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Abstract. Axially symmetric solutions to the Navier–Stokes equations in a bounded cylinder are considered. On the boundary
the normal component of the velocity and the angular components of the velocity and vorticity are assumed to vanish. If
the norm of the initial swirl is sufficiently small, then the regularity of axially symmetric, weak solutions is shown. The key
tool is a new estimate for the stream function in certain weighted Sobolev spaces.
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1. Introduction

In this work we consider axially-symmetric solutions to the Navier–Stokes equations in bounded cylin-
drical domains Ω ⊂ R

3 with the boundary S := ∂Ω.
To describe the problem we transform the Cartesian coordinates x = (x1, x2, x3) into cylindrical

coordinates by the relation

x1 = r cos ϕ, x2 = r sin ϕ, x3 = z.

This relation determines the orthonormal basis (ēr, ēϕ, ēz), where

ēr = (cos ϕ, sin ϕ, 0), ēϕ = (− sin ϕ, cos ϕ, 0), ēz = (0, 0, 1)

are unit vectors along the radial-, the angular-, and the z-axes, respectively.
Using this orthonormal basis we can decompose the velocity vector v as follows

v = vr(r, z, t)ēr + vϕ(r, z, t)ēϕ + vz(r, z, t)ēz.

For the vorticity vector ω = rotv we have the expression

ω = −vϕ,z(r, z, t)ēr + ωϕ(r, z, t)ēϕ +
1
r
(rvϕ),r(r, z, t)ēz.

Here ωϕ can be computed explicitly, i.e. ωϕ = vr,z − vz,r.
Let R, a > 0. Then, we define

Ω = {x ∈ R
3 : r < R, |z| < a}

and by ∂Ω = S1 ∪ S2 we denote the boundary of Ω, where

S1 =
{
x ∈ R

3 : r = R, |z| < a
}

,

S2 =
{
x ∈ R

3 : r < R, z ∈ {−a, a}} .
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The system of equations we investigate reads
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt + (v · ∇)v − νΔv + ∇p = f in ΩT = Ω × (0, T ),

divv = 0 in ΩT ,

v · n̄ = 0 on ST = S × (0, T ),

ωϕ = 0 on ST ,

vϕ = 0 on ST ,

v
∣
∣
t=0

= v0 in Ω × {t = 0}

(1.1)

where n̄ is the unit outward normal to S vector.
To present our main result we need to introduce the quantity

u = rvϕ. (1.2)

It is called the swirl and is a solution to the problem
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u,t + v · ∇u − νΔu +
2ν

r
u,r = rfϕ ≡ f0 in Ω,

u = 0 on ST ,

u
∣
∣
t=0

= rvϕ(0) ≡ u(0) in Ω × {t = 0}.

(1.3)

We have to emphasize that the boundary conditions (1.1)3,4 were introduced by Ladyžhenskaya in [1].
Condition (1.1)4 is necessary for solvability of some initial-boundary value problems for ωϕ (see (1.15)2).

Theorem 1 (Main result). Fix 0 < r0 < R. Let

D2
1 ≡ 3 ‖f‖2

L1(0,t;L2(Ω))(Ωt) + 2 ‖v(0)‖2
L2(Ω) < ∞,

D2 ≡ ‖f0‖L1(0,t;L∞(Ω)) + ‖u(0)‖L∞(Ω) < ∞.

Let us introduce

M(t) = c

⎛

⎝
∥
∥
∥
∥

fϕ

r

∥
∥
∥
∥

2

L2(0,t;L 6
5
(Ω))

+ ‖fϕ‖4
L4(Ωt) +

∥
∥
∥
∥

ωϕ(0)
r

∥
∥
∥
∥

2

L2(Ω)

+
∫

Ω

v4
ϕ(0)
r2

dx

)

+ c
D10

1 D8
2

r16
0

≡ M ′(t) + c
D10

1 D8
2

r16
0

. (1.4)

Let

α(t, r0) = ‖u‖2
L∞(Ωt

r0
) , where Ωr0 = {x ∈ Ω: r ≤ r0},

M = M(T ),

M ′ = M ′(T ).

