1
i=0 fj(Γ(ti))(Γj(ti+1) − Γj(ti)), with s = t0 < · · · < ti = s+ i

n (t− s) <
· · · < tn = t, may be shown to diverge in general as soon as α ≤ 1

2 .12

A Taylor expansion to order N of the integrand yields (coming back to
the case of a regular path) the improved Riemann-type sum

n−1∑

i=0

N∑

p=1

d∑

j1,...,jp=1

∂p−1fjp

∂xj1 · · · ∂xjp−1

(Γ(ti))Γ
p
ti,ti+1

(j1, . . . , jp), (2.1)

where

Γp
ti,ti+1

(j1, . . . , jp) =

t∫

s

dΓj1(t1) · · ·
tp−1∫

s

dΓjp
(tp) (2.2)

is a p-th order iterated integral. The problem is, if Γ is irregular, iterated
integrals of Γ are a priori ill-defined for the same reasons as before.

2.1.2. Solutions of Differential Equations Driven Along an Irregular Path.
Consider the differential equation

dyt =
d∑

i=1

Vj(y(t))dΓj(t). (2.3)

The following series gives a formal solution:

yt = ys +
∞∑

N=1

∑

1≤i1,...,iN ≤d

[Vi1 · · ·ViN
· Id](Ys) · ΓN

st(i1, . . . , iN ), (2.4)

with Γ as in Eq. (2.2). Solutions are usually computed by using some iterated
numerical scheme. For instance, the Euler scheme of rank N gives the solution
to (2.3) as the limit when n → ∞ of the compound mapping,

Φ(Xt,tn−1 ; · · · Φ(Xt2,t1 ; Φ(Xt1,s; ys) · · · ), (2.5)

where Φ(Γst; ys) is the series (2.4) truncated to order N . If one takes for
Γ an α-Hölder path, one stumbles again into the same problem of defining
Γst = (Γ1

st, . . . ,Γ
N
st).

In both cases, the hope is that, if one finds some (non necessarily unique!)
way of defining iterated integrals of Γ with the correct regularity properties,

12 From a naive bound by the 1-variation of the path,
∑

j

∑
i |Γj(ti+1)−Γj(ti)| = O(n1−α),

one would come to the erroneous conclusion that the Riemann-type sums diverge when
α < 1. The so-called Young theory of integration (see, e.g. [25]) lowers the barrier to α = 1

2

by taking into account the Hölder regularity of the integrand f(Γ(t)).
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then the refined Riemann-type sums (2.1) or Euler scheme (2.5) converge when
the mesh t−s

n goes to 0. Rough path theory shows this is possible13 provided
one chooses N ≥ 	1/α
—here we choose N = 	1/α
 minimal—and

Γst =
(
Γ1

st(i1)1≤i1≤d, . . . ,ΓN
st(i1, . . . , iN )1≤i1,...,iN ≤d

)
:

R
2 → R

d × R
d2 × · · · × R

dN

(2.6)

is a rough path with Hölder regularity index α in the following sense:

Definition 2.1 (rough path). An α-Hölder continuous rough path over Γ is a
functional Γn

st(i1, . . . , in), n ≤ 	N := 1/α
, i1, . . . , in ∈ {1, . . . , d}, such that
Γst(i) = Γt(i) − Γs(i) are the increments of Γ, and the following 3 properties
are satisfied:
(i) (Hölder continuity) Γn

st(i1, . . . , in) is nα-Hölder continuous as a function
of two variables, namely, sups,t∈R

|Γn
st(i1,...,in)|

|t−s|α < ∞.

(ii) (Chen property)

Γn
st(i1, . . . , in) = Γn

ut(i1, . . . , in) + Γn
su(i1, . . . , in)

+
∑

n1+n2=n

Γn1
ut (i1, . . . , in1)Γ

n2
su(in1+1, . . . , in); (2.7)

(iii) (shuffle property)

Γn1
st (i1, . . . , in1)Γ

n2
st (j1, . . . , jn2) =

∑

k∈Sh(i,j)

Γn1+n2
st (k1, . . . , kn1+n2), (2.8)

where Sh(i, j)—the set of shuffles of the words i and j—is the subset of
permutations of the union of the lists i, j leaving unchanged the order
of the sublists i and j. For instance, Γ2

st(i1, i2)Γ
1
st(j1) = Γ3

st(i1, i2, j1) +
Γ3

st(i1, j1, i2) + Γ3
st(j1, i1, i2).

A formal rough path over Γ is a functional satisfying all the above prop-
erties except Hölder continuity (i).

In a random setting, the Hölder continuity estimates (i) are generally
proved as a consequence of moment estimates such as E|Γn

st|2p ≤Cp|t−s|2pnα,
p ≥ 1, n = 1, . . . , N . This may be seen as a consequence of the well-known
Kolmogorov–Centsov lemma stating that (for a measurable process random
Γ)

(
E[|Γ(t) − Γ(s)|2p] ≤ C|t− s|1+2pα

)

⇒
⎛

⎝∀α− < α,E

⎡

⎣

(

sup
s,t∈[0,T ]

|Γ(t) − Γ(s)|
|t− s|α−

)2p
⎤

⎦ < ∞
⎞

⎠ (2.9)

or more precisely of an extension (or a variant) of these estimates adapted to
functions of two variables (such as (s, t) �→ Γn

st) due to Garsia, Rodemich and
Rumsey [11].

13 Furthermore, the limit is α-Hölder and satisfies nice continuity properties with respect
to the path Γ.
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In particular, if Γ is smooth, then its natural iterated integrals
∫ t

s
dΓi1(t1)

· · · ∫ tn−1

s
dΓin

(tn) satisfy properties (ii) and (iii).
However, it is not clear a priori in what sense abstract data as in Defini-

tion 2.1 should represent iterated integrals in the usual sense.

