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Abstract. Long-time and large-data existence of weak solutions for initial- and boundary-value problems concerning three-
dimensional flows of incompressible fluids is nowadays available not only for Navier–Stokes fluids but also for various fluid
models where the relation between the Cauchy stress tensor and the symmetric part of the velocity gradient is nonlinear.
The majority of such studies however concerns models where such a dependence is explicit (the stress is a function of the
velocity gradient), which makes the class of studied models unduly restrictive. The same concerns boundary conditions, or
more precisely the slipping mechanisms on the boundary, where the no-slip is still the most preferred condition considered
in the literature. Our main objective is to develop a robust mathematical theory for unsteady internal flows of implicitly
constituted incompressible fluids with implicit relations between the tangential projections of the velocity and the normal
traction on the boundary. The theory covers numerous rheological models used in chemistry, biorheology, polymer and food
industry as well as in geomechanics. It also includes, as special cases, nonlinear slip as well as stick–slip boundary conditions.
Unlike earlier studies, the conditions characterizing admissible classes of constitutive equations are expressed by means of
tools of elementary calculus. In addition, a fully constructive proof (approximation scheme) is incorporated. Finally, we
focus on the question of uniqueness of such weak solutions.
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1. Dedication

This article is written as a contribution to the celebration of the 100th anniversary of the birth of Olga
Aleksandrovna Ladyzhenskaya (March 7, 1922–January 12, 2004) and to honor her scientific achievements.

Olga Ladyzhenskya seems to have been the first to initiate interest in the mathematical community
to study incompressible fluid models that go beyond the Navier–Stokes equations. At the International
Congress of Mathematicians in Moscow 1966, she presented arguments (see [73] and [75]), based on the
kinetic formulation1, indicating that the macroscopic relation between the stress and the symmetric part
of the velocity gradient should be polynomial. Ladyzhenskaya’s model belongs to the class of power-
law fluid models (sometimes also called modified or generalized Navier–Stokes fluids) characterized by
a power-law index r, where the value r = 2 corresponds to the Navier–Stokes fluid. Ladyzhenskaya was
interested in the rigorous analysis of models with r > 2: she has found that for those with r ≥ 5

2 one
could prove that the weak solution corresponding to the relevant initial- and boundary-value problem (in
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This article is part of the Topical collection Ladyzhenskaya Centennial Anniversary edited by Gregory Seregin, Konstantinas
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1The authors would be thankful for precise reference or notes confirming this.
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the sense of Leray and Hopf [64,78]) not only exists for long-time and large-data but it is unique. This
uniqueness result should be contrasted with her counterexample to uniqueness of a weak solution of the
Navier–Stokes equations in special time-dependent domains, see [74]. She also addressed, particularly in
her subsequent studies, other aspects of weak solutions of these equations such as higher temporal and
spatial differentiability and long-time behavior (the existence of a global attractor and estimates of its
dimension).

Rajagopal together with the second author of this study reviewed Olga Ladyzhenskaya’s foundational
results concerning the analysis of modified Navier–Stokes equations2, achieved during the period 1967–
2003, in the second part of their handbook article [86]. One of the objectives of this study is to provide a
brief review of the results obtained in the mathematical analysis of fluids with nonlinear algebraic relation
between the Cauchy stress and the velocity gradient achieved after 2003. The main objective is however
to present a novel existence theory.

2. Formulation of the Problem and of the Main Result

Materials are incompressible if the volume of any measurable subpart of the body remains unchanged
during a deformation process. For fluids flowing in a d-dimensional domain3 Ω, the condition of incom-
pressibility expressed in the terms of the velocity v = (v1, . . . , vd) takes the form

div v(t,x) = 0 for all t ≥ 0 and x ∈ Ω. (2.1)

Incompressibility, which should be considered as a useful idealization, implies that the Cauchy stress
tensor T is of the form

T = −pI + S, (2.2)

where only the part S can be determined experimentally. Homogeneous incompressible fluids are charac-
terized as incompressible fluids in which the density remains unchanged and is equal to a positive constant
ρ∗. Such fluids automatically fulfil the balance of mass equation.

To conclude, setting Q = (0, T ) × Ω and Γ = (0, T ) × ∂Ω with T > 0, the governing equations for
unsteady flows of any homogeneous incompressible fluid flowing in a fixed domain Ω with no outflows
and inflows and with initial velocity v0 take the form

div v = 0 in Q,

ρ∗(∂tv + div(v ⊗ v)) = − ∇p + div S + ρ∗b in Q,

S = ST in Q,

v · n = 0 on Γ,

v(0, ·) = v0 in Ω.

(2.3)

Here b stands for the density of external body forces. The second equation in (2.3) comes from the
balance of linear momentum once (2.2) is incorporated. The third equation says that the tensor S is
symmetric; this implies that the balance of angular momentum is fulfilled. The fourth equation states
that all considered flows are internal : the fluid cannot enter or leave Ω.

The system (2.3) is incomplete as, in Q, we have d + 1 + d(d + 1)/2 unknowns v, p and S, but merely
d + 1 equations. Also on Γ, we only have one scalar equation, but in fact d boundary conditions are
expected.

Taking the scalar product of the second equation in (2.3) and v, integrating the result over Ω and
using the remaining equations in (2.3), one obtains, after the integration over (0, t) for any t ∈ (0, T ], the
energy identity in the form (see [83, Sect. 4.6] for details)

2See also chapters in the book by J.-L. Lions [79].
3Throughout the whole study, the term domain stands for an open bounded connected set in R

d.
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ρ∗
2

‖v(t)‖2
2 +

∫ t

0

∫
Ω

S : Dv dx dτ +
∫ t

0

∫
∂Ω

s · vτ dS dτ =
∫ t

0

∫
Ω

ρ∗b · v dx dτ +
ρ∗
2

‖v0‖2
2, (2.4)

where Dv := ((∇v)+(∇v)T )/2 and s stands for the projection of the normal traction Tn to the tangent
plane, i.e.,

s := −(Tn)τ , where zτ := z − (z · n)n,

n : ∂Ω → R
d being the outer normal to ∂Ω. Note that (Tn)τ = (Sn)τ .

The second and third terms on the left-hand side of (2.4) represent two independent dissipation
mechanisms: the former is associated with the internal friction inside the fluid, the latter corresponds
to the interaction of the flowing fluid with (the inner part of) the boundary. Both terms should be, in
accordance with the second law of thermodynamics, non-negative. For the Euler fluid, when S = 0 and
also s = 0, both terms vanish. The first term will also vanish if all admissible flows are rigid (i.e. Dv = 0),
while the second term is equal to zero if all considered flows are subject to the no slip boundary condition,
i.e. vτ = 0 on Γ. For the Navier–Stokes fluid characterized by the constitutive equation

S = 2ν∗Dv, where ν∗ > 0, (2.5)

we conclude that4 ∫
Ω

S : Dv dx = ν∗
∫

Ω

|Dv|2 dx +
1

4ν∗

∫
Ω

|S|2 dx. (2.8)

This in conjuction with the energy identity (2.4) guarantees control of ∇v in L2(Q), which happens to be
a key piece of information to establish long-time existence of a weak solution for any domain Ω, T > 0,
ν∗ > 0, b ∈ L2(Q) and v0 ∈ L2(Ω). This is what Leray and Hopf proved, see [78] and [64].

The above constitutive equations (2.5) and (2.6) are linear. There are however many fluids (as is also
illustrated in more detail in the next section) exhibiting nonlinear relationship between S and Dv. The
same concerns slipping boundary conditions. Following Rajagopal [101–103], it is tempting to include all
these equations under the umbrella of implicit equations relating S and Dv on the one hand and s and
vτ on the other hand. Hence, as nonlinear generalizations of (2.5) and (2.6), we add to the problem (2.3)
the following equations

G(S,Dv) = 0 in Q, (2.9)

g(s,vτ ) = 0 on Γ, (2.10)

where G : Rd×d × R
d×d → R

d×d and g : Rd × R
d → R

d are given continuous functions. Adding (2.9) to
the first three equations in (2.3) we obtain a closed system of partial differential equations consisting of
d + 1 + d(d + 1)/2 equations for d + 1 + d(d + 1)/2 unknowns v, p and S. Adding (2.10) to the fourth
equation in (2.3) we get d equations on the boundary: one in the normal direction and (d − 1) of them
are formulated at the tangent plane to ∂Ω. Stated differently, the problem (2.3) together with (2.9) and
(2.10) is well-formulated. Motivated by Leray–Hopf’s theory for the Navier–Stokes equations, it is natural
to ask:

Can we formulate conditions on G and g that would allow us to establish the long-
time and large-data existence of a weak solution for (2.3), (2.9) and (2.10)? If so,
can these conditions be formulated in terms of the tools of elementary calculus so
that they are accessible to a broad scientific community?

4Analogously, for Navier’s slip boundary condition

s = γ∗vτ , where γ∗ > 0, (2.6)
we conclude that ∫

∂Ω
s · vτ dS =

γ∗
2

∫
∂Ω

|vτ |2 dS +
1

2γ∗

∫
∂Ω

|s|2 dS. (2.7)
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This study provides positive answers to these questions. Before formulating the main result, we give the
admissibility conditions on G and g. Here, we closely follow our preceding study [21] focused however on
a simpler problem (a “mixed” formulation for problems of parabolic type).

Regarding the tensorial function G which determines the material response inside the domain Q, we
assume that
(G1) G is Lipschitz continuous, i.e. G ∈ C0,1(Rd×d × R

d×d)d×d and G(0, 0) = 0;
(G2) for almost all (S,D) ∈ R

d×d × R
d×d:

∂G(S,D)
∂S

≥ 0,
∂G(S,D)

∂D
≤ 0,

∂G(S,D)
∂S

− ∂G(S,D)
∂D

> 0,

and
∂G(S,D)

∂D

(
∂G(S,D)

∂S

)T

≤ 0;

(G3) one of the following holds:

either ∀D ∈ R
d×d lim inf

|S |→+∞
G(S,D) : S > 0

or ∀S ∈ R
d×d lim sup

|D |→+∞
G(S,D) : D < 0;

(G4) there exist C1, C2 > 0 such that for all (S,D) ∈ R
d×d × R

d×d fulfilling G(S,D) = 0 we have

S : D ≥ C1(|S|r′
+ |D|r) − C2, r′ := r/(r − 1).

In (G2), we used the following notation for (G)ij = Gij and (S)ij = Sij :(
∂G

∂S

)ij

kl

=
∂Gij

∂Skl
.