Assume that γ > 1 and α(t, r0) is so small that

α(t, r0) ≤ c(γ − 1)M

·
(

γMD2
2 + D2

1(γM)2 + (γM)2 exp
(
c(γM)2

)
(∥

∥
∥
∥

vϕ(0)
r

∥
∥
∥
∥

2

L3(Ω)

+
∥
∥
∥
∥

fϕ

r

∥
∥
∥
∥

2

L1(0,t;L3(Ω))

))−1

≡ Φ(M).

Then
∥
∥
∥

ωϕ

r

∥
∥
∥

2

L∞(0,t;L2(Ω))
+

∥
∥
∥

ωϕ

r

∥
∥
∥

2

L2(0,t;H1(Ω))
≤ γM. (1.5)
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Consider now the case r0 = R, thus ΩR = Ω. Suppose that

α(t, R) ≤ ‖f0‖L1(0,t;L∞(Ω)) + ‖u(0)‖L∞(Ω) ≡ Φ(M ′).

Then
∥
∥
∥

ωϕ

r

∥
∥
∥

2

L∞(0,t;L2(Ω))
+

∥
∥
∥

ωϕ

r

∥
∥
∥

2

L2(0,t;H1(Ω))
≤ γM ′. (1.6)

One may wonder what is the difference between (1.5) and (1.6). Careful comparison shows that (1.5)
is obtained provided that α(t, r0) = ‖u‖2

L∞(Ωt
r0

) is sufficiently small in the neighborhood of r = 0.
In (1.6) we do not need any smallness restrictions. This might suggest that we can take r0 = R and
without any restrictions show the regularity of weak, axially symmetric solutions with non-vanishing
vϕ(0). Unsurprisingly, this is not true: (1.6) does not exist without obtaining (1.5) first. We will see later
in the proof that we approach certain integral differently when r is close to 0 and when 0 < r0 < r, where
r0 is fixed. Unfortunately, as (1.4) shows, passing with r0 → 0+ is not possible.

We should emphasize that Theorem 1 does not directly imply the regularity of weak solutions but we
may quickly deduce it following the reasoning from Lemma 2.9. Instead, we utilize one of many Serrin-
type regularity criteria, e.g. [2, Theorem 3.(ii)], which states that if ωϕ ∈ L∞(0, t;L2(Ω)), then a weak
solution v to (1.1) is regular. Inequality (1.6) yields exactly

‖ωϕ‖L∞(0,t;L2(Ω)) ≤ cM ′,

which for v′ = (vr, vz) yields

‖v′‖L∞(0,t;H1(Ω)) ≤ cM ′, (1.7)

and eventually

‖vr‖L∞(0,t;L6(Ω)) + ‖vz‖L∞(0,t;L6(Ω)) ≤ cM ′. (1.8)

In light of [3, Theorem 1] the above inequality also implies the regularity of a weak solution v to (1.1).
In fact, there are many auxiliary results that could be utilized here. For a brief summary of Serrin-type
regularity criteria for axially symmetric solutions to the Navier–Stokes equations we refer the reader to
the introductions in e.g. [4,5] and [6]. Lots of regularity criteria in terms of angular component of the
velocity or of the swirl were established in e.g. [7–13].

In general, the problem of regularity of weak solutions to the Navier–Stokes equations in R
3 has a

long history. In 1968 it was shown independently by Ladyzhenskaya [1] and Ukhovskii et al. [14] that
in class of axially symmetric solutions any weak solution is regular provided that vϕ(0) = 0. Shortly
after Ladyzhenskaya wrote a book [15] which laid foundations for intensive research on regularity of weak
solutions.