2.2. Geometric Approach

The answer to this question comes from a reinterpretation of rough paths
in terms of group theory and geometric structures. We generally refer to the
book by Friz and Victoir [10] for this paragraph. Consider the signature Γst =
(Γ1

st,Γ
2
st, . . .) of a smooth path Γ as

Γ(s, t) := 1 +
∑

i1

Γ1
st(i1)X

i1 +
∑

i1,i2

Γ2
st(i1, i2)X

i1 ⊗Xi2 + · · · , (2.10)

sitting inside the tensor algebra TR
d = ⊕n≥0T

n
R

d, with X1, . . . , Xd generat-
ing a basis of R

d � T
1
R

d. Note that the Chen property is trivially equiv-
alent to the property Γ(s, t) = Γ(s, u) ⊗ Γ(u, t), implying that Γ(s, t) =
Γ(0, s)⊗−1 ⊗ Γ(0, t) is a multiplicative increment. In the particular case when
Γ(t) = tV, V ∈ R

d is a straight line, Γ(0, t) = exp t
∑d

i=1 ViX
i belongs to

expT 1
R

d. Easy arguments due to Chow show then that t �→ Γ(0, t) is a
G-valued path, where g = Lie(G) is the free Lie algebra in d generators,
generated as a vector space by the successive commutators Xi1 , [Xi1 ,Xi2 ],
[Xi1 , [Xi2 ,Xi3 ]], . . . In rough path theory, one quotients out by ⊕n≥N+1T

n
R

d.
Then the quotient Lie algebra gN is the free N -step nilpotent Lie algebra in
d generators, and GN = exp gN is a Carnot group. When d=N = 2, g2 �
〈X,Y,Z := [X,Y ]〉 is isomorphic to the Heisenberg algebra, and the de-
fect of additivity of the Lévy area LAΓ(s, t) =

∫ t

s
dΓ1(t1)

∫ t1
s

dΓ2(t2) −
∫ t

s
dΓ2(t2)

∫ t2
s

dΓ1(t1), measured by the difference

LAΓ(s, t) − LAΓ(s, u) − LAΓ(u, t)
= (Γ1(t) − Γ1(u))(Γ2(u) − Γ2(s)) − (Γ2(t) − Γ2(u))(Γ1(u) − Γ1(s)), (2.11)

is encoded into the non-commutativity of the product in the Heisenberg group,
given by (in the exponential coordinates) (x1, y1, z1)·(x2, y2, z2) = (x1+y1, x2+
y2, z1 + z2 + 1

2 (x1y2 − x2y1)).
Carnot groups are naturally equipped by homogeneous norms coming

from the sub-Riemannian Carnot–Carathéodory metric induced by horizontal
geodesics, i.e.minimizing curves with tangent vectors in the Euclidean space
T 1

R
d. Then an α-Hölder rough path over an α-Hölder path Γ is simply an

α-Hölder GN -valued path (in geometric terms, an α-Hölder section of the
principal bundle R ×GN ) which projects onto Γ.

One has the following two fundamental results:

Proposition 2.2 (see Lyons [27], Lyons–Victoir [29], Friz–Victoir [10]). Let 0 <
α− < α < 1.
1. (Existence theorem) There exists a (highly non-unique) α−-rough path

over any α-Hölder path. In geometric terms, one may lift an α-Hölder
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section of the quotient bundle R × (
GN/ exp ⊕N

n=2T
n
R

d
) � R × T 1

R
d �

R × R
d into an α−-Hölder section of the principal bundle R ×GN .

2. (Approximation theorem) Every α-Hölder rough path over Γ is the limit
in α−-Hölder norm of the corresponding stack of natural iterated integrals
over some smooth approximation family Γε, ε → 0 of Γ.

The approximation theorem is essential in that it reduces differential
equations driven by α-Hölder paths (through a limiting procedure which is
often very subtle) to ordinary differential equations. Estimates for solutions in
a deterministic setting are given in full details in the book by P. Friz and N.
Victoir (see [10], Chap. 10).

This general approach is, however, insufficient for many purposes. Draw-
backs are of two types:

– the arguments leading to the existence and approximation theorems are
abstract: the first theorem relying on the axiom of choice (due to the
arbitrariness of the lift) and the second one on an interpolation by sub-
Riemannian geodesics which are notoriously complicated objects;

– in a random setting, this approach produces in principle deterministic,
pathwise estimates, which moreover do not depend on the choice of rough
path. Even in combination with probabilistic tools such as the Malliavin
calculus, despite beautiful achievements in the case α > 1/4 (such as
global existence of solutions for bounded potentials [10], existence of a
density [4], ergodicity [18]),. . . ) generalizing results known in the case of
diffusion equations, it does not permit—in the case of stochastic differ-
ential equations driven by fBm for instance—to produce anything really
better than a local existence theorem for solutions beyond the barrier
α = 1/4.
Let us mention briefly en passant another related approach due to

Gubinelli [16] and called algebraic integration. Without being too precise, it
states the existence of a class of Γ-controlled paths—stable under functional
transformations and under integration along Γ, and to which solutions of dif-
ferential equations driven by Γ belong—whose increments are of the form

zt − zs =
N∑

n=1

∑

i1,...,in

ζn
s (i1, . . . , in)Γn

st(i1, . . . , in) (2.12)

for some functions ζn(i1, . . . , in), up to a remainder ρst such that ρst =
O(|t − s|1+ε, with ε > 0. The right-hand side of (2.12)—viewed as a function
of t—is a linear combination of the components of the rough path Γ, while the
remainder is sufficiently regular so that conventional estimates apply. This
essentially avoids the use of smooth approximations and requires only the
knowledge of the quantities Γn

st, n ≤ N .