Further, AT denotes the transpose tensor to A, i.e. (AT )ij
kl = Akl

ij and ABT is the standard tensor
multiplication, i.e. (ABT )ij

kl =
∑d

m,n=1 Aij
mnBkl

mn. Also, for any tensor A ∈ R
d×d × R

d×d, the expression
A ≥ 0 means that for any X ∈ R

d×d there holds

AX : X ≥ 0 (which, written in terms of components, is
d∑

i,j,k,l=1

Aij
klXijXkl ≥ 0).

In addition, if we write A > 0 then we mean that the above inequality is strict for all X 
= 0.
Before formulating similar conditions on g, some comments are in order. First, note that the con-

stitutive equation G(S,Dv) = 0 can be replaced by −G(S,Dv) = 0. Then all inequalities in (G2)
and (G3) have the opposite signs except the last inequality in (G2). This ambiguity could be fixed for
example by requiring that G is such that the first condition in (G2) holds (compare it with the special
case of the Navier–Stokes fluids, see (2.5), when one would consider G(S,Dv) = S − 2ν∗Dv and not
G(S,Dv) = 2ν∗Dv − S). Second, as the null points of G are of our interest, we can require the validity
of (G2) only in the neighbourhood G(S,Dv) = 0. Also, the Lipschitz continuity in (G1) is required only
to guarantee the existence of the partial derivatives in (G2) almost everywhere. Alternatively, one can
assume merely the continuity of G in (G1) and substitute (G2) by

(S1 − S2) : (D1 − D2) ≥ 0 for all (Si,Di) such that G(Si,Di) = 0, i = 1, 2. (G2∗)

See also the statement of Lemma 4.2 below. Finally, the conditions (G1)–(G4) are formulated using
elementary tools of calculus (limes superior, partial derivatives). As proved in [21], these conditions are
almost equivalent to the statement that the set of null points of G is a maximal monotone r-coercive
graph that passes through the origin, see [21, Definition 3.1 and Lemma 3.2] for details.

Regarding the vectorial function g which determines the relation between the shear stress s and the
tangential velocity vτ on the boundary, we assume (in a similar way as above) that
(g1) g ∈ C0,1(Rd × R

d)d, and g(0, 0) = 0;
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(g2) for almost all (s,v) ∈ R
d × R

d:

∂g(s,v)
∂s

≥ 0,
∂g(s,v)

∂v
≤ 0,

∂g(s,v)
∂s

− ∂g(s,v)
∂v

> 0,

and
∂g(s,v)

∂v

(
∂g(s,v)

∂s

)T

≤ 0;

(g3) one of the following conditions holds:

either ∀v ∈ R
d lim inf

|s|→+∞
g(s,v) · s > 0 or ∀s ∈ R

d lim sup
|v |→+∞

g(s,v) · v < 0;

(g4) there exist c1, c2 > 0 such that, for all (s,v) ∈ R
d ×R

d fulfilling g(s,v) = 0, the following condition
holds:

s · v ≥ c1(|s|q′
+ |v|q) − c2, q′ := q/(q − 1).

The above comments related to G are applicable to g as well.
Now, we are ready to formulate our main result (in a vague way):

For arbitrary Ω, T , v0 and b, and for any G and g fulfilling (G1)–(G4) with r > 2d
d+2

and (g1)–(g4) with q > 1, there exists a weak solution to the problem (2.3), (2.9)
and (2.10).

Overview of the existence theory for G(S,Dv) = 0 after 2003. We restrict our discussion to the most
interesting case d = 3. In the first period, prior 2011, the focus of research were models of the type
S = (1 + |Dv|2) r−2

2 Dv following the goal to establish global-in-time existence theory for large data for
models with low values of r. (Note that the local-in-time existence of smooth solutions to models of power-
law type is addressed in [9].) Let us recall that the problems studied by Olga Ladyzhenskaya concerned
the subcritical regime when the velocity itself is an admissible test function in the weak formulation of
the balance of linear momentum. This corresponds to the case when r ≥ 11

5 . The method of Lipschitz
truncation developed in [53] (see also [44]) for time-independent (stationary) problems covers the case
r > 6

5 but was left open for the evolutionary case. For the evolutionary case, the “best” result known
around the year 2005, see [52], covered the case r ≥ 8

5 using the L∞-truncation technique; the approach is
restricted to the spatially periodic problem. The extension for flows in general bounded domains subject
to Navier’s slip boundary was established in [22], while the no-slip boundary conditions were successfully
treated in [120], still for r ≥ 8

5 . Finally, Diening, Růžička and Wolf, see [45], inspired by the works of
Kinnunen and Lewis [70], extended the method of Lipschitz truncation to the evolutionary case and
proved the existence of a weak solution to the evolutionary problem with no-slip boundary condition for
r > 6

5 . The remaining case r ∈ [1, 2d
d+2 ] is covered by two somehow contradictory recent results, see [2]

and [27], which can be interpreted in the way that the range of possible r’s in Theorem 5.1 is optimal.
In fact, Abbatiello and Feireisl [2] introduce a novel generalized concept of solution (dissipative solution)
and establish its existence theory for r ∈ (1, 2d

d+2 ]. The theory is developed for a smaller class of possible
constitutive relations than considered here. More importantly, their concept of solution does not imply
either the validity of weak formulation of balance of linear momentum (see (5.5) in Sect. 5) or the validity
of G(S,Dv) = 0 almost everywhere in Q. On the other hand, in [27], Burczak, Modena and Székelyhidi
show the non-uniqueness of even Leray–Hopf solutions for r < 2d

d+2 . From this perspective, it seems also
to be reasonable to consider only the case r ≥ 2d

d+2 . Note that even for this range of r’s Burczak et al.
[27] prove the result concerning non-uniqueness of a very weak5 solution. As we are dealing with weak
solutions, their result is not applicable to our setting.

Inspired by the foundational works on implicit constitutive relations, see [101,102], the question to
develop a robust theory covering the whole class of implicitly constituted incompressible fluids arose.

5Very weak solutions are those that do not belong to the natural energy function space.
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Following initial attempts (see [13,82]), a successful theory covering both polynomial and activated fluids
was established in [12,14], even in a broader context than considered here: the r-coercivity condition is
generalized in terms of Young’s functions in the setting of Orlicz spaces and the constitutive equation
(2.9) was allowed to vary with time and space, i.e. G(t,x,S,Dv) = 0 in Q. As discussed in length in [21,
pp 2048–2049], there are two shortcomings of the results proved in [12,14] (a non-constructive proof and
an a priori assumption concerning the existence of a Borel measurable selection). These shortcomings
motivated the development of an alternative approach, see [21]. The extension of the approach developed
in [21] for problems of parabolic type to problems involving flows of incompressible fluids is one of the
main objections of this study.

Note that the assumption (g4) eliminates no-slip and perfect-slip boundary conditions from the anal-
ysis presented here. However, as indicated in the above discussion of available results one can incorporate
both conditions into the analysis. The case of s = 0 on Γ is in fact easy as the boundary term just van-
ishes. For no-slip boundary conditions, one needs to change the function space for the velocity and pay
attention to differences associated with the reconstruction of the pressure (see [120] and [8] for details).

Numerical analysis of finite-element based discretizations of problems of the type (2.3), (2.9) and
(2.10), completed with computational experiments, is addressed in [43,47,48,61,72,113].

Structure of the paper. In Sect. 3, we illustrate how rich the classes of fluids under consideration are by
providing a list of models used in various areas of science (completed by a list of references). In Sect. 4, we
introduce, in a constructive way, ε-approximations of the constitutive equations and provide a summary
of their properties (proved in [21]). In particular, at this approximate level the term −div S leads to
Lipschitz continuous uniformly monotone elliptic operator (the nicest nonlinear operator one can wish to
deal with). After introducing basic function spaces in Sect. 5 we give a precise formulation of the main
theorem including also the precise definition of weak solution to (2.3), (2.9) and (2.10). Here we also recall
properties of the Lipschitz approximations of Bochner functions needed in the proof of the main theorem.
This forms the content of Sect. 6. As this article aims at surveying the results in the field, we give, in
Sect. 7, a summary of the results that concern similar problems including an additional component that
makes the whole problem more complicated. Finally, we comment on the available uniqueness results
regarding the studied problem in Sect. 8.

3. Examples of Implicit Constitutive Equations

The purpose of this section is to provide an illustrative list of models and boundary conditions covered
by the implicit equations (2.9) and (2.10). The aim is to show that these classes of fluids and boundary
conditions are rich and particular models appear in various areas of science and engineering. We first
focus on the constitutive equations in the bulk, then we discuss the boundary conditions.

Constitutive equations covered by (2.9). The fact that various fluids exhibit a nonlinear rheological
relation between the shear stress and the shear rate was known already at the end of the 19th century,
see Schwedoff [108], Troutan [115] and further references in books on non-Newtonian fluids, such as
Bird, Amstrong, Hassager [6], Huilgol [65], Schowalter [107], or in the survey paper [87]. There are
hundreds of models belonging to this framework used in chemistry, biofluid rheology, geomechanics, food
industry, etc. A discussion of various aspects of these models can be found in [87], with references to
the chemical engineering and colloidal mechanics literature ([28,35,99,106,114,116]), ice-mechanics and
glaciology ([71,91,119]), blood rheology ([29,30,33,34,37,40,41,55,94,99,100,111,118,122] and [49]).

These models fit to the setting characterized by the form

T = −pI + S, where α(|S|2, |Dv|2)S = 2ν(|S|2, |Dv|2)Dv. (3.1)

As the fluid is incompressible, and consequently the trace of Dv vanishes, one observes that within the
class (3.1) one has p = − 1

3 tr T .
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Table 1. Frequently used models in material sciences, chemical engineering, biomechanics and geophysics. Here ν0, ν∞,
m, a and A are positive constants, while n and τ0 are real numbers. The models are taken from [85, Section 4.5]

Model ν(|Dv |2) ν(|S |2)

Ostwald-de Waele [96,117] ν0|Dv |m−1

Glen [56] A|S |m−1

Carreau [28] ν∞ + ν0−ν∞
(1+A|Dv|2)n/2

Blatter [7,98] A
(|S |2+τ2

0 )(n−1)/2

Carreau-Yasuda [121] ν∞ + ν0−ν∞
(1+A|Dv|a)n/a

Eyring [46] ν∞ + (ν0 − ν∞) arcsinh(A|Dv|)
A|Dv|

Sisko [110] ν∞ + A|Dv |n−1

Cross [40] ν∞ + ν0−ν∞
1+A|Dv |n

Ellis [90] ν0
1+A|S |n−1

Seely [109] ν∞ + (ν0 − ν∞)e−|S |/τ2
0

In Table 1, we distinguish two special subclasses of (3.1), namely S = 2ν(|Dv|2)Dv and S =
2ν(|S|2)Dv. The simplest deviation from the Navier–Stokes fluid model represents the power-law model
that can be described in two equivalent ways as follows:

S = 2ν0|Dv|r−2Dv ⇐⇒ Dv =
1

(2ν0)
1

r−1
|S| 2−r

r−1 S, (3.2)

where r ∈ (1,∞) and ν0 > 0. Referring to Table 1, we thus observe that the same model is called Ostwald-
de Waele’s model in chemistry, while it is named Glen’s model in geomechanics. Denoting r′ := r/(r − 1)
we also have

S : Dv =
(

1
r

+
1
r′

)
S : Dv =

2ν0

r
|Dv|r +

r − 1

r(2ν0)
1

r−1
|S|r′

, (3.3)

which reduces to (2.8) if r = 2. It also serves as the main motivation for the (r, r′)-coercivity assumption
(G4). All the models listed in Table 1 describe, for suitable range of parameters, a non-Newtonian
phenomenon called shear thinning/shear thickening (the generalized viscosity is decreasing/increasing
function of the shear rate).