Before describing the steps of the proof of Theorem 1 let us briefly discuss recent results. In [16] the
case Ω = R

3 is studied. Lei et al. show that if supt≥0 |u(r, z, t)| ∼ O
(
ln−2 r

)
(see Corollary 1.3), then v is

global and regular axially symmetric solution to (1.1)1,2,6. This is an improvement over Wei’s result (see

[17]), where O
(
ln− 3

2 r
)

is needed. These two results were recently improved in [18], where the condition

|u(r, z, t)| ≤ Ne−c|ln r|τ

implies the regularity of weak solutions. Here 0 < r ≤ 1
4 and τ is any number from (0, 1), c,N are some

constants. Our result is somehow comparable—(1.4) suggests that |u(r, z, t)| ∼ e− 1
r16 .

We have to emphasize that in papers [8,10,13] smallness condition looks very complicated and depends
not only on the swirl but also on e.g. vorticity. In [19] to prove the regularity of weak, axially symmetric
solutions we assume either vr ∈ L∞(0, t;L3(Ω)) or vr

r ∈ L∞(0, t;L 3
2
(Ω)). In both cases some smallness

conditions are needed but they depend explicitly on the constant from the Poincaré inequality.
To the best of our knowledge that are not that many results concerning the regularity of weak, axially

symmetric solutions to the Navier–Stokes equations in bounded cylinders (see e.g. [20]). Our main result
is not only new but it also uses non-trivial weighted estimates for the stream functions. To explain this
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technique, we go back to (1.1) and following e.g. Ladyzhenskaya [1] or How et al. (see [21]) we rewrite it
in the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vϕ,t + v · ∇vϕ − ν

(
Δ − 1

r2

)
vϕ +

1
r
vrvϕ = fϕ in ΩT ,

ωϕ,t + v · ∇ωϕ − ν

(
Δ − 1

r2

)
ωϕ +

1
r

(
v2

ϕ

)
,z

+
1
r
vrωϕ = Fϕ

in ΩT ,

−
(

Δ − 1
r2

)
ψ = ωϕ in ΩT ,

vϕ = ωϕ = ψ = 0 on ST ,

vϕ

∣
∣
t=0

= vϕ(0) in Ω × {t = 0},

ωϕ

∣
∣
t=0

= ωϕ(0) in Ω × {t = 0},

(1.9)

where Fϕ = rot f · ēϕ and ψ is the stream function such that

vr = −ψ,z, vz =
1
r
(rψ),r. (1.10)

We recall that in (1.9) and whenever cylindrical coordinates in this manuscript are used we have

∇ = ēr∂r + ēz∂z and Δ = ∂2
r +

1
r
∂r + ∂2

z . (1.11)

To derive energy type estimates for the velocity we prefer (1.1)1,2 in the form

vr,t + v · ∇vr − ν

(
Δvr − 1

r2
vr

)
− 1

r
v2

ϕ + p,r = fr,

vϕ,t + v · ∇vϕ − ν

(
Δvϕ − 1

r2
vϕ

)
+

1
r
vrvϕ = fϕ,

vz,t + v · ∇vz − νΔvz + p,z = fz,

(rvr),r + (rvz),z = 0.

(1.12)

Moreover, we have the following boundary

vr

∣
∣
S1

= 0, vz

∣
∣
S2

= 0, vϕ

∣
∣
S

= 0, vr,z − vz,r

∣
∣
S

= 0 (1.13)

and initial conditions

vr

∣
∣
t=0

= vr(0), vϕ

∣
∣
t=0

= vϕ(0), vz

∣
∣
t=0

= vz(0).

It is also convenient to introduce the quantities

u1 =
vϕ

r
, ω1 =

ωϕ

r
, ψ1 =

ψ

r
, f1 =

fϕ

r
, F1 =

Fϕ

r
. (1.14)
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Then, system (1.9) finally reads
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1,t + v · ∇u1 − ν

(
Δu1 +

2
r
u1,r

)
= 2u1ψ1,z + f1 in ΩT ,

ω1,t + v · ∇ω1 − ν

(
Δω1 +

2
r
ω1,r

)
= 2u1u1,z + F1 on ΩT ,

− Δψ1 − 2
r
ψ1,r = ω1 in ΩT ,

u1 = ω1 = ψ1 = 0 on ST ,

u1

∣
∣
t=0

= u1(0) in Ω × {t = 0},

ω1

∣
∣
t=0

= ω1(0) in Ω × {t = 0}.