2.3. Fourier Normal Ordering

In contrast with this geometric approach, the point of view developed by the
second author is that a rough path over an irregular path Γ is something “essen-
tially arbitrary” and that one should rather look for explicitly constructed
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rough paths with “good” properties, which allow better estimates than the
general ones.

Let us summarize very roughly the results obtained so far in the following
Proposition:

Proposition 2.3. (see [8,40,42])

1. A rough path is uniquely determined by an algorithm called Fourier nor-
mal ordering algorithm from its tree data, which are generalized Fourier
normal ordered skeleton integrals on domains indexed by trees. As a con-
sequence, any arbitrary set of tree data produces a formal rough path (see
Definition 2.1).

2. Tree data yielding Hölder-continuous rough paths by Fourier normal
ordering may be obtained by various, explicit regularization schemes
applied to Fourier normal ordered tree skeleton integrals, using multi-scale
methods and inspired by the renormalization of Feynman graphs. In par-
ticular, one may construct rough paths B = (B1

st, . . . ,B
N
st) over fBm such

that Bj
st is in the j-th chaos of fBm.14

Fourier normal ordering consists as in section 2 in (1) cutting iter-
ated integrals like Ist

Γ (1, . . . , n) :=
∫ t

s
dΓ1(t1)

∫ t1
s

dΓ2(t2) · · · ∫ tn−1

s
dΓn(tn)

into n! pieces by applying the Fourier projection operators Pσ := D
(1|ξσ(1)|<···<|ξσ(n)|), where σ ranges in the group of permutations of {1, . . . , n};
(2) rewriting each piece PσIst

Γ (1, . . . , n) as a Fourier normal ordered integral
over the inverse image of the simplex {t > t1 > · · · > tn > s} by σ by using
Fubini’s theorem. The inverse image of the simplex decomposes as a union of
elementary domains indexed by trees.15

Thus the role of Fourier normal ordering is twofold: (1) it allows a general
algebraic (combinatorial) classification of (formal) rough paths; (2) it induces
a correct addition of the Hölder regularity indices of the tree data when recom-
bining them by the Fourier normal ordering algorithm. We have seen an exam-
ple of this when we estimated the variance of the boundary terms A±

∂ in
Sect. 1.

The rough paths described in the above Proposition, in the case of fBm,
say, are not obtained by an explicit limiting procedure; yet they suggest very
strongly that the construction of rough paths is closely related to renormal-
ization in quantum field theory. The purpose of the present series of articles is
to give a probabilistic construction coming directly from quantum field theory.
We actually conjecture that (some of) the rough paths of the above Proposi-
tion may be obtained by some limiting procedure from the construction of the
next sections.

14 i.e. may be written as a j-linear integral expression in terms of B.
15 Given a rooted tree with n vertices indexed by 1, . . . , n, one integrates over the domain
with coordinates t1, . . . , tn ∈ [s, t] such that ti < tj whenever the vertex i is above the vertex
j. When the tree is simply a trunk tree with no branching, one gets a usual iterated integral
of order n.
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3. Definition of the Interaction

We recall that
∫ t

s
dB1(t1)

∫ t1
s

dB2(t2) − ∫ t

s
dB2(t2)

∫ t2
s

dB1(t1) represents the
signed area between the straight line connecting (B1(s), B2(s)) to (B1(t),
B2(t)) and the path. If the path turns right, resp. left, then the Lévy area
increases, resp. decreases. We have seen that A± represents in some sense the
singular part of the Lévy area.

It is conceivable that B1, B2 or φ1, φ2 represent the idealized, strongly
self-correlated motion in R

2 of a particle, which—although rotation-invariant—
may not (probably as a consequence of a mechanical or electromagnetic rigidity
due to the macroscopic dimension of the particle, or any other similar phenom-
enon) turn absolutely freely. A natural quantum field theoretic description
of this rigidity phenomenon is to add an interaction Lagrangian of the form
Lint = (∂A±)2. The fundamental intuition here is that the field B is in some
sense a mesoscopic field, while A± depends on microscopic details of the the-
ory.

This is explained in great accuracy in [26], in a mathematical language.
A. Lejay shows how a path Γ may be modified by inserting microscopic bubbles
all along, resulting in the limit in a path which is indistinguishable from the
original one, while the Lévy area has been corrected by an arbitrary amount.

Let us give a very simple example. Take for Γ a straight line Γ(t) =
(
t
0

)

and insert (somewhat artificially) microscopic bubbles of size ε = M−αρ (cov-
ered in a time O(M−ρ)) at times which are multiples of M−ρ. Then, the
resulting path Γε has a Lévy area of order Mρ · (M−αρ)2 →ρ→∞ ∞, while
Γε → Γ in α−-Hölder norm whenever α− < α since |(Γε(t)−Γε(s))−(Γ(t)−Γ(s))|

|t−s|α− =

O(M−(α−α−)ρ) →ρ→∞ 0. The inverse process of removing microscopic bubbles
of a given path so as to make its Lévy area finite is of course much more haz-
ardous, and looks a little bit like an “inverse Joule expansion” (i.e. like putting
back all the molecules of a gas into the left compartment of a container after
removing the wall which separated it from the right compartment, a statistical
physicist’s nightmare, sometimes called “Maxwell’s devil”).