The constitutive equations of the form (2.9) are also suitable to describe fluids with the activation
criteria. Bingham and Herschel–Bulkey fluids [5,62] can be written in the form

Dv =
1

2ν(|Dv|2)
(|S| − τ∗)+

|S| S, τ∗ ∈ (0,∞), (3.4)

where ν is a positive constant in the case of Bingham fluids and is a polynomial function of Dv in the
case of Herschel–Bulkley fluids. It is proved in [21, Appendix, Example A.3] that Bingham fluids satisfy
(G1)–(G4) with r = 2. Following the same lines of argument, one can check that Herschel–Bulkley fluids
with v(|Dv|2) = (1 + |Dv|2) r−2

2 also satisfy (G1)–(G4).
Activated Euler fluids, see [8], are described by the formula

S = 2ν(|Dv|2) (|Dv| − δ∗)+

|Dv| Dv, δ∗ ∈ (0,∞). (3.5)

If ν is a positive constant, then the fluid behaves as the Navier–Stokes fluid once |Dv| exceeds the
activation parameter δ∗. It is straightforward to check that these models fulfil (G1)–(G4). (A large-data
analysis of activated Euler fluids, for steady and unsteady flows and for various boundary conditions
including complete slip as well as no-slip is developed in [8].)

The examples discussed above are summed up in the following Table 2, where for brevity we set all
physical constants to be 1, except the exponent r related to the (r, r′)-coercivity condition (G4). If r does
not appear in the equation, then the model leads to (G4) with r = 2.
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Table 2. Examples of two classes of explicit constitutive relations covered by (2.9). The first two lines describe the
Navier–Stokes and the power-law fluids with the power-law index r ∈ (1, ∞), r′ := r/(r − 1). In these rows, the formulas
in the two columns are equivalent, see (3.2). The formulas in the third and fourth row hold for r ∈ (−∞, ∞); in the range

r > 1 the models in the left and right columns behave in the same way for large values of |Dv | and |S |; for r ≥ 1 and
r′ ≥ 1 these formulas satisfy (G2) or (G2*), i.e. the response is monotone. For r < 1 and for r′ < 1 the formulas in the

left and right column behave differently; their response is non-monotone, see [66,77,84,97] for details. The last row
describes an activated Euler fluid (left) and a Bingham fluid (right); after the activation takes place, both fluids behave as

a Navier–Stokes fluid

S = S∗(Dv) Dv = D∗(S )

S = Dv Dv = S

S = |Dv |r−2Dv Dv = |S |r′−2S

S = (1 + |Dv |)r−2Dv Dv = (1 + |S |)r′−2S

S = (1 + |Dv |2)
r−2
2 Dv Dv = (1 + |S |2)

r′−2
2 S

S = (|Dv | − δ∗)+ Dv
|Dv| δ∗ > 0 Dv = (|S | − τ∗)+ S

|S | τ∗ > 0

Table 3. Examples of two classes of boundary conditions belonging to (2.10). The first line describes Navier’s slip. The
second, third and fourth rows describe nonlinear slip of polynomial type with the power-law index q ∈ (1, ∞),

q′ := q/(q − 1). The last row describes the stick–slip boundary condition (right column) and the boundary condition that
describes the complete slip before activation and Navier’s slip once the activation takes place (left column)

s = s∗(vτ ) vτ = d∗(s)

s = vτ vτ = s

s = |vτ |q−2vτ vτ = |s|q′−2s

s = (1 + |vτ |)q−2vτ vτ = (1 + |s|)q′−2s

s = (1 + |vτ |2)
r−2
2 vτ vτ = (1 + |s|2)

q′−2
2 s

s = (|vτ | − β∗)+ vτ
|vτ | β∗ > 0 vτ = (|s| − σ∗)+ s

|s | σ∗ > 0

In conclusion, constitutive equation (2.9) covers models designed to describe two non-Newtonian
phenomena: shear thinning/shear thickening and the presence of activation criteria in a simple shear
flow. (A detailed description of non-Newtonian phenomena is given for example in [86].) Interestingly,
(2.9) covers one additional phenomenon, called normal stress differences, which is usually attributed to
viscoelastic nature of the fluid; see Perlácová and Pr̊uša [97] for more details.

Constitutive equations (boundary conditions) covered by (2.10). The boundary equations are of the same
importance as the constitutive equations in the bulk. This assertion can be supported by a recent study
[31], where flows are shown to change quantitatively in an essential manner in dependence of the boundary
conditions (only linear Navier’s slip boundary conditions were tested with their limiting cases (no slip vs
complete slip).

Navier proposed a linear constitutive relation (2.5) as the proper boundary condition in [95]. Stokes
[112] discusses the boundary conditions at length and one variant that he considers concerns a nearly
quadratic relation between wall shear stress and the velocity. He states: “. . . when the velocity is not small
the tangential force called into action by the sliding of water over the inner surface of the pipe varies nearly
as the square of the velocity”. Mooney [93] proposed a more general form of slip and introduced a technique
that evaluates this relationship. Comprehensive overviews concerning general boundary conditions and
slipping mechanisms can be found for example in [58] or [105]. More detailed discussions concerning the
boundary conditions, their importance, including references to earlier studies are available in [86, A.4]
and [85, Sect. 4.6]. An overview of basic models of the type (2.10) is given in Table 3.

Measurements for molten polymers clearly document that there are nonlinear responses between s
and vτ including various activations. For example, Hatzikiriakos in [58] considers models of power-law
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type, i.e.,

vτ = γ|s|q′−2s, (3.6)

referring to [104] for the value q′ = 3, to [59] for q′ = 4 and to [63,67] for q′ = 7. Nonlinear responses
(3.6) include the material parameter γ that can be a function of other relevant quantities. Besides [58],
models of the type (3.6) were studied also in [32,36,60,76].

Stick–slip boundary conditions were added to large-data and long-time existence analysis in [18,19].
A treatment of complex nonlinear (non-monotone) boundary conditions of stick–slip type is presented
within the context of analysis of Kolmogorov’s two-equation model of turbulence in [20]. How the choice
of boundary conditions influences the definition of proper function spaces and the subsequent analysis is
studied for different boundary conditions within the context of activated Euler’s fluids in [8].

4. ε-approximations of Implicit Constitutive Equations

In our preceding study [21], while studying problems of parabolic type (think of a nonlinear heat equation),
we found the structural assumptions on the implicit function that characterizes the relation between the
(heat) flux and the (temperature) gradient which allows us to built a theory parallel (“equivalent” - in
the sense specified in [21]) to that of the maximal monotone r-coercive (potentially multi-valued) graphs.
Here, we intentionally prefer to avoid using the concept of maximal monotone graphs and we wish to
present a theory based only on the assumptions on G and g that require only the knowledge of basic
tools of calculus.

The intention of this section is to introduce ε-approximations of the functions G and g and summarize
their nice properties: the approximations always lead to L2-coercivity of S and Dv (and similarly for s
and vτ ), on the ε-approximation level, S is always a function of Dv and upon inserting it into −div S one
obtains a Lipschitz continuous uniformly monotone operator. Also here, we follow closely the approach
developed in Sect. 4 in [21].

Lemma 4.1. Let G satisfy (G1)–(G4) for any r > 1, let g satisfy (g1)–(g4) for any q > 1 and let ε ∈ (0, 1).
Then the approximating functions defined by

Gε(S,D) := G(S − εD,D − εS), (4.1a)

gε(s,v) := g(s − εv,v − εs) (4.1b)

satisfy (G1)–(G4) and (g1)–(g4) with r = q = 2. Also, there exist C̃1, C̃2, c̃1, c̃2 > 0 independent of ε such
that

Gε(Sε,Dε) = 0 =⇒ Sε : Dε ≥ C̃1(|Sε|min{2,r′} + |Dε|min{2,r}) − C̃2, (4.2a)

gε(s
ε,vε) = 0 =⇒ sε · vε ≥ c̃1(|sε|min{2,q′} + |vε|min{2,q}) − c̃2. (4.2b)

Moreover, there exist two unique functions (single-valued mappings)

S∗
ε : Rd×d → R

d×d and s∗
ε : Rd → R

d (4.3)

satisfying

Gε(S,D) = 0 ⇐⇒ S = S∗
ε (D), gε(s,v) = 0 ⇐⇒ s = s∗

ε(v), S∗
ε (0) = 0, s∗

ε(0) = 0,

and both S∗
ε , s∗

ε are Lipschitz continuous and uniformly monotone, i.e. there exist positive constants
C1(ε), C2(ε), c1(ε), c2(ε) > 0 such that, for any D1,D2 ∈ R

d×d and any v1,v2 ∈ R
d,

|S∗
ε (D1) − S∗

ε (D2)| ≤ C1(ε)|D1 − D2|, (4.4a)

(S∗
ε (D1) − S∗

ε (D2)) : (D1 − D2) ≥ C2(ε)|D1 − D2|2, (4.4b)

|s∗
ε(v1) − s∗

ε(v2)| ≤ c1(ε)|v1 − v2|, (4.4c)

(s∗
ε(v1) − s∗

ε(v2)) · (v1 − v2) ≥ c2(ε)|v1 − v2|2. (4.4d)
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If, in addition, for any bounded measurable U ⊂ Q and for Sε,Dε : U → R
d×d

Gε(Sε,Dε) = 0 a.e. in U and lim sup
ε→0+

∫
U

Sε : Dε dx dt ≤ C (4.5)

then there exist S ∈ Lr′
(U) and D ∈ Lr(U) so that (for subsequences)

Sε ⇀ S weakly in Lmin{2,r′}(U)

Dε ⇀ D weakly in Lmin{2,r}(U).

Moreover, if

lim sup
ε→0+

∫
U

Sε : Dε dx dt ≤
∫

U

S : D dx dt, (4.6)

then

G(S,D) = 0 a.e. in U and Sε : Dε ⇀ S : D weakly in L1(U).