(1.15)

Systems (1.15) and (1.9) are similar. Our main focus will be concentrated on
∫
Ωt

vr

r

v4
ϕ

r2 dxdt′. To handle
this integral we need estimates for solutions to both (1.15) and (1.9). These estimates are presented in
Sects. 2, 3 and 4. Finally, in Sect. 5 we eventually combine them. Apart from various energy estimates we
also need two non-trivial estimates in weighted Sobolev spaces for solutions to (1.14)3 (see Corollaries 2.10
and 2.11). Due to the order of the weight, we need to adjust the order of singularity of ψ1 near r = 0. In
Lemma 2.8 we will see that ψ1 ∼ O(1), thus ψ1 /∈ H3

0 (Ω) (see Sect. 2). Therefore, we subtract from ψ1 as
much as it is needed for this difference to belong to H3

0 (Ω). This idea is motivated by Kondratev’s work
(see [22]) and discussed in a separate manuscript (see [23]).

2. Notation and Auxiliary Results

First we introduce the function spaces

Definition 2.1. Let Ω be a cylindrical axially symmetric domain with axis of symmetry inside. We use
the following notation for Lebesgue and Sobolev spaces:

‖u‖Lp(Q) = |u|p,Q , ‖u‖Lp(Qt) = |u|p,Qt ,

‖u‖Lp,q(Qt) = ‖u‖Lq(0,t;Lp(Q)) = |u|p,q,Qt ,

where p, q ∈ [1,∞], Q replaces either Ω or S.

‖u‖Hs(Q) = ‖u‖s,Q , where Hs(Q) = W s
2 (Q),

‖u‖W s
p (Q) = ‖u‖s,p,Q ,

‖u‖Lq(0,t;W k
p (Q)) = ‖u‖k,p,q,Qt , ‖u‖k,p,p,Qt = ‖u‖k,p,Qt ,

where s, k ∈ R
1
+.

Finally, similarly to Definition 2.1 in [23] we introduce weighted spaces Lp,μ(Ω), μ ∈ R
1, p ∈ [1,∞],

with the norm

‖u‖Lp,μ(Ω) =
(∫

Ω

|u|prpμdx

) 1
p

and

‖u‖Hk
μ(Ω) =

⎛

⎝
∑

|α|≤k

∫

Ω

∣
∣Dα

r,zu(r, z)
∣
∣2 r2(μ+|α|−k) rdrdz

⎞

⎠

1
2

,

where Dα
r,z = ∂α1

r ∂α2
z , |α| = α1 + α2, |α| ≤ k, αi ∈ N0 ≡ {0, 1, 2, . . .}, i = 1, 2, k ∈ N0 and μ ∈ R. In fact,

we only use H3
0 (Ω) and H2

0 (Ω) and these symbols should not be mixed with Sobolev spaces with zero
trace.
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We use notation: r.h.s—right-hand side, l.h.s.—left-hand side.
By c we denote generic constants. They are time-independent but they may depend on R. If a constant

depends on a quantity l and this dependence needs to be tracked we write c(l). This means that c(l) ∼ c·l.
Similarly c

(
1
l

) ∼ c
l .

Lemma 2.2 (Hardy’s inequality). Suppose that f ≥ 0, p ≥ 1 and r = 0. Then
( ∫ ∞

0

(∫ x

0

f(y) dy

)p

x−r−1dx

)1/p

≤ p

r

(∫ ∞

0

|yf(y)|py−r−1 dy

)1/p

.