Summarizing the above discussion, one must search for an interaction
which cures the ultra-violet divergences of the microscopic scale, without mod-
ifying the theory at mesoscopic scale. This is where quantum field theory
comes into play. The interested reader may refer to several excellent trea-
tises on the subject (see, e.g. [36] or [24]). It is impossible to give here a self-
contained introduction to this theory which is one of the main foundations
of the modern physics of both high-energy particles and condensed matter.
Let us, however, explain in an informal way the most essential concepts, and
introduce some useful terminology, in order to fill in the gap between proba-
bility theory and physics. In our case the space-time dimension D is simply
one.

Definition 3.1 (ultra-violet cut-off ). 1. Let M > 1 be a constant, and χ1 :
R

D → R a non-negative, compactly supported function such that χ1 ≡ 0
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in a neighbourhood of 0 and χ1 ≡ 1 in a neighbourhood of the hy-
persquare supj=1,...,D |ξj | = 1. This function may be chosen such that
(χj)j∈Z, with χj := χ1(M−j ·), define a partition of unity, i.e.

∑
j∈Z

χj ≡
1. Let ρ ∈ Z. Then the ultra-violet cut-off at scale ρ of a function f :
R

D → R
d is f→ρ := F−1

(
ξ �→

[∑ρ
j=−∞ χj(ξ)

]
Ff(ξ)

)
, where F is the

Fourier transformation. Roughly speaking, the ultra-violet cut-off cuts
away Fourier components of momentum ξ such that |ξ| > Mρ.

2. Let Cφ(x, y) := Cφ(x − y) be the covariance of a stationary Gaussian
field φ : R

D → R. Then φ has same law as the series of indepen-
dent Gaussian fields

∑
j∈Z

φj , where φj has covariance kernel Cj
φ :=

F−1
(
ξ �→ χj(ξ)FCφ(ξ)

)
. The ultra-violet cut-off at scale ρ of the Gauss-

ian field φ is then φ→ρ :=
∑ρ

j=−∞ φj , with covariance C→ρ
φ :=

∑ρ
j=−∞ Cj

φ.

Note that (at least for a good choice of the function χ1) the Fourier trans-
form of φj is supported on the union of two dyadic slices, M j−1 < |ξ| < M j+1.
The limit j → −∞ describes the infra-red behaviour of the theory, or in
other words, correlations at large distances. In our model however—and this
makes it very different with respect to classical models in statistical physics,
see comments below—only the transition from the microscopic scale ρ to the
mesoscopic scale—or in other words, the ultra-violet behaviour—is non-trivial.

Definition 3.2 (interacting fields). Let φ : R
D → R

d be a vector-valued
Gaussian process on R

D,λ := (λ1, . . . , λq) a set of real parameters, and
P1, . . . , Pq (q ≥ 1) homogeneous polynomials on R

d×(Rd)D. Then the interact-
ing theory with interaction Lagrangian Lint(φ)(x) =

∑q
p=1 λpPp(φ(x);∇φ(x))

is (provided it exists!) the weak limit P(dφ) of the penalized measures

Pλ,V,ρ(dφ) :=
1

Zλ,V,ρ
e− ∫

V
Lint(φ

→ρ)(x)dxdμ→ρ(φ |V ), (3.1)

when the volume |V | and the ultra-violet scale ρ go to infinity, where: V ⊂ R
D

is compact; dμ→ρ(φ |V ) is the Gaussian measure corresponding to the cut-off
field φ→ρ restricted to the finite volume V ; Zλ,V,ρ is a normalization constant
called partition function by reference to Gibbs measures.

In general, φ is stationary, which accounts for the finite volume cut-off V ,
and

∫
V

Lint(φ→ρ)(x)dx diverges when ρ → ∞, which accounts for the ultra-
violet cut-off at scale ρ. The parameters λ1, . . . , λq are called bare coupling
constants. Usually, the inverse of the covariance kernel of φ is a differential
operator of the form C−1

φ = λ∇∇2 +m2, where m is called the mass. (In the
case of our model, C−1

φ contains a fractional derivative operator instead, but
the present discussion remains valid). Formally (forgetting about the cut-offs)
dμ(φ) gives the trajectories a weight proportional to the Onsager–Machlup
functional e− 1

2 ((λ∇∇2+m2)φ,φ), so the parameters λ∇ and m2 play a rôle similar
to the coupling constants λ1, . . . , λq, and the sum of the interaction Lagrangian
and of the Onsager–Machlup functional is called simply the Lagrangian.
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In general also, φ is self-similar (or at least asymptotically self-similar
at short distances), so the term in the Lagrangian Pp(φ(x),∇φ(x))dx has a
certain degree of homogeneity with respect to a change of scale x �→ ax or
equivalently ξ �→ a−1ξ after a Fourier transform, which gives the main behav-
iour at large momenta ξ—or equivalently at short distances—of the corre-
lations (or so-called n-point correlation functions) 〈φi1(x1) · · ·φin

(xn)〉V,ρ :=∫
φi1(x1) · · ·φin

(xn)Pλ,V,ρ(dφ).
Here we take a high-energy physics point of view. Then the bare scale is ρ;

in other words, one uses a cut-off at short distances of order M−ρ →ρ→∞ 0,
and wants to understand the behaviour of the correlations at macroscopic dis-
tances.16 In principle, the theory is hopelessly divergent in the limit ρ → ∞
if this degree of homogeneity is negative (the so-called non-renormalizable
case). On the contrary, expanding the exponential e− ∫