Analogously, if for a bounded and measurable V ⊂ Γ and for sε,vε : V → R
d

gε(s
ε,vε) = 0 a.e. in V and lim sup

ε→0+

∫
V

sε · vε dS dt ≤ C, (4.7)

then there exist s ∈ Lq′
(V ) and v ∈ Lq(V ) so that (for subsequences)

sε ⇀ s weakly in Lmin{2,q′}(V ),

vε ⇀ v weakly in Lmin{2,q}(V );

moreover, if

lim sup
ε→0+

∫
V

sε · vε dS dt ≤
∫

V

s · v dS dt, (4.8)

then

g(s,v) = 0 a.e. in V and sε · vε ⇀ s · v weakly in L1(V ).

Proof. See [21, Lemma 4.1, Lemma 4.2 and Lemma 4.4]. �

Lemma 4.2. Let G satisfy (G1)–(G4) with r ∈ (1,∞). For every D ∈ Lr(Q) there exists an S ∈ Lr′
(Q)

such that G(S,D) = 0 a.e. in Q. Moreover, (G2∗) holds.

Proof. See [21, Lemma 4.5 and Lemma 4.3]. Property (G2∗) follows from the fact that the null points of
G generate a maximal monotone graph, see [21, Lemma 3.2]. �

5. Notation, Function Spaces and Precise Formulation of the Main Result

Notation. Let Ω ⊂ R
d be a domain. We say that Ω is a Lipschitz domain/C1,1-domain and we write

Ω ∈ C0,1/Ω ∈ C1,1 if, roughly speaking, the boundary ∂Ω can be covered by finite number of overlapping
C0,1/C1,1 mappings. For t ∈ (0, T ], we denote Qt := [0, t) × Ω and Γt := [0, t) × Γ, and we recall that
Q := QT and Γ := ΓT . The abbreviation a.a. stands for almost all, while a.e. stands for almost everywhere.
Generic constants, that depend only on the data but are independent of any approximation parameter,
are denoted by C and may vary from line to line.

For a Banach space (X, ‖·‖X), its dual is denoted by X∗. For x ∈ X and x∗ ∈ X∗, the duality is
denoted by 〈x∗, x〉X . For r ∈ [1,∞], we denote (Lr(Ω), ‖·‖r) and (W 1,r(Ω), ‖·‖W 1,r(Ω)) the corresponding
Lebesgue and Sobolev spaces with the norms defined in the standard way. Bochner spaces are denoted
by Lr(0, T ;X). We use the notation Lr(Ω;Rd) and Lr(Ω;Rd×d) for Lebesgue spaces of vector- or matrix-
valued functions, respectively. C∞

0 (U) stands for smooth functions with compact support in an open
set U .
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Next, we define the function spaces of divergenceless functions with the normal component vanishing
on the boundary that are relevant to our setting. For r > 1, we set

Vr := {v;v ∈ W 1,r(Ω;Rd), div v = 0 in Ω, v · n = 0 on ∂Ω},

H := Vr
L2(Ω;Rd)

= {u ∈ E(Ω); div u = 0 in Ω, u · n = 0 on ∂Ω},

V ∗
r := (Vr)∗.

(5.1)

Here, E(Ω) := {u ∈ L2(Ω;Rd); div u ∈ L2(Ω)}, for which it is known that the trace operator has well
defined normal component (in the sense of distributions) and there holds (u · n) ∈ (W 1/2,2(∂Ω))∗, see
e.g. [39]. Referring back to (5.1), for any r ∈ [ 2d

d+2 ,∞) and z > r, one has

Vz ↪→ Vr ↪→ H ≡ H∗ ↪→ V ∗
r ↪→ V ∗

z , (5.2)

where all the embeddings are continuous and dense.
Also, we define

Vr := {v;v ∈ W 1,r(Ω;Rd), v · n = 0 on ∂Ω},

H :=Vr
L2(Ω;Rd)

= L2(Ω;Rd),

V∗
r := (Vr)∗,

(5.3)

and similarly, for r ∈ [ 2d
d+2 ,∞), we have

Vr ↪→ H ≡ H∗ ↪→ V∗
r . (5.4)

Finally, we define

C([0, T ];H) := {f ∈ L∞(0, T ;H); [0, T ] � tn → t =⇒ f(tn) → f(t) strongly in H},

Cw([0, T ];H) := {f ∈ L∞(0, T ;H); [0, T ] � tn → t =⇒ f(tn) ⇀ f(t) weakly in H}.

We are now in a position to precisely formulate our main result.

Theorem 5.1. Let Ω ∈ C0,1, T > 0, b ∈ Lr′
(0, T ;V ∗

r ) and v0 ∈ H be arbitrary. Let G and g be arbitrary
functions satisfying (G1) - (G4) with r ∈ ( 2d

d+2 ,∞) and (g1)–(g4) with q ∈ (1,∞). Then there exists a
weak solution to (2.3), (2.9) and (2.10) in the following sense: there exist (v,S, s) such that for z :=
max{r, q, (d+2)r

(d+2)r−2d},
v ∈ Lr(0, T ;Vr) ∩ Cw([0, T ];H),

∂tv ∈ Lz′
(0, T ;V ∗

z ),

S ∈ Lr′
(Q),

s ∈ Lq′
(Γ),

v ∈ Lq(Γ),

the balance of linear momentum is satisfied in a weak sense, i.e. for a.a. t ∈ (0, T ) and for all ϕ ∈ Vz

〈∂tv,ϕ〉Vz
−

∫
Ω

((v ⊗ v)) : ∇ϕ dx +
∫

Ω

S : Dϕ dx +
∫

∂Ω

s · ϕ dS = 〈b,ϕ〉Vz
, (5.5)

the constitutive equations (2.9) and (2.10) hold a.e. in Q and Γ, i.e.,

G(S,Dv) = 0 for a.a. (t,x) ∈ Q, (5.6)

g(s,vτ ) = 0 for a.a. (t,x) ∈ Γ, (5.7)

and the initial condition is attained in the strong sense, i.e.,

lim
t→0+

‖v(t) − v0‖2 = 0. (5.8)
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Also, for all t ∈ (0, T ) the energy inequality holds, i.e.,

1
2
‖v(t)‖2

2 +
∫

Qt

S : Dv dx dτ +
∫

Γt

s · v dS dτ ≤
∫ t

0

〈b,v〉Vr
dτ +

1
2
‖v0‖2

2. (5.9)

In addition, if Ω ∈ C1,1 and b ∈ Lr′
(0, T ;V∗

r ), then there exists a pressure p ∈ Lz′
(0, T ;Lz′

(Ω)) such that

〈∂tv,ϕ〉Vz
−

∫
Ω

((v ⊗ v)) : ∇ϕ dx +
∫

Ω

S : Dϕ dx +
∫

∂Ω

s · ϕ dS = 〈b,ϕ〉Vz
+

∫
Ω

p div ϕ dx (5.10)

holds for all ϕ ∈ Vz and a.a. t ∈ (0, T ).

As stated in Sect. 2, the assumption (g4) eliminates no-slip and perfect-slip boundary conditions from
the analysis presented here. However, one can incorporate both conditions into the analysis. The case
of s = 0 on Γ is in fact easy as the boundary term just vanishes. For no-slip boundary conditions, one
needs to change the function space for the velocity and pay attention to differences associated with the
reconstruction of the pressure (see [120] and [8] for details).

In the proof of Theorem 5.1, we use the following powerful convergence result that is a consequence of
the properties of the suitably constructed Lipschitz approximations of Bochner functions, see [10]. Here,
we provide a simplified version (omitting the discussion concerning Lipschitz approximations) suited to
the analysis in Sect. 6.

Lemma 5.2. For any interval I0 ⊂ (0, T ) and any ball B0 ⊂ Ω, set Q0 := I0 × B0, 0 < ε � 1. Assume
that for δ → 0+ the following convergences hold:

uδ ⇀ 0 weakly in Lr(I0;W 1,r(B0;Rd)),

uδ ⇀∗ 0 weakly∗ in L∞(I0;L2(B0;Rd)),

uδ → 0 strongly in L1(Q0;Rd),

Hδ
1 ⇀ 0 weakly in Lr′

(Q0;Rd×d),

Hδ
2 → 0 strongly in L1+ε(Q0;Rd×d),

whereas uδ, Hδ
1 and Hδ

2 satisfy

div uδ = 0 for a.a. (t,x) ∈ Q0,∫
Q0

uδ · ∂tϕ − (Hδ
1 + Hδ

2) : ∇ϕ dx dt = 0 for all ϕ ∈ C∞
0 (I0; C∞

0 (B0;Rd)) with div ϕ = 0,

which is a weak formulation of

∂tu
δ − div(Hδ

1 + Hδ
2) = −∇pδ.

Then there exists ξ ∈ C∞
0 (Q0) such that

χ 1
8Q0

≤ ξ ≤ χ 1
6Q0

, (5.11)

and for every k ∈ N there exists a family {Qδ,k}δ∈(0,1) fulfilling

Qδ,k ⊂ Q0, lim sup
δ→∞

|Qδ,k| ≤ 2−k (5.12)

such that for every S ∈ Lr′
(Q0),

lim sup
δ→0+

∣∣∣∣
∫

Q0

(Hδ
1 + S) · ∇uδξχQ0\Qδ,k

dxdt

∣∣∣∣ ≤ C2
−k
r . (5.13)

Proof. See [10, Theorem 2.2 and Corollary 2.4], which is adapted to our setting. Compare also with
[14,45]. �
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6. Proof of the Main Result

We take any Ω ∈ C0,1, T > 0, b ∈ Lr′
(0, T ;V ∗

r ) and v0 ∈ H and fix them for the rest of the proof.
Similarly, we consider arbitrary but fixed functions G and g satisfying (G1)–(G4) with r ∈ ( 2d

d+2 ,∞) and
(g1)–(g4) with q ∈ (1,∞). We prove Theorem 5.1 by means of a two-level approximation.

6.1. (ε, δ)-approximations

We take two parameters ε and δ satisfying ε, δ ∈ (0, 1).
The parameter ε is used to approximate the constitutive equations (2.9) and (2.10) in the same way

as presented in Sect. 4, see formulas (4.1a) and (4.1b). The motivation for such a choice is that the
approximations Gε and gε possess much better properties in comparison with the properties of G and g,
as summarized in Lemma 4.1. In particular, for ε-approximation, we can use (4.5) and thus stay on the
level of nonlinear yet uniformly Lipschitz continuous and uniformly monotone operators. Consequently,
we come from the (r, r′)-coercivity for Dv and S to the L2-coercivity for the ε-approximations Dvε

and Sε. The mathematical theory for problems of parabolic type with such nonlinear operators is well
known, see [21, Appendix C] for example. Since this type of ε-approximation changes the r-structure to
2-structure, it is suitable to define the following auxiliary numbers

μ := min{r, 2}, μ′ := max{r′, 2},

ν := min{r′, 2}, ν′ := max{r, 2}.