Lemma 2.3. Let f ∈ L2,1(Ωt), v(0) ∈ L2(Ω). Assume that vϕ

∣
∣
S

= 0, n̄ · v∣
∣
S

= 0, ωϕ

∣
∣
S

= 0. Then,
solutions to (1.1) satisfy the estimate

‖v(t)‖2
L2(Ω) + ν

∫
Ωt

(|∇vr|2 + |∇vϕ|2 + |∇vz|2
)

dxdt′

+ ν
∫
Ωt

(
v2

r

r2 + v2
ϕ

r2

)
dxdt′ ≤ D2

1. (2.1)

Proof. Multiplying (1.12)1 by vr, (1.12)2 by vϕ, (1.12)3 by vz, adding the results, integrating over Ω and
using (1.13) yields

1
2

d
dt

∫

Ω

(
v2

r + v2
ϕ + v2

z

)
dx − ν

∫

S1

vz,rvzdS1 − ν

∫

S2

vr,zvrdS2

+ν

∫

Ω

(|∇vr|2 + |∇vϕ|2 + |∇vz|2
)

dx + ν

∫

Ω

(
v2

r

r2
+

v2
ϕ

r2

)
dx

+
∫

Ω

(
−1

r
v2

ϕvr +
1
r
vrv

2
ϕ

)
dx +

∫

Ω

(p,rvr + p,zvz) dx

=
∫

Ω

(frvr + fϕvϕ + fzvz) dx. (2.2)

In view (1.13) the boundary terms in (2.2) vanish. The last term on the l.h.s. of (2.2) vanishes in virtue
of (1.13) and the equation of continuity (1.12)4.

Using that |v|2 = v2
r + v2

ϕ + v2
z , we rewrite (2.2) the form

1
2

d
dt

‖v‖2
L2(Ω) + ν

∫

Ω

(|∇vr|2 + |∇vϕ|2 + |∇vz|2
)

dx + ν

∫

Ω

(
v2

r

r2
+

v2
ϕ

r2

)
dx

=
∫

Ω

(frvr + fϕvϕ + fzvz) dx. (2.3)

Applying the Hölder inequality to the r.h.s. of (2.3) yields

d
dt

‖v‖L2(Ω) ≤ ‖f‖L2(Ω) , (2.4)

where we used that |f |2 = f2
r + f2

ϕ + f2
z .

Integrating (2.4) with respect to time implies

‖v(t)‖L2(Ω) ≤ ‖f‖L2,1(Ωt) + ‖v(0)‖L2(Ω) . (2.5)

Integrating (2.3) with respect to time, using the Hölder inequality in the r.h.s. of (2.3) and using (2.5)
we obtain

1
2

‖v(t)‖2
L2(Ω) + ν

∫

Ωt

(|∇vr|2 + |∇vϕ|2 + |∇vz|2
)

dxdt′ + ν

∫

Ωt

(
v2

r

r2
+

v2
z

r2

)
dxdt′

≤ ‖f‖L2,1(Ωt)

(
‖f‖L2,1(Ωt) + ‖v(0)‖L2(Ω)

)
+

1
2

‖v(0)‖2
L2(Ω) .

The above inequality implies (2.1) and concludes the proof. �
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Lemma 2.4. Consider problem (1.3). Assume that f0 ∈ L∞,1(Ωt), u(0) ∈ L∞(Ω). Then

‖u(t)‖L∞(Ω) ≤ D2. (2.6)

Proof. Multiplying (1.3)1 by u|u|s−2, s > 2 integrating over Ω and by parts and using that u
∣
∣
S

= 0, we
obtain

1
s

d
dt

‖u‖s
Ls(Ω) +

4ν(s − 1)
s2

∥
∥
∥∇|u|s/2

∥
∥
∥

2

L2(Ω)
+

ν

s

∫

Ω

(|u|s),r drdz =
∫

Ω

f0u|u|s−2dx, (2.7)

where the last term of (2.7) equals I ≡ ν
s

∫ a

−a
|u|s ∣

∣r=R

r=0
dz. From [24] it follows that u

∣
∣
r=0

= 0. Since
u
∣
∣
r=R

= 0 and using the boundary condition vϕ

∣
∣
S

= 0 we conclude that I = 0. Then, we derive from
(2.7) the inequality

d
dt

‖u‖Ls(Ω) ≤ ‖f0‖Ls(Ω) . (2.8)

Integrating (2.8) with respect to time and passing with s → ∞ we derive (2.6) from (2.8). This ends the
proof. �

Lemma 2.5. Let estimates (2.1) and (2.6) hold. Then

‖vϕ‖L4(Ωt) ≤ D
1/2
1 D

1/2
2 . (2.9)

Proof. We have
∫

Ωt

|vϕ|4 dxdt′ =
∫

Ωt

r2v2
ϕ

v2
ϕ

r2
dxdt′ ≤ ‖rvϕ‖2

L∞(Ωt)

∫

Ωt

v2
ϕ

r2
dxdt′ ≤ D2

2D
2
1.