Pp(φ(x),∇φ(x))dx into
a series leads to only a finite number of diverging terms (called diverging
Feynman diagrams) if the degree of homogeneity is positive (the so-called
super-renormalizable case). When this degree of homogeneity is zero (the
so-called just renormalizable case, often the most interesting one in prac-
tice) closer inspection is needed. In all cases, for a large variety of models,
one obtains by iterated integration with respect to highest Fourier scales (i.e.
with respect to the field components φρ, φρ−1, . . . , φj+1) an effective theory
at scale j which may be described in terms of the same Lagrangian but
with so-called renormalized parameters, by opposition to the bare parame-
ters, λp � λj

p or λ∇ � λj
∇,m

2 � (m2)j . One obtains in general a flow for
the parameters, i.e. equations of the type (λj

∇, (m
2)j ; (λj

p), p
′ = 1, . . . , q) :=

F (λj+1
∇ , (m2)j+1; (λj+1

p′ ), p′ = 1, . . . , q). Solving this flow down to small values
of j is then the main task of renormalization. An interesting case is when one
may show that the contribution of the renormalized vertex λpPp(φ,∇φ) goes to
zero at distances which are large with respect to the bare scale; then the theory
is said to be asymptotically free at large distances. The best-known examples
of this behaviour are maybe the weakly avoiding path or the φ4-theory, both
in dimension D = 4; see [9,12,30] for rigorous results.17 Our model is original
for it combines in some sense features of models of both high-energy physics
and statistical physics: namely, the bare scale is O(M−ρ), but the theory is
asymptotically free at large distances. Letting ρ → ∞, the interaction disap-
pears at all finite scalesand hence one retrieves in the end a Gaussian theory,
in which, however, the singular part of the Lévy area has been cancelled.

Perturbative methods are by far the most common in physics, because
they are accessible to non-experts. They rely on an asymptotic analysis of the
quantities obtained by expanding into power series in the coupling constants
the exponential weight e− ∫ Lint(φ)(x)dx. These are conventionally represented

16 In statistical physics, the size of the lattice usually gives an explicit cut-off, so one may
take ρ = 0.
17 On the other hand, in high-energy physics, the main example in this respect is that of
asymptotic freedom at short distances (or equivalently high energy) of quarks [17,34], so
exactly the opposite point of view with respect to the one we adopt here.
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as Feynman graphs (we shall show some of these later on for our model).
Unfortunately, in all interesting cases, the series diverges by and large because
of huge combinatorial factors; hence perturbative theory has only a heuristic
status. Constructive methods, on the other hand (when they work!), are based
on particularly clever finite Taylor expansions, scale after scale, and produce
converging series (but not power series!); in other terms, they are rigorous.
However, the technical apparatus needed to explain constructive field theory
is much more sophisticated.

Let us now return to the discussion of our model after this long paren-
thesis. In order to keep track of the degree of homogeneity of the fields—
and to obtain eventually the expected Hölder regularity indices for iterated
integrals—we need here a just renormalizable theory (or, in other terms, an
integrated interaction which is homogeneous of degree 0). Since (∂A±)2 is
homogeneous of degree (4α − 2) in time, one shall use in fact a non-local
interaction lagrangian, 1

2c
′
α

∫ ∫ |t1 − t2|−4αLint(φ1, φ2)(t1, t2)dt1dt2, where

Lint(φ1, φ2)(t1, t2) = λ2
{
∂A+(t1)∂A+(t2) + ∂A−(t1)∂A−(t2)

}
, (3.2)

which is positive for α < 1/4 since the kernel |t1 − t2|−4α is locally integrable
and positive definite. Thus the Gaussian measure is penalized by the singular

exponential weight e− c′
α
2

∫ ∫ Lint(φ1,φ2)(t1,t2)|t1−t2|−4αdt1dt2 . Equivalently, using
the so-called Hubbard–Stratonovich transformation,18 we introduce two inde-
pendent exchange particle fields σ± = σ±(t) with covariance kernel Cσ±(s, t) =
Cσ±(t−s) = Eσ±(s)σ±(t) = c′α|s−t|−4α and rewrite (letting dμ(φ), resp. dμ(σ)
be the Gaussian measure associated to φ, resp. σ = (σ+, σ−)) the partition
function Z := Z(λ),

Z :=
∫

e− c′
α
2

∫ ∫
R2 |t1−t2|−4αLint(φ1,φ2)(t1,t2)dt1dt2dμ(φ) (3.3)

as

Z :=
∫

e− ∫
R

Lint(φ1,φ2,σ)(t)dtdμ(φ)dμ(σ), (3.4)

where

Lint(φ1, φ2, σ)(t) = iλ
(
∂A+(t)σ+(t) − ∂A−(t)σ−(t)

)
. (3.5)

All of this is ill defined mathematically since (1) σ is a distribution-valued
process and ∂A± is not defined at all when α ≤ 1/4; (2) one integrates over R

a translation-invariant quantity (note that φ1, φ2, σ are all stationary fields).

4. Heuristic Perturbative Proof of Convergence

Let us now explain the basics of perturbative quantum field theory and show
how it suggests (at least heuristically) the assertions of Theorem 0.1. The gen-
eral idea is to expand formally the exponential of the Lagrangian in order

18 Which is nothing else but an infinite-dimensional extension of the Fourier transform

E[eiλX ] = e−σ2λ2/2 for a random variable X ∼ N (0, σ2).
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to compute polynomial moments, 1
Z E

[
ψ1(x1) · · ·ψn(xn)e− ∫ Lint(φ1,φ2,σ)(t)dt

]
,

also called n-point functions and denoted by 〈ψ1(x1) · · ·ψn(xn)〉λ, ψi =
φ1, φ2, σ+ or σ−, as 1

Z

∑
n≥0

(−1)n

n! E [ψ1(x1) · · ·ψn(xn)
(∫ Lint( . ; t)dt

)n]. We
do not bother too much about the volume and ultra-violet cut-off here and
write 〈 · 〉λ instead of 〈 · 〉λ,V,ρ. Recall first the following classical combinatorial
facts. A good reference for perturbative expansions in quantum field theory is,
e.g. [24].