The purpose of introducing another approximation parameter δ is twofold. First, we need to regularize
the right-hand side b. Using a density argument, we approximate b ∈ Lr′

(0, T ;V ∗
r ) by a sequence of

bδ ∈ Lμ′
(0, T ;V ∗

μ ) such that

bδ → b strongly in Lr′
(0, T ;V ∗

r ) as δ → 0+. (6.1)

Second, δ will be used in the definition of the cut-off function φδ used to control (bound) the convective
term and the influence of the boundary condition. More precisely, φδ is defined through

φδ(s) := φ(δs) where φ(s) :=

⎧⎪⎨
⎪⎩

1 |s| ∈ [0, 1),
2 − s |s| ∈ [1, 2),
0 |s| ∈ [2,∞).

(6.2)

Note that, for all s ≥ 0, φδ(s) → 1 as δ → 0+.
Thus, the role of such a δ-approximation is to avoid possible singularities in lower order terms. This

together with the ε-approximation turns the problem into one in the classical setting of monotone op-
erators with compact lower order terms. Consequently, we state without proof the following theorem
concerning the existence of a weak solution to the (ε, δ)-approximating problem.

Lemma 6.1. Let ε, δ ∈ (0, 1) be arbitrary but fixed. There exist (vε,δ,Sε,δ, sε,δ) solving the (ε, δ)-
approximation of the problem (2.3), (2.9) and (2.10) in the following sense:

vε,δ ∈ L2(0, T ;V2) ∩ C([0, T ];H),

∂tv
ε,δ ∈ L2(0, T ;V ∗

2 ),

Sε,δ ∈ L2(Q),

sε,δ ∈ L2(Γ);
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the balance of linear momentum is satisfied in a weak sense, i.e.

〈∂tv
ε,δ,ϕ〉V2 −

∫
Ω

φδ(|vε,δ|2)(vε,δ ⊗ vε,δ) :∇ϕ dx +
∫

Ω

Sε,δ :Dϕ dx

+
∫

∂Ω

φδ(|vε,δ|2)sε,δ · ϕ dS = 〈bδ,ϕ〉V2 for a.a. t ∈ (0, T ) and all ϕ ∈ V2; (6.3)

the constitutive equations (4.1a) and (4.1b) are fulfilled pointwise, i.e.,

Gε(Sε,δ,Dvε,δ) = 0 for a.a. (t,x) ∈ Q (6.4)

gε(s
ε,δ,vε,δ

τ ) = 0 for a.a. (t,x) ∈ Γ, (6.5)

and vε,δ(0, ·) = v0 in Ω; as vε,δ ∈ C([0, T ];H), this means that v0 is attained strongly.

6.2. Limit ε → 0+

In this part, we keep δ ∈ (0, 1) fixed and we let ε → 0+. We also write (vε,Sε, sε) instead of (vε,δ,Sε,δ, sε,δ).

6.2.1. Uniform ε-independent Estimates. To obtain a priori estimates which are uniform with respect to
ε (but may depend on δ), we set ϕ := vε in (6.3), integrate the result over (0, t), and use the facts that
∂tv

ε ∈ L2(0, T ;V ∗
2 ) and

∫
Ω

φδ(|vε|2)(vε ⊗ vε) : ∇vε dx = 06. This gives

1
2
‖vε(t)‖2

2 +
∫

Qt

Sε : Dvε dx dτ +
∫

Γt

φδ(|vε|2)sε · vε
τ dS dτ =

∫ t

0

〈bδ,vε〉Vμ
dτ +

1
2
‖v0‖2

2.

As (Sε,Dvε) are the null points of Gε and (sε,vε
τ ) are the null points of gε, by applying (4.2a) and (4.2b)

from Lemma 4.1 with one simple estimation applied to (4.2b), we obtain

Sε : Dvε ≥ C̃1(|Sε|ν + |Dvε|μ) − C̃2, (6.6)

sε · vε
τ ≥ ĉ1(|sε| + |vε

τ |)min{q,q′} − ĉ2. (6.7)

Hence
1
2
‖vε(t)‖2

2 + C̃1

∫
Qt

|Sε|ν + |Dvε|μ dx dτ + ĉ1

∫
Γt

φδ(|vε|2)(|sε| + |vε
τ |)min{q,q′} dS dτ

≤ 1
2
‖vε(t)‖2

2 +
∫

Qt

Sε : Dvε dx dτ +
∫

Γt

φδ(|vε|2)sε · vε
τ dS dτ + C

≤
∫ t

0

〈bδ,vε〉Vμ
dτ +

1
2
‖v0‖2

2 + C. (6.8)

To estimate the term with bδ, we incorporate Korn’s and Young’s inequalities and conclude that

〈bδ,vε〉Vμ
≤ ‖bδ‖V ∗

μ
(‖vε‖2 + ‖Dvε‖μ)

≤ C̃1

2
‖Dvε‖μ

μ + C
(
‖bδ‖μ′

V ∗
μ

+ (1 + ‖vε‖2
2)‖bδ‖V ∗

μ

)
. (6.9)

Inserting this estimate into (6.8) and applying Gronwall’s lemma we obtain

sup
t∈(0,T )

‖vε(t)‖2 ≤ C(δ). (6.10)

6Let Φδ denote the primitive function to φδ . Using integration by parts we observe that

2

∫
Ω

φδ(|vε|2)(vε ⊗ vε) : ∇vε dx =

∫
Ω

φδ(|vε|2)vε · ∇|vε|2 dx =

∫
Ω

vε · ∇Φδ(|vε|2) dx =

∫
Ω

div
(
Φδ(|vε|2)vε

)
dx = 0,

referring to Gauss’ theorem and the boundary condition vε · n = 0 on ∂Ω in the last identity.
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With this information we look at (6.8) and (6.9) again and conclude that

sup
t∈(0,T )

‖vε(t)‖2
2 +

∫
Q

|Sε|ν + |Dvε|μ dx dτ ≤ C(δ), (6.11)

which gives

‖vε‖Lμ(0,T ;Vμ) ≤ C(δ). (6.12)

Also, again from (6.8) and (6.9), ∫
Q

Sε : Dvε dx dτ ≤ C(δ). (6.13)

Finally, applying Young’s inequality to the left-hand side of (6.7) we get

ĉ1(|sε| + |vε
τ |)min{q,q′} ≤ ĉ1

2
|sε|min{q,q′} + c3|vε

τ |max{q,q′} + ĉ2,

which gives
ĉ1

2
|sε|min{q,q′} ≤ c3|vε

τ |max{q,q′} + ĉ2. (6.14)

Multiplying this inequality by [φδ(|vε|2)]min{q,q′} and using then the truncation properties of φδ(|vε|2)
introduced in (6.2) we get

[
φδ(|vε|2)|sε|]min{q,q′} ≤ C[φδ(|vε|2)]min{q,q′}(1 + |vε

τ |max{q,q′}) ≤ C(δ) (6.15)

Hence, (6.15) imply that

‖φδ(|vε|2)sε‖L∞(Γ) ≤ C(δ). (6.16)

To estimate the time derivative of vε, we set W := {w ∈ Vr ∩ V2; ‖w‖Vν′ ≤ 1}. Since W ⊂ V2 we can
set ϕ := w ∈ W in the equation (6.3) and conclude that (using (6.15))

‖∂tv
ε‖V ∗

ν′ = sup
W

〈∂tv
ε,w〉Vν′

= sup
W

(∫
Ω

φδ(|vε|2)(vε ⊗ vε) : ∇w dx −
∫

Ω

Sε : Dw dx−
∫

∂Ω

φδ(|vε|2)(sε · w) dS + 〈bδ,w〉Vμ

)

≤ sup
W

(
C(δ)‖w‖W + ‖Sε‖ν‖Dw‖ν′ + ‖bδ‖V ∗

μ
‖w‖Vμ

)
.

As Vμ ⊂ Vν′ , raising the last inequality to the power ν and integrating the result over (0, T ) we obtain,
using also (6.11),

∫ T

0

‖∂tv
ε‖ν

V ∗
ν′ dt ≤

∫ T

0

‖Sε‖ν
ν + ‖bδ‖ν

V ∗
μ

dt ≤ C(δ). (6.17)

6.2.2. Limit Passage ε → 0+. The estimates (6.10), (6.11), (6.12), (6.16) and (6.17) imply the existence
of subsequences (that we label again as the original sequences) and the limiting objects such that as
ε → 0+

vε ⇀ v weakly in Lμ(0, T ;Vμ),

Sε ⇀ S weakly in Lν(Q),

vε ⇀∗ v weakly∗ in L∞(0, T ;H),

φδ(|vε|2)sε ⇀∗ φδ(|v|2)s weakly∗ in L∞(Γ),

∂tv
ε ⇀ ∂tv weakly in Lν(0, T ;V ∗

ν′). (6.18)



72 Page 16 of 29 M. Buĺıček et al. JMFM

By the Aubin–Lions Compactness Lemma and the Trace Theorem we also observe

vε → v strongly in L2(Q),

vε → v strongly in L1(Γ). (6.19)

Consequently,

φδ(|vε|2)(vε ⊗ vε) → φδ(|v|2)((v ⊗ v)) strongly in Ls(Q) for any s ∈ [1,∞). (6.20)

Furthermore, from (6.19), for any σ > 0 there exists Γσ ⊂ Γ such that |Γ\Γσ| ≤ σ and

vε → v strongly in L∞(Γσ) (modulo subsequence) (6.21)

As a consequence of (6.21) and (6.14), we get

sε ⇀∗ s weakly∗ in L∞(Γσ). (6.22)

Moreover, (6.13) in combination with Lemma 4.1 implies that

S ∈ Lr′
(Q) and Dv ∈ Lr(Q). (6.23)

Now, we integrate (6.3) over (0, T ) and study the limit ε → 0+ using the convergence results (6.18)–
(6.22). For any w ∈ Lν′

(0, T ;Vν′) we end up with
∫ T

0

〈∂tv,w〉Vμ
dτ +

∫
Q

S : Dw dx dτ +
∫

Γ

φδ(|v|2)s · w dS dτ

=
∫ T

0

〈bδ,w〉Vμ
dτ +

∫
Q

φδ(|v|2)((v ⊗ v)) : ∇w dx dτ (6.24)

Thanks to the dense embedding Vr ∩ V2 ↪→ Vr, we directly obtain∫ T

0

‖∂tv‖r′
V ∗

r
dt ≤

∫ T

0

‖S‖r′
r′ + ‖φδ(|v|2)(v ⊗ v)‖r′

r′ + ‖φδ(|v|2)s‖r′

Lr′ (∂Ω)
+ ‖bδ‖r′

V ∗
r

dt ≤ C(δ),

where the last inequality follows from the properties of φδ(|v|2), (6.23) and (6.16).
Moreover, thanks to v ∈ Lr(0, T ;Vr), ∂tv ∈ Lr′

(0, T ;V ∗
r ), and the Gelfand triple (5.2), there holds

v ∈ C([0, T ];H). In addition, in a standard way we can show that v(0, ·) = v0.