This implies (2.9) and concludes the proof. �

Lemma 2.6. Let ω1 ∈ L2(Ω). Then solutions to (1.15)3 satisfy

‖ψ1‖2
H1(Ω) +

∫ a

−a

ψ2
1(0) dz ≤ c ‖ω1‖2

L2(Ω) , (2.10)

where ψ1(0) = ψ1|r=0. In addition, if ω1 ∈ L2,μ(Ω), μ ∈ (0, 1) then

‖ψ1‖2
L2,−μ(Ω) + ‖ψ1‖2

H1(Ω) +
∫ a

−a

ψ2
1(0) dz ≤ c ‖ω1‖2

L2,μ(Ω) , (2.11)

where ψ1(0) = ψ1|r=0.

Proof. Multiply (1.15)3 by ψ1, integrate over Ω and use boundary condition (1.15)4. Then we obtain

‖∇ψ1‖2
L2(Ω) −

∫

Ω

∂rψ
2
1 drdz =

∫

Ω

ω1ψ1 dx. (2.12)

Applying the Hölder inequality to the r.h.s. of (2.12), using the Poincaré inequality and boundary condi-
tion (1.3)4 we obtain (2.10).

Using weighted spaces we can estimate the r.h.s. of (2.12) by

‖ω1‖L2,μ(Ω) ‖ψ1‖L2,−μ(Ω) .

By the Hardy inequality (see Lemma 2.2) and μ ∈ (0, 1), r ≤ R, we get
∫

Ω

|ψ1|2r−2μdx ≤ c

∫

Ω

|ψ1,r|2r2−2μdx ≤ cR2−2μ

∫

Ω

|∇ψ1|2 dx.

Since μ ∈ (0, 1) the bound
∫
Ω

|ψ1|2 r−2μ dx < ∞ does not imply ψ1

∣
∣
r=0

= 0. Then (2.11) holds. This
concludes the proof. �
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Lemma 2.7. Assume that u1(0) ∈ L∞(Ω), f1, ψ1,z ∈ L1(0, t;L∞(Ω)). Then for solutions to (1.15) the
following inequality

‖u1(t)‖L∞(Ω) ≤ exp
(∫ t

0

‖ψ1,z(t′)‖L∞(Ω) dt′
)

D2 (2.13)

holds.

Proof. Multiply (1.15)1 by u1|u1|s−2 and integrate over Ω. Then we have

1
s

d
dt

‖u1‖s
Ls(Ω) +

4ν(s − 1)
s2

∥
∥
∥∇u

s/2
1

∥
∥
∥

2

L2(Ω)
=

∫

Ω

ψ1,zu
s
1dx +

∫

Ω

f1u
s−1
1 dx. (2.14)

Applying the Hölder inequality to the r.h.s. of (2.14) and simplifying we get

d
dt

‖u1‖Ls(Ω) ≤ ‖ψ1,z‖L∞(Ω) ‖u1‖Ls(Ω) + ‖f1‖Ls(Ω) . (2.15)

Integrating with respect to time yields

‖u1(t)‖Ls(Ω) ≤ exp
( ∫ t

0

‖ψ1,z(t′)‖L∞(Ω) dt′
)(

‖f1‖L1(0,t;Ls(Ω)) + ‖u1(0)‖Ls(Ω)

)
. (2.16)

Passing with s → ∞ we derive (2.13). This concludes the proof. �

Lemma 2.8. Let ψ1 be a solution to
⎧
⎨

⎩
−Δψ1 − 2

r
ψ1,r = ω1 in Ω,

ψ1 = 0 on S.
(2.17)

Suppose that ω1 ∈ L2(Ω). Then, any solution ψ1 to (2.17) satisfies

‖ψ1‖2,Ω ≤ c |ω1|2,Ω . (2.18)

Proof. We start with rewriting (2.17)1 in the form

−ψ1,rr − ψ1,zz − 3
r
ψ1,r = ω1.