Proposition 4.1. 1. (Wick’s formula) Let X = (X1, . . . , X2n) be a (centred)
Gaussian vector. Then

E[X1 · · ·X2n] =
∑

(i1i2)···(i2n−1i2n)

E[Xi1Xi2 ] · · · E[Xi2n−1Xi2n
], (4.1)

where the indices range over all pairings of the indices 1, . . . , 2n. Each
term in the sum is represented as a graph with 2n points connected two
by two.

2. (connected moments) Let 〈 · 〉 :=
E[ · eΦ(X)]

E[eΦ(X)]
be a penalized measure, where

X = (X1,X2, . . .) is a (centred) Gaussian vector, and Φ(X) is a polyno-
mial in X1,X2, . . .. Then the connected expectation 〈X1 · · ·Xn〉c (c for
connected) is (formally at least) the sum of all connected graphs obtained
by (i) expanding the exponential; (ii) applying Wick’s formula and draw-
ing links between the paired points; (iii) identifying all points coming from
the same vertex, i.e. from the same monomial in Φ(X) descended from
the exponential.

Connected expectations exclude in particular vacuum contributions, i.e.
terms of the form E[eΦ(X)]E[X1 · · ·Xn] = ZE[X1 · · ·Xn]. Discarding these con-
tributions can be shown to provide automatically the normalizing factor 1

Z .
Then usual expectations 〈X1 · · ·Xn〉 are obtained by taking all possible split-
tings of {1, . . . , n} into disjoint subsets I1 � · · · � Ip and summing over the
products of connected expectations

∑
p

∑
I1,...,Ip

〈∏i∈I1
Xi〉c · · · 〈∏i∈Ip

Xi〉c.
In practice the last operation is trivial for two-point functions 〈Xi1Xi2〉 if by
parity (which is often the case in quantum field theory) the one-point functions
〈Xi〉c vanish, so that 〈Xi1Xi2〉 = 〈Xi1Xi2〉c.

Let us return to our model. Using a straightforward extension of the
above Proposition, one may represent 〈ψ1(x1) · · ·ψn(xn)〉λ, ψ = φ or σ as a
sum over Feynman diagrams,

∑
ΓA(Γ), where Γ ranges over a set of diagrams

with n external legs, and A(Γ) ∈ R is the evaluation of the corresponding dia-
gram (see examples below); connected expectations will then be obtained as a
sum over connected Feynman diagrams. More precisely, one obtains formally
a (diverging) power series in λ,

∑
n≥0 λ

n
∑

Γn
A(Γn), where Γn ranges over the

set of Feynman diagrams with n vertices. The Gaussian integration by parts



Vol. 12 (2011) From Constructive Field Theory 1219

Figure 1. Bubble diagram with 2 vertices. By momentum
conservation ξ = ξ1 + ξ2, which leaves out one free internal
momentum

formula19 yields a so-called Schwinger–Dyson identity,

〈∂A±(x)∂A±(y)〉λ = − 1
λ2Z(λ)

E

[
δ

δσ+(y)
δ

δσ+(x)
e− ∫ Lint(φ1,φ2,σ+)(t)dt

]

= − 1
λ2Z(λ)

E

[

(C−1
σ+
σ+)(y)

δ

δσ+(x)
e− ∫ Lint(φ1,φ2,σ+)(t)dt

]

= − 1
λ2

[
−C−1

σ+
(x, y) + 〈(C−1

σ+
σ+)(x)(C−1

σ+
σ+)(y)〉λ

]
, (4.2)

with Fourier transform

〈|F(∂A±)(ξ)|2〉λ =
1
λ2

|ξ|1−4α
[
1 − |ξ|1−4α〈|(Fσ+)(ξ)|2〉λ

]
. (4.3)

By parity, 〈|F(∂A±)(ξ)|2〉λ is a power series in λ2.
Introduce an ultra-violet cut-off at scale ρ as in Definition 3.1. For

the simplicity of the exposition we shall actually use a brute-force ultra-
violet cut-off at momentum Mρ, i.e. cut off all Fourier components with
momentum |ξ| > Mρ. After Fourier transformation,

∫ Lint(·; t)dt becomes
iλ
∫

|ξ1|<|ξ2| dξ1dξ2dξδ0(ξ1 + ξ2 + ξ)Fσ+(ξ)F(∂φ1)(ξ1)Fφ2(ξ2), minus a simi-
lar term involving σ−. The square of this expression contributes the following
term of order O(λ2) to 〈|Fσ+(ξ)|2〉λ,

(−iλ)2
Mρ∫

|ξ1|<|ξ−ξ1|

dξ1
{(

E[|Fσ+(ξ)|2])2 E[|F(∂φ1)(ξ1)|2] E[|Fφ2(ξ − ξ1)|2]
}

= −λ2|ξ|8α−2

Mρ∫

|ξ1|<|ξ−ξ1|

dξ1|ξ1|1−2α|ξ − ξ1|−1−2α

∼ρ→∞ −Kλ2|ξ|8α−2(Mρ)1−4α. (4.4)

This is the evaluation of the Feynman diagram represented in Fig. 1,
according to the following rules:

Definition 4.2 (Feynman rules). A Feynman diagram in our theory is made
up of (1) bold lines of type i = 1, 2, with momenta ξi, ξ

′
i, . . . evaluated as

19 an infinite-dimensional extension of the well-known formula for Gaussian vectors,
E
[
∂Xi