6.2.3. Identification of Nonlinearities. To complete the limit ε → 0+, we need to verify that G(S(t,x),
Dv(t,x)) = 0 for a.a. (t,x) ∈ Q, g(s(t,x),vτ (t,x)) = 0 for a.a. (t,x) ∈ Γ and φδ(|v|2)s = φδ(|v|2)s on
Γ.

We first observe that for all t ∈ (0, T ),

lim sup
ε→0+

∫
Qt

S ε : Dvε dx dτ +

∫
Γt

φδ(|vε|2)sε · vε dS dτ

≤
∫

Qt

S : Dv dx dτ +

∫
Γt

φδ(|v |2)s · v dS dτ. (6.25)

Indeed, setting ϕ := vε in (6.3) and integrating the result over (0, t) for t ∈ (0, T ), we get∫
Qt

Sε : Dvε dx dτ +
∫

Γt

φδ(|vε|2)sε · vε dS dτ =
∫ t

0

〈bδ,vε〉Vμ
dτ +

1
2
‖v0‖2

2 − 1
2
‖vε(t)‖2

2.

Taking the lim supε→0+
and using the weak lower semicontinuity of the L2-norm w.r.t. weakly* converging

sequence in L∞(0, T ;H), we obtain for a.a. t that

lim sup
ε→0+

∫
Qt

Sε : Dvε dx dτ +
∫

Γt

φδ(|vε|2)sε · vε dS dτ

≤
∫ t

0

〈bδ,v〉Vμ
dτ +

1
2
‖v0‖2

2 − 1
2
‖v(t)‖2

2. (6.26)
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On the other hand, we can set w := vχ(0,t) in (6.24) (we already have the right duality pairings to do
so) and integrate the result over (0, t). We conclude that

∫
Qt

S : Dv dx dτ +
∫

Γt

φδ(|v|2)s · v dS dτ =
∫ t

0

〈bδ,v〉Vμ
dτ +

1
2
‖v0‖2

2 − 1
2
‖v(t)‖2

2. (6.27)

Comparing (6.27) and (6.26) we see that (6.25) holds true.
Finally, using (6.25) we want to prove that for a.a. t ∈ (0, T ),

lim sup
ε→0+

∫
Qt

Sε : Dvε dx dτ ≤
∫

Qt

S : Dv dx dτ (6.28)

lim sup
ε→0+

∫
Γσ

sε · vε dS dτ ≤
∫

Γσ

s · v dS dτ. (6.29)

where Γσ is introduced around (6.21). However, (6.29) directly follows from (6.21) and (6.22) (in fact,
with the equality sign in (6.29)). Recalling (4.8) in Lemma 4.1, (6.29) implies that g(s,vτ ) = 0 a.e. in
Γσ. However, since σ > 0 can be made arbitrarily small, the statement g(s,vτ ) = 0 holds true a.e. on Γ
(again considering a suitably chosen subsequence).

Next, we show that

lim inf
ε→0+

∫
Γt

φδ(|vε|2)sε · vε dS dτ ≥
∫

Γt

φδ(|v|2)s · v dS dτ. (6.30)

First, from (6.21) and (6.22) it follows that φδ(|v|2)s = φδ(|v|2)s on Γσ. Then thanks to (4.4d) it follows
that

lim inf
ε→0+

∫
Γt

φδ(|vε|2)sε · vε dS dτ ≥ lim inf
ε→0+

∫
Γt∩Γσ

φδ(|vε|2)sε · vε dS dτ

=
∫

Γt∩Γσ

φδ(|v|2)s · v dS dτ

=
∫

Γt∩Γσ

φδ(|v|2)s · v dS dτ.

Letting σ → 0+ in the above inequality we obtain (6.30).
Using (6.30) in (6.25) we obtain (6.28), which is the assumption (4.6) in Lemma 4.1. Consequently,

G(S,Dv) = 0 a.e. in Qt for a.a. t.
We summarize the results proved above (in Subsection 6.2) in the following lemma.

Lemma 6.2. For any δ ∈ (0, 1) there exists a triplet (vδ,Sδ, sδ) such that

vδ ∈ Lr(0, T ;Vr) ∩ C([0, T ];H),

∂tv
δ ∈ Lr′

(0, T ;V ∗
r ),

Sδ ∈ Lr′
(Q),

sδ ∈ Lq′
(Γ);

〈∂tv
δ,ϕ〉Vr

−
∫

Ω

φδ(|vδ|2)(vδ ⊗ vδ) : ∇ϕ dx +
∫

Ω

Sδ : Dϕ dx +
∫

∂Ω

φδ(|vδ|2)sδ · ϕ dS = 〈bδ,ϕ〉Vr

for a.a. t ∈ (0, T ) and for all ϕ ∈ Vr, (6.31)

G(Sδ,Dvδ) = 0 a.e. in Q, (6.32)

g(sδ,vδ
τ ) = 0 a.e. on Γ, (6.33)

and the initial condition v0 is attained in the strong sense.
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6.3. Limit δ → 0+

We recall that bδ satisfies (6.1).

6.3.1. Uniform (δ-independent) Estimates and Their Consequences. Setting ϕ := vδ in (6.31) (the con-
vective term vanishes, see Sect. 6.2.1 for details) we get for a.a. t ∈ (0, T )

d
dt

‖vδ(t)‖2
2 + 2

∫
Ω

Sδ :Dvδ dx + 2
∫

∂Ω

φδ(|vδ|2)sδ ·vδ dS = 2〈bδ,vδ〉Vr
(6.34)

Integrating (6.34) over (0, t), using (G4) and (g4), the assumptions on v0 and on the right-hand sides bδ

and b (see (6.1)), Hölder’s, Young’s and Gronwall’s inequalities, we obtain

sup
t∈(0,T )

‖vδ(t)‖2
2 +

∫
Q

Sδ :Dvδ dx dτ +
∫

Γ

φδ(|vδ|2)sδ ·vδ dS dτ ≤ C.

Using (G4) and (g4) and proceeding as in Sect. 6.2.1, we conclude that

‖vδ‖L∞(0,T ;H)∩Lr(0;T ;Vr) ≤ C, (6.35a)

‖Sδ‖Lr′ (Q) ≤ C, (6.35b)∫
Γ

φδ(|vδ|2)(|sδ|q′
+ |vδ|q) dS dτ ≤ C. (6.35c)

Thanks to the fact that 0 ≤ φδ(|vδ|2) ≤ 1, it directly follows from the above estimates that

∫
Γ

|φδ(|vδ|2)sδ|q′
dS ≤

∫
Γ

φδ(|vδ|2)|sδ|q′
dS ≤ C. (6.35d)

Next, we explain the definition of z in Theorem 5.1, which is related to the uniform estimate for ∂tv
δ.

First, it follows from the definition that z′ := min{r′, q′, (d+2)r
2d } and each number in the bracket is the

dual exponent to the integrability exponent of the terms on the left-hand side of (6.31). We start with
the convective term. Thanks to the assumption r > 2d

d+2 , we have (d+2)r
2d > 1 and we obtain that

∫ T

0

‖(vδ ⊗ vδ)φδ(|vδ|2)‖
(d+2)r

2d
(d+2)r

2d

dt ≤
∫ T

0

‖vδ‖
(d+2)r

d
(d+2)r

d

dt ≤
∫ T

0

‖vδ‖ 2r
d

2 ‖vδ‖r
Vr

dt ≤ C, (6.35e)

where for the first inequality we used the fact that φδ(|vδ|2) ≤ 1, for the second inequality we used the
standard interpolation in Lebesgue and Sobolev spaces and for the last inequality we used (6.35a). Then
using (6.35e), (6.35b), (6.35d) and the assumption on bδ we deduce from (6.31) the following estimate

∫ T

0

‖∂tv
δ‖z′

V ∗
z

dt ≤ C

∫ T

0

(
‖Sδ‖r′ + ‖vδ‖2

(d+2)r
d

+ ‖φδ(|vδ|2)sδ‖Lq′ (∂Ω) + ‖bδ‖V ∗
r

)z′

dt ≤ C. (6.35f)
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Finally, from the uniform estimates (6.35), the Aubin–Lions lemma and the Trace Theorem we conclude
that there are subsequences of {vδ,Sδ, sδ} denoted again by {vδ,Sδ, sδ} such that

vδ ⇀∗ v weakly∗ in L∞(0, T ;H), (6.36a)

vδ ⇀ v weakly in Lr(0, T ;Vr), (6.36b)

(vδ ⊗ vδ)φδ(|vδ|2) → v ⊗ v strongly in Lρ(Q) for ρ ∈
[
1,

(d + 2)r
2d

)
, (6.36c)

∂tv
δ ⇀ ∂tv weakly in Lz′

(0, T ;V ∗
z ), (6.36d)

vδ → v strongly in Lr(0, T ;L2(Ω)), (6.36e)

vδ → v strongly in Lγ(Q) for γ ∈
[
1,

(d + 2)r
d

)
, (6.36f)

Sδ ⇀ S weakly in Lr′
(Q), (6.36g)

φδ(|vδ|2)sδ ⇀ s weakly in Lq′
(Γ), (6.36h)

φδ(|vδ|2)vδ ⇀ v weakly in Lq(Γ), (6.36i)

vδ → v strongly in L1(Γ). (6.36j)

Then, we consider ϕ ∈ Lz(0, T ;Vz) in (6.31), integrate the result over (0, T ), and apply the convergence
results from (6.36). We obtain∫ T

0

〈∂tv,ϕ〉Vz
dt +

∫
Q

(S − (v ⊗ v)) : ∇ϕ dx dt +
∫

Γ

s · ϕ dS dt =
∫ T

0

〈b,ϕ〉Vz
dt. (6.37)

Therefore, the weak formulation (5.5) holds for a.a. t ∈ (0, T ). Moreover, the results (6.36a), (6.36b), and
(6.36d) imply that v ∈ Cw([0, T ];H).