Multiplying this equality by 1
r ψ1,r and integrating over Ω yields

3
∫

Ω

∣
∣
∣
∣
1
r
ψ1,r

∣
∣
∣
∣

2

dx = −
∫

Ω

ψ1,rr
1
r
ψ1,r dx −

∫

Ω

ψ1,zz
1
r
ψ1,r dx −

∫

Ω

ω1
1
r
ψ1,r dx. (2.19)

The first term on the r.h.s. of (2.19) equals

−
∫

Ω

ψ1,rrψ1,r drdz = −1
2

∫

Ω

∂rψ
2
1,r drdz = −1

2

∫ a

−a

ψ2
1,r

∣
∣r=R

r=0
dz ≡ I1.

Integrating with respect to z in the second term on the r.h.s. of (2.19) yields

−
∫

Ω

(ψ1,zψ1,r),z drdz +
∫

Ω

ψ1,zψ1,rz drdz,

where the first term vanishes because ψ1,r|z∈{−a,a} = 0 and the second equals

I2 ≡ 1
2

∫ a

−a

ψ2
1,z

∣
∣r=R

r=0
dz.

Using the boundary condition (2.17)2 we obtain

I2 = −1
2

∫ a

−a

ψ2
1,z

∣
∣
r=0

dz.
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From [25, Remark 4] we have

ψ = a1(r, z, t)
∣
∣
r=0

r + a3(r, z, t)
∣
∣
r=0

r3 + o(r4),

ψ1 = a1(r, z, t)
∣
∣
r=0

+ a3(r, z, t)
∣
∣
r=0

r2 + o(r3),

thus

ψ1,r

∣
∣
r=0

= 0. (2.20)

Using (2.20) in I1 yields

I1 = −1
2

∫ a

−a

ψ2
1,r

∣
∣
r=R

dz.

Applying the Hölder and Young inequalities to the last term on the r.h.s in (2.19) and combining it with
I1 and I2 we obtain

1
2

∫

Ω

1
r2

ψ2
1,r dx +

1
2

∫ a

−a

ψ2
1,r

∣
∣
r=R

dz +
1
2

∫ a

−a

ψ2
1,z

∣
∣
r=0

dz ≤ c |ω1|22,Ω . (2.21)

Since the last two termns on the l.h.s. are positive we conclude that
∫

Ω

1
r2

ψ2
1,r dx ≤ c |ω1|22,Ω . (2.22)

Now we can rewrite (2.17) in the form
⎧
⎨

⎩
−Δψ1 = ω1 +

2
r
ψ1,r in Ω,

ψ1 = 0 on S
(2.23)

and consider it as the Dirichlet problem for the Poisson equation. Thus

‖ψ1‖2,Ω ≤ c |ω1|2,Ω , (2.24)

where (2.22) was used. This ends the proof. �

Lemma 2.9. Assume that s ∈ (1,∞). Suppose that f ∈ L1(0, t;Ls(Ω)) and u1(0) ∈ Ls(Ω). Then

|u1|s,Ω ≤ exp
(

cs

∫ t

0

|ω1(t′)|22,Ω dt′
) (

s ‖f1‖L1(0,t;Ls(Ω)) + ‖u1(0)‖Ls(Ω)

)
.