F (X1, . . . , Xn)
]

=
∑

j C−1(i, j)E [XjF (X1, . . . , Xn)] if C is the covariance matrix

of (X1, . . . , Xn).
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E|Fφi(ξi)|2 = 1
|ξi|1+2α ; (2) plain lines of type ±, with momenta ξ, ξ′, . . ., eval-

uated as E|Fσ±(ξ)|2 = 1
|ξ|1−4α ; (3) vertices where two plain lines—one of

each type—and a bold line meet, with a momentum conservation rule, ξ =
±ξ1±ξ2 (depending on the orientation of the lines). The definition of the inter-
action implies the presence of a further derivation—represented by the sym-
bol ∂ on the Feynman diagram—on the φ1-, resp. φ2-field, and a momentum
scale restriction |ξ1| < |ξ2|, resp. |ξ1| > |ξ2|, at vertices involving a σ+-, resp.
σ−-field. The derivation translates into a multiplication by iξ1, resp. iξ2 when
evaluating the diagram.

It is sometimes useful to consider the evaluation of the corresponding
amputated Feynman diagram, from which the contribution of the external legs
has been removed. Here for instance, the evaluation of the amputated Feynman
diagram associated with Fig. 1 is (|ξ|1−4α)2 times the previous expressions
and hence is equivalent to the ξ-independent expression −Kλ2(Mρ)1−4α when
ρ → ∞. It is a diverging negative quantity. (Using the Fourier truncation of
Definition 3.1 only changes the constant K.) However, resumming formally the
bubble series as in Fig. 3 yields, starting from the right-hand side of Eq. (4.3),

1
λ2

|ξ|1−4α

⎡

⎣1 −
∑

n≥0

(−1)n

(
1

|ξ|1−4α
·Kλ2(Mρ)1−4α)

)
⎤

⎦

=
1
λ2

|ξ|1−4α · Kλ2(Mρ/|ξ|)1−4α

1 +Kλ2(Mρ/|ξ|)1−4α

→ρ→∞
1
λ2

|ξ|1−4α. (4.5)

On the other hand (see Fig. 3), the bare σ-covariance 1
|ξ|1−4α has been

replaced with the renormalized covariance

1
|ξ|1−4α

· 1
1 +Kλ2(Mρ/|ξ|)1−4α

=
1

|ξ|1−4α +Kλ2(Mρ)1−4α
, (4.6)

which vanishes in the limit ρ → ∞. The essential reason for this is of course
that the oscillating signs (−1)n in the bubble series evaluation—due to the fact
that the interaction Lagrangian Lint(φ1, φ2, σ) is purely imaginary—result by
summing in a huge, virtually infinite denominator. Taking into account the
possible insertion of σ−-lines between σ+-lines amounts to a simple change of
the constant K. In physical terms, the interaction in 1

|ξ|1−4α has been screened
by a huge mass term Kλ2Mρ(1−4α) →ρ→∞ +∞ (see Sect. 3 for the definition
of the mass). More complicated diagrams contributing to 〈|(Fσ+)(ξ)|2〉λ, and
involving internal σ-lines as in Fig. 2 also vanish when ρ → ∞. Thus there
remains simply

〈|FA±(ξ)|2|〉λ =
1
λ2

|ξ|−1−4α. (4.7)

Hence E|A±(t) − A±(s)|2 � 1
λ2 |t− s|4α, as in Eq. (1.13).
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Figure 2. More complicated bubble diagram with 4 verti-
ces. By momentum conservation ξ = ξ1 + ξ′

2 = ξ′
1 + ξ2 and

ξ1 = ξ′ + ξ2, which leaves out two independent internal
momenta

Figure 3. First three terms of the bubble series. The renor-
malized covariance of the σ-field is equal to the sum of the
series

As for the mixed term 〈∂A±(x)∂A∓(y)〉λ, its Fourier transform is given
by 1

λ2 |ξ|1−4α
[
− 1

1+K′′λ2(Λ/|ξ|)1−4α

]
, where K ′′ < K due to the constraints on

the scales for bubbles of mixed type with one σ+- and one σ−-leg, which van-
ishes in the limit ρ → ∞ (note the disappearance of the factor 1 compared to
Eq. (4.5), due to the fact that Eσ+(x)σ−(y) = 0). Thus the covariance of the
two-component σ-field has been renormalized to 1

|ξ|1−4αId+mρ , where mρ is a
two-by-two positive “mass” matrix with eigenvalues ≈ λ2Mρ(1−4α).

Using Eq. (1.11), one obtains

(2πcα)2〈A(s, t)2〉λ = 〈∣∣A+(t) − A+(s)
∣
∣2〉λ + 〈∣∣A−(t) − A−(s)

∣
∣2〉λ

+E
∣
∣A+

∂ (s, t) − A−
∂ (s, t)

∣
∣2

=
4
λ2

∫
(1 − cos(t− s)ξ)|ξ|−1−4αdξ

+E
∣
∣A+

∂ (s, t) − A−
∂ (s, t)

∣
∣2

=
(

4
λ2
K1 +K2

)

|t− s|4α (4.8)

for some constants K1,K2.
Let us now consider briefly other correlations. For a general discussion

we need the following easy power-counting lemma:

Lemma 4.3 (power-counting rules). Let Γ be a Feynman diagram with Nσ

external σ-lines, Nφ external φ-lines, and N∂φ external ∂φ-lines. Then the
overall degree of homogeneity (in powers of ξ) of the evaluation of the cor-
responding amputated diagram—also called: overall degree of divergence—is
1 − 2αNσ + αNφ + (α− 1)N∂φ.