Next, we need show that G(S,Dv) = 0 a.e. in Q and g(s,vτ ) = 0 a.e. on Γ. Here, we have several
possibilities. First, if z = r, i.e. if q ≤ r and r ≥ 3d+2

d+2 , one can simply use ϕ := v in (6.37) and therefore,
one might mimic the theory developed in [21]. Next, if r ≥ 3d+2

d+2 but q > r, one may observe that the
choice ϕ := v is admissible in the second and third integral on the left-hand side and also in the term
on the right-hand side. Consequently, one might try to generalize the concept of the Gelfand triple and
define properly a duality pairing 〈∂tv,ϕ〉 and again to mimic the theory from [21]. Finally, in the case
r < 3d+2

d+2 we cannot set ϕ := v in the second term and therefore the theory from [21] cannot be adapted
directly to our case. As the novel method developed here, which is based also on the use of Lemma 5.2,
covers also the simple cases discussed above, we just present a unified procedure for all values of r > 2d

d+2 .

6.3.2. Identification of Nonlinearities on the Boundary. By virtue of (6.36j) and Egoroff’s theorem, for
every η > 0 there exists Γη so that |Γ\Γη| < η and

vδ → v strongly in L∞(Γη). (6.38)

It follows from (g4) and Young’s inequality that

c1|sδ|q′ ≤ sδ · vδ + c2 ≤ c1

2
|sδ|q′

+ c3|vδ|q + c2 =⇒ |sδ|q′ ≤ C(1 + |vδ|q).
This together with (6.38) implies that {sδ} is a bounded sequence on Γη. By (6.36h) and Lebesgue’s
Dominated Convergence Theorem, we conclude that, as δ → 0+,∫

Γη

sδ · vδ dx dt =
∫

Γη

φδ(|vδ|2)sδ · vδ dx dt +
∫

Γη

(1 − φδ(|vδ|2))sδ · vδ dx dt →
∫

Γη

s · v dx dt.

Then from Lemma 4.1, g(s,v) = 0 a.e. on Γη, and letting η → 0+, we obtain that g(s,v) = 0 a.e. on Γ,
and also that for all η,

sδ · vδ ⇀ s · v weakly in L1(Γη). (6.39)
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6.3.3. Identification of Nonlinearities Inside the Domain. Identification in Q is not so straightforward,
especially due to the lack of proper duality pairing in the convective term and consequently potential
failure of the energy equality for the limiting equation. We start with subtracting the weak formulation
for vδ (6.31) from the one for v (5.5) and integrate the difference over (0, T ). We deduce that, for all
ϕ ∈ Lz(0, T ;Vz),

∫ T

0

〈∂t(vδ − v),ϕ〉Vz
dt −

∫
Q

(
(vδ ⊗ vδ)φδ(|vδ|2) − v ⊗ v

)
: ∇ϕ dx dt

+
∫

Q

(Sδ − S) : Dϕ dx dt +
∫

Γ

(φδ(|vδ|2)sδ − s) · ϕ dS dt −
∫ T

0

〈bδ − b,ϕ〉Vr
dt = 0. (6.40)

Next, we localize the above formulation and also omit writing the duality pairing in Vr. Indeed, by using
the classical theory for r-Stokes problems, we can find7 F δ and F such that

F δ → F strongly in Lr′
(Q) (6.41)

that fulfils ∫ T

0

〈bδ − b,ϕ〉Vr
dt =

∫
Q

(F δ − F ) : ∇ϕ dx dt

for all ϕ ∈ Lr(0, T ;Vr). Thus, for Q0 = I0 × B0 introduced in Lemma 5.2, we consider (6.40) with
ϕ ∈ C∞(Q) satisfying div ϕ = 0 in Q0 and having the compact support in Q0. Then the boundary term
vanishes and we obtain∫

Q0

(vδ − v) · ∂tϕ dx dt =
∫

Q0

(
(Sδ − S) + v ⊗ v − (vδ ⊗ vδ)φδ(|vδ|2) + F δ − F

)
:∇ϕ dx dt.

For the sake of ease of exposition, let us denote

uδ := vδ − v,

Hδ
1 := Sδ − S,

Hδ
2 := v ⊗ v − (vδ ⊗ vδ)φδ(|vδ|2) + F δ − F . (6.42)

Then the triplet (uδ,Hδ
1,H

δ
2) defined in (6.42) satisfies the assumptions of Lemma 5.2. Recall also that,

due to Lemma 4.2, for Dv ∈ Lr(Q) there is an Ŝ ∈ Lr′
(Q) such that G(Ŝ,Dv) = 0 a.e. in Q (and, in

particular, also in Q0). Referring back to Lemma 5.2, we set S := S − Ŝ in (5.13) and conclude that

lim sup
δ→0+

∣∣∣∣
∫

Q0

(Sδ − Ŝ) : (Dvδ − Dv)ξχQ\Qδ,k

∣∣∣∣
= lim sup

δ→0+

∣∣∣∣
∫

Q0

(Hδ
1 + S) : ∇uδξχQ0\Qδ,k

∣∣∣∣ ≤ C2
−k
r .

(6.43)

Due to (5.11), ξ ≥ χ 1
8Q0

; since G(Ŝ,Dv) = 0 and G(Sδ,Dvδ) = 0 a.e. in Q, the product in the first
integral of (6.43) is non-negative thanks to (G2∗) (see Lemma 4.2), and we have

lim sup
δ→0+

∫
1
8Q0

∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣ χQ\Qδ,k

dx dt ≤ C2
−k
r . (6.44)

7We can set F as F := |∇w |r−2∇w , where w solves the homogeneous Dirichlet problem

− div(|∇w |r−2∇w ) = −∇π + b, div w = 0 in Ω.

Similarly from bδ we come to F δ.
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Then for any a ∈ (0, 1), the following holds:∫
1
8Q0

∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣a dx dt

=
∫

1
8Q0

∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣a χQδ,k

dx dt

+
∫

1
8Q0

∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣a χQ\Qδ,k

dx dt

≤
(∫

1
8Q0

∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣ χQδ,k

dx dt

)a

|Qδ,k|1−a

+

(∫
1
8Q0

∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣ χQ\Qδ,k

dx dt

)a

|Q|1−a

≤ C|Qδ,k|1−a + C

(∫
1
8Q0

∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣ χQ\Qδ,k

dx dt

)a

.

Then, as k → ∞, using (5.12) and (6.44), we conclude

lim sup
δ→0+

∫
1
8Q0

∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣a dx dt ≤ C2

−k
r → 0 as k → ∞.

However, then also
∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)

∣∣∣a → 0 strongly in L1

(
1
8
Q0

)
as δ → 0+.

Due to Egoroff’s theorem, for every η there exists Qη such that |18Q0 \ Qη| ≤ η, and∣∣∣(Sδ − Ŝ) : (Dvδ − Dv)
∣∣∣a → 0 strongly in L∞(Qη).

Consequently,

(Sδ − Ŝ) : (Dvδ − Dv) → 0 in L∞(Qη). (6.45)

Since limδ→0+

∫
Qη

Ŝ : (Dvδ − Dv) dx dt = 0, which follows from (6.36b), we obtain from (6.45) that

lim
δ→0+

∫
Qη

Sδ : (Dvδ − Dv) dx dt = 0,

which finally implies (using the weak convergence result for Sδ, see (6.36g)), that

lim
δ→0+

∫
Qη

Sδ : Dvδ dx dt =
∫

Qη

S : Dv dx dt.

According to Lemma 4.1, G(S,Dv) = 0 a.e. in Qη, and we can proceed with η → 0+ to obtain the
identification a.e. in 1

8Q0. Also, we have that for all η

Sδ : Dvδ ⇀ S : Dv weakly in L1(Qη). (6.46)

6.3.4. Energy Inequality. Next, we show that (5.9) holds true. For 0 < ε � 1 and t ∈ (0, T − ε), let
ζ ∈ C0,1([0, T ]) be defined as a piece-wise linear function of three parameters, such that

ζ(τ) =

⎧⎪⎨
⎪⎩

1 if τ ∈ [0, t),
1 + t−τ

ε if τ ∈ [t, t + ε),
0 if τ ∈ [t + ε, T ].

(6.47)
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We multiply (6.34) by ζ, and integrate the result over (0, T ) to deduce, after integrating by parts, that

1
2ε

∫ t+ε

t

‖vδ(τ)‖2
2 dτ +

∫
Qt+ε

Sδ : Dvδζ dx dτ +
∫

Γt+ε

φδ(|vδ|2)sδ · vδζ dS dτ

=
∫ t+ε

0

〈bδ,vδζ〉Vr
dτ +

1
2
‖v0‖2

2.

The next step is to take the limit as δ → 0+. We know that (Sδ : Dvδ) ≥ 0 and (sδ · vδ) ≥ 0 because
G(Sδ,Dvδ) = 0 in Q, g(sδ,vδ) = 0 on Γ and we have (G2∗) from Lemma 4.2 and an analogous result
holds for the function g as well. Therefore, from the above identity we deduce

1
2ε

∫ t+ε

t

‖vδ(τ)‖2
2 dτ +

∫
Qt∩Qη

Sδ : Dvδ dx dτ +
∫

Γt∩Γη

φδ(|vδ|2)sδ · vδ dS dτ

≤
∫ t+ε

0

〈bδ,vδζ〉Vr
dτ +

1
2
‖v0‖2

2.

(6.48)

For the first term, we can use the weak lower semicontinuity of the norm. For the products Sδ : Dvδ and
φδ(|vδ|2)sδ ·vδ, we use (6.46), (6.39) and the weak convergence of vδ on Γη. For the duality term, we use
(6.1) and (6.36b), and get that

1
2ε

∫ t+ε

t

‖v(τ)‖2
2 dτ +

∫
Qt∩Qη

S : Dv dx dτ +
∫

Γt∩Γη

s · v dS dτ

≤
∫ t+ε

0

〈b,v ζ〉Vr
dτ +

1
2
‖v0‖2

2.

Next, we proceed with ε, η → 0+, then Qt ∩ Qη → Qt and Γt ∩ Γη → Γt, and finally, thanks to v ∈
Cw([0, T ];H) and the fact that the other terms are well-defined, we obtain the energy inequality (5.9) for
any t ∈ (0, T ).

6.4. Attainment of the Initial Condition

Considering ζ introduced in (6.47), we multiply (6.31) by ϕζ, where ϕ ∈ Vz is arbitrary. Integrating the
result over (0, T ), we get

∫ T

0

〈∂tv
δ,ϕ〉Vr

ζ dτ −
∫

Q

(
(vδ ⊗ vδ)φδ(|vδ|2)) : ∇ϕζ dx dτ

+
∫

Q

Sδ : Dϕζ dx dτ +
∫

Γ

φδ(|vδ|2)sδ · ϕζ dS dτ =
∫ T

0

〈bδ,ϕζ〉Vr
dτ.

Next, we apply integration by parts in the first term (using the properties of ζ and the fact that ϕ is
independent of t). Then we take the limit δ → 0+. Using arguments from Sect. 6.3, in particular the
convergence result (6.36c) to take the limit in the convective term, we conclude that

1
ε

∫ t+ε

t

∫
Ω

v · ϕ dx dτ −
∫

Qt+ε

(v ⊗ v) : ∇ϕζ dx dτ +
∫

Qt+ε

S : Dϕζ dx dτ

+
∫

Γt+ε

s · ϕζ dS dτ =
∫ t+ε

0

〈b,ϕζ〉Vr
dτ +

∫
Ω

v0 · ϕ dx.
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Since v ∈ Cw([0, T ];H) and ϕ is independent of time, we can let ε → 0+ to conclude∫
Ω

v(t) · ϕ dx −
∫

Qt

(v ⊗ v) : ∇ϕ dx dτ +
∫

Qt

S : Dϕ dx dτ

+
∫

Γt

s · ϕ dS dτ =
∫ t

0

〈b,ϕ〉Vr
dτ +

∫
Ω

v0 · ϕ dx.

Now, standard density arguments imply that

v(t) ⇀ v0 weakly in L2(Ω).

Also, taking the limes superior for t → 0+ in the energy inequality (5.9), we obtain that lim supt→0+
‖v(t)‖2

2

≤ ‖v0‖2
2. The last two pieces of information imply the strong convergence in H as claimed in (5.8).

6.4.1. Existence of an Integrable Pressure. In order to reconstruct the pressure, we need to assume that
Ω ∈ C1,1. The procedure to obtain an integrable pressure for problems with slipping boundary conditions
is explained in [14] in detail. This is why we merely show here a formal estimate concerning the “best”
integrability of p. To do so, we assume that there exists an integrable pressure p such that (5.10) holds.
Moreover, we may assume that

∫
Ω
p(t) dx = 0 for a.a. t. Next, we find φ solving the equation

Δφ = |p|z′−2p − 1
|Ω|

∫
Ω

|p|z′−2p dx in Ω,

∇φ · n = 0 on ∂Ω.

Using classical theory we know that such a φ exists and satisfies the estimate

‖φ‖z
W 2,z(Ω) ≤ C

∫
Ω

|p|z′
dx. (6.49)

Setting ϕ := ∇φ in (5.10), we have (note that ϕ ∈ Vz and also that the term with the time derivative
vanishes)∫

Ω

|p|z′
dx = −

∫
Ω

((v ⊗ v)) : ∇2φ dx +
∫

Ω

S : (D∇φ) dx +
∫

∂Ω

s · ∇φ dS − 〈b,∇φ〉Vz
. (6.50)

By use of (6.49), the Hölder inequality and the Trace Theorem we can deduce that

‖p‖z′
z′ ≤ C

(
‖(v ⊗ v)‖z′ + ‖S‖z′ + ‖s‖Lz′ (∂Ω) + ‖b‖V∗

z

)z′

.

After integrating it over (0, T ), thanks to the definition of z′ and a stronger assumption on b ∈ Lz′
(0, T ;V∗

z ),
all terms on the right-hand side are bounded and we conclude that p ∈ Lz′

(0, T ;Lz′
(Ω)).

7. Extensions: Existence Results for Related Problems (a Summary)

The above established result concerns isothermal homogeneous and incompressible fluids; these properties
can be seen as limitations and one may wish to develop a theory in the similar spirit as above for heat-
conducting or inhomogeneous or compressible fluids or for fluids that share more of these properties. Also
the constitutive equation (2.9) does not cover viscoelastic rate-type or integral models. Similarly, the
boundary condition (2.10) does not include dynamic boundary conditions. Below, we provide references
that can be relevant to anyone who would like to extend the study in the directions indicated.

When one wishes to include the dependence of the viscosity on the temperature, the system of gov-
erning equations has to be completed by the formulations of the balance of energy and the second law
of thermodynamics. One also needs to specify the constitutive equation relating the heat flux to the
temperature gradient, boundary conditions for the temperature etc. These extensions give rise, within
the context of weak solutions, to several concepts of solution. A sound long-time and large-data existence
theory for heat-conducting fluids described by incompressible Navier–Stokes–Fourier equations goes back
to [11,50]. The first existence result for nonlinear models of the power-law type is due to Consiglieri [38]
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for r ≥ 3d+2
d+2 . Then, a very similar theory was obtained for smaller r’s in [24] but merely for explicit

models of the type S = 2ν(θ, |Dv|2)Dv, where θ is the temperature. The first fully implicit approach
with material parameters depending on the temperature was developed in [88], where the authors dealt
with a specific activated model with the activation depending on the temperature that also allowed the
model to range from activated Euler through the Navier–Stokes regime to a Bingham-type response.

The mathematical theory for unsteady flows of inhomogeneous Navier–Stokes fluids is developed in
the book by Lions [80]. Inhomogeneous isothermal fluids of power-law type are analyzed in [54], while
heat-conducting processes for such fluids are treated in [51]. Compressible non-Newtonian fluids of power-
law type represent a completely open field from the point of view of the large-data analysis of relevant
initial- and boundary-value problems (see [3] for one of the first attempts and further references).

Regarding viscoelastic rate-type fluids, where for a part of the Cauchy stress one has an additional
evolutionary (nonlinear) equation, we distinguish two basic classes: without stress diffusion and with
stress diffusion. The first class includes the standard Maxwell, Oldroyd-B or Giesekus models, and the
additional equation is of transport type. The long-time and large-data mathematical theory goes back to
[81], where Oldroyd-B type models with a corotational time derivative are studied. The type of derivative
is however non-physical and simplifies the analysis tremendously. For Giesekus type of models with more
general objective derivatives the idea of existence proof is presented in [89] and rigorously proven in the
planar case in [17]. Regarding the analysis of viescoelastic rate-type fluids with stress diffusion, we refer
to [4] where a very robust theory is developed and other relevant studies are cited.

Finally, dynamic boundary conditions (see [58] for their relevance to observations connected with the
experiments regarding molten polymers) are the subject of a recent investigation from the point of view of
analysis of partial differential equations. The theory for the Stokes system with such dynamic boundary
conditions is developed in [1].

Extensions in other directions are possible. Examples include the analysis of rapidly shear-thickening
fluids (see [57]) or fluids with a priori bounded velocity gradient (see [15,92]). Also, one can consider
instead of (2.9) a more general class of incompressible fluids given by the relation G(T ,Dv) = 0, which
allows one to naturally include fluids with pressure and shear-rate dependent viscosity; here we refer to
[22–24,26] for further details.

8. Uniqueness, Smoothness, Open Problems and Concluding Remarks

We have studied long-time and large-data mathematical properties of unsteady internal flows of incom-
pressible fluids with frictional properties characterized by implicit constitutive equations in the bulk and
on the boundary. The developed theory that has origin in the seminal works of O. A. Ladyzhenskaya
addresses positively the question concerning existence of weak solutions to large classes of fluids as well
as boundary conditions. The structural assumptions characterizing the admissible class of fluids and
boundary conditions are expressed in terms of basic tools of calculus and can be checked directly for a
given constitutive equation without any deeper knowledge of concepts of the operator theory. Despite
broad applicability of the developed theory to many models in different scientific areas, the analysis for
fluids satisfying (G1) and (G4) but having non-monotone response (as for example the model computa-
tionally tested in [66]) is an open problem. (Note however that non-monotone responses in the boundary
conditions can be included, see [20] for details.)

The main achievement of this study lies in a novel existence theory. Ladyzhenskaya’s interest in these
fluids was however motivated by the uniqueness and smoothness of these solutions. Concerning the unique-
ness of weak solution, one can easily observe that for models fulfilling (G1)–(G4) we automatically/easily
obtain the uniqueness of the velocity field for all r > 1 provided that we neglect the convective term
div(v ⊗ v); compare with [21]. For the complete model, i.e. for model with the convective term, already
Ladyzhenskaya was able to show the uniqueness of a weak solution for the models of the form

S = 2ν∗Dv + 2ν̃∗|Dv|r−2Dv or S = 2ν∗(1 + |Dv|2) r−2
2 Dv (8.1)
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provided that r ≥ d+2
2 . To date the most general uniqueness result is due to [16], where the authors prove

uniqueness of a weak solution in three dimensions (for sufficiently regular data) and a class of models
having the r-growth with r ≥ 11

5 and satisfying, for a certain C∗ > 0

(S1 − S2) :(D1 − D2) ≥ C∗
(|D1 − D2|2 + |D1 − D2|r

)
for all (Si,Di) such that G(Si,Di) = 0, i = 1, 2,

which is fulfilled by the models given in (8.1) above, but it is much more restrictive in comparison with
the condition (G2*) (or its equivalent form (G2)) needed in the existence theory.

We can slightly strengthen these uniqueness results by considering fluids that behave as the Navier–
Stokes fluid prior the activation, i.e. for |Dv| ≤ δ∗, where δ∗ > 0 can be arbitrary, and behave as a
power-law fluid with r ≥ 3d+2

d+2 once the activation takes place, i.e. |Dv| > δ∗. Mathematically, such a
model is described by the constitutive equation of the form

S = 2ν∗Dv + 2ν̃∗
(|Dv| − δ∗)+

|Dv| |Dv|r−2Dv.

For this model, one can then establish both the existence and the uniqueness of a weak solution for r
sufficiently large (r ≥ 3d+2

d+2 ). We wish to emphasize that the constant δ∗ can be chosen arbitrarily large.
On the other hand, for r < 3d+2

d+2 we have a counterexample to uniqueness thanks to [27] in the class of
very weak solutions. Hence, a natural open problem is the (non)uniqueness of a weak solution for smooth
data in natural function spaces also for r < 11

5 in dimension three.
Finally, concerning smoothness of weak solutions to nonlinear models studied in this paper, there

is one striking open problem. Independently of whether one excludes or includes the convective term
and independently of the value of the parameter r, it is not clear (even in the situation when we know
that there is a unique weak solution) whether, for smooth but large data, there exists a global-in-time
C1,α-solution for any special case of the problem (2.3), (2.9) and (2.10) in three dimensional setting. The
regularity theory in two dimensions is available, see e.g. [16,25,42,68,69], the theory in dimension three
is however basically untouched.
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[53] Frehse, J., Málek, J., Steinhauer, M.: On analysis of steady flows of fluids with shear-dependent viscosity based on the
Lipschitz truncation method. SIAM J. Math. Anal. 34(5), 1064–1083 (2003)
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[75] Ladyženskaja, O. A.: The dynamical system that is generated by the Navier-Stokes equations, Zap. Naučn. Sem.
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