1222 J. Magnen and J. Unterberger Ann. Henri Poincaré

Figure 4. Higher connected moments of the Lévy area

Proof. Let Iσ, resp. Iφ, be the number of internal lines of type σ, resp. φ or
∂φ; I = Iσ + Iφ be the total number of internal lines and L = I−V +1 be the
number of loops, equal to the number of independent momenta (one per inter-
nal line, minus one per vertex due to momentum conservation, plus one due
to overall momentum conservation). Since one σ- and two φ-lines meet at each
vertex, one also has the relations 2Iσ+Nσ = V , and 2Iφ+Nφ+N∂φ = 2V . Now
the amputated diagram is homogeneous to |ξ|−(1−4α)Iσ−(1+2α)Iφ+L+V −N∂φ

(counting one derivative per vertex, and minus one derivative per external
∂φ-leg which is not taken into account in the evaluation). Putting all these
relations together yields the result. �

If a diagram is overall divergent, i.e. if its overall degree of divergence
is positive, then the diagram diverges (except if by chance the coefficient of
the term of highest degree in ξ vanishes). On the other hand, the fact that a
diagram is overall convergent (i.e. its overall degree of divergence is negative)
does not imply that it is convergent, since it may contain overall divergent
sub-diagrams. One must hence study the behaviour of all possible diagrams,
with arbitrary external leg structure.

The above simple power-counting argument shows that the overall degree
of divergence of a connected diagram with 2n external σ-legs is 1 − 4nα. For
n ≥ 2, this is ≤ 1 − 8α < 0 since α > 1

8 by hypothesis, so such diagrams are
overall convergent. By the above arguments, there remain only the connected
diagrams in the limit Λ → ∞, see Fig. 4, whose evaluation is independent of λ.

General considerations following from the multi-scale expansions (one
may refer to [45] for a good, accessible presentation, or to [40] for an applica-
tion to the Gaussian renormalization of iterated integrals evoked in Sect. 2.3)
show that it is enough to consider the behaviour of diagrams whose internal
legs have higher (or even: much higher) momentum scale than external legs,
the so-called dangerous diagrams. Then the momentum scale constraint on
the vertices coming from Fourier normal ordering implies that the external
legs of dangerous diagrams may be either of type σ or of type ∂φ, but not of
type φ. Consider now any diagram whose external structure contains exter-
nal ∂φ-legs. By parity it has at least two such external legs, and the previous
power-counting rules show that such a diagram is always overall convergent.
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Finally, the law of the field φ is left unchanged by the interaction. Namely,
all non-trivial diagrams contributing, e.g. to 〈φ1(x)φ2(x)〉λ involve internal
σ-lines which (as previously “shown”) vanish in the limit ρ → ∞.

On the whole, this is the content of Theorem 0.1.
The art of constructive field theory is to make the previous speculations

rigorous. It relies on the following considerations, corresponding to the weak
points (not to say flaws!) in the above arguments:

1. While going from Eqs. (4.4) to (4.5), we have replaced the amputated
bubble diagram evaluation by its asymptotics when ρ → ∞, namely,
−Kλ2Mρ(1−4α), which is simply equal to its evaluation at zero external
momentum ξ, also called local part. Thus we have actually not resum-
med the whole bubble series, but only the corresponding local parts, and
observed that this was equivalent to adding a mass term of the form
K ′λ2Mρ(1−4α)

∫ |σ(x)|2dx to the Lagrangian.
2. The bubble series is really a terribly diverging geometric series. Renor-

malization must actually be performed scale by scale. Considering only
bubble diagrams with momentum in the dyadic slice Mρ−1 < |ξ| < Mρ

leads on the other hand to a converging geometric series for λ small

enough since the term between parentheses in Eq. (4.5), Kλ2
(

Mρ

|ξ|
)1−4α

,
is then < 1. This is equivalent to integrating out the highest field compo-
nents (σρ, φρ), as explained in Sect. 3. One obtains thus a running mass
coefficient mρ of order λ2M (1−4α)ρ. The procedure must then be iterated
by going down the scales step by step. Since renormalization reduces the
covariance of the σ-field, the bound on λ ensuring convergence does not
become worse and worse after each step.

3. We neglected more complicated bubble diagrams as in Fig. 2. Although
these have the same order as the simple bubble diagram of Fig. 1, as
follows from the above power-counting rules, taking into consideration
all possible bubble diagrams led to a terribly diverging power series in λ
due to the rapidly increasing number of such diagrams in terms of the
number of vertices, with a coefficient roughly of order n! in front of λn.
This divergence is actually due to the accumulation of vertices in a small
region of space of size O(M−j), where j is the momentum scale under
consideration. Multi-scale cluster expansions in constructive field theory,
by considering only partial series expansions, avoid this dangerous accu-
mulation process.

4. By splitting each vertex
∫ L→ρ

int (·;x)dx into its different scales, there may
appear fields φj1

1 , φ
j2
2 , σ

j with different scales j1 �= j2 �= j. Taking this into
account in a coherent way in the previous partial series expansions led
to complicated combinatorial expressions encoded by so-called polymers,
which are the main object in use in constructive field theory.

5. In the previous vertex splitting, the field with lowest momentum scale
(j1, j2 or j, depending on the case) is called low-momentum field. Even
though the cluster expansion in each momentum scale prevents an accu-
mulation of vertices in the same region of space, the compound effect of
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all cluster expansions at all scales produces unavoidably accumulations
of fields with very low momentum in very large regions of space, which
is a dangerous problem called domination problem. This accounts for the
addition of the extra boundary term L→ρ

bdry in the interaction Lagrangian.
Writing out this term and explaining its precise form would, however,
take us too far away.
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