Proof. In (2.14) we integrate by parts, use the boundary conditions (1.3)4 and apply the Hölder and
Young inequalities

1
s

d
dt

|u1|ss,Ω +
4(s − 1)ν

s2

∫

Ω

∣
∣
∣∇|u1|s/2

∣
∣
∣
2

dx

≤ ε
∣
∣
∣∂zu

s/2
1

∣
∣
∣
2

2,Ω
+

c

ε
|ψ1|2∞,Ω |u1|ss,Ω + |f1|s,Ω |u1|s−1

s,Ω . (2.25)

For sufficiently small ε we get
1
s

d
dt

|u1|ss,Ω ≤ cs |ψ1|2∞,Ω |u1|ss,Ω + |f1|s,Ω |u1|s−1
s,Ω . (2.26)

Hence, we have
d
dt

|u1|s,Ω ≤ cs |ψ1|2∞,Ω |u1|s,Ω + |f1|s,Ω .

Since ε = 2(s−1)ν
s2 , then c

ε = cs2

2(s−1)ν ≤ cs. Integrating with respect to time yields

|u1|s,Ω ≤ exp
(

cs

∫ t

0

|ψ1(t′)|2∞,Ω dt′
)(

|u1(0)|s,Ω + |f1|s,1,Ωt

)
. (2.27)
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Using Lemma 2.8

|ψ1|∞,Ω ≤ c ‖ψ1‖2,Ω ≤ c |ω1|2,Ω

we obtain

|u1|s,Ω ≤ exp
(

cs

∫ t

0

|ω1(t′)|22,Ω dt′
) (

|u1(0)|s,Ω + |f1|s,1,Ωt

)
. (2.28)

This concludes the proof. �

Corollary 2.10 (Theorem 1.3 in [23]). Suppose that ψ1 is a weak solution to (1.15)3,4. Let ω1 ∈ L2(Ω)
and introduce

χ(r, z) =
∫ r

0

ψ1,τ (1 + K(τ)) dτ,

where K(τ) is any smooth function with a compact support such that

lim
r→0+

K(r)
r2

= c0 < ∞.

Then

‖ψ1 − ψ1(0) − χ‖2
L2(−a,a;H2

0 (0,R)) + ‖ψ1,zr‖2
L2(Ω)

+ ‖ψ1,zz‖2
L2(Ω) ≤ c ‖ω1‖2

L2(Ω) ,

Corollary 2.11 (Theorem 1.4 in [23]). Let ψ1 be a weak solution to (1.3)3,4. Let ω1 ∈ H1(Ω). Then
∫

R

‖ψ1 − ψ1(0) − η‖2
H3

0 (R+) dz +
∫

R

∫

R+

(
|ψ1,zzz|2 + |ψ1,zzr|2 + |ψ1,zz|2

)
rdrdz

≤ c ‖ω1‖2
H1(Ω) ,

where

η(r, z) = −
∫ r

0

(r − τ)
(

3
r
ψ1,τ + ψ1,zz + ω1

)
(1 + K(τ)) dτ

and K is the same as in Corollary 2.10.

3. Estimate for ω1

Lemma 3.1. Assume that ω1(0) ∈ L2(Ω), u1 ∈ L4(Ωt), F ∈ L6/5,2(Ωt), t ≤ T . Then the following
inequality holds

1
2

∫

Ω

ω2
1 dx +

ν

2

∫

Ωt

|∇ω1|2 dxdt′ + ν

∫ t

0

∫ a

−a

ω2
1

∣
∣
r=0

dzdt′

≤ 1
ν

∫

Ωt

u4
1 dxdt′ + c |F1|26/5,2,Ωt +

∫

Ω

ω2
1(0) dx. (3.1)

Proof. Multiply (1.15)2 by ω1, integrate over Ω, integrate by parts. Next, integration with respect to time
implies (3.1). This ends the proof. �
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4. Estimate for the Angular Component of Velocity

Consider problem (1.9)

Lemma 4.1. Assume that fϕ ∈ L2(Ωt), vϕ(0) ∈ L4,−1/2(Ω),
∣
∣
∣
∣
∣

∫

Ωt

vr

r

v4
ϕ

r2
dxdt′

∣
∣
∣
∣
∣
< ∞. (4.1)

Then, any solution to (1.9) satisfy

1
4

∫

Ω

v4
ϕ

r2
dx +

3ν

4

∫

Ωt

∣
∣
∣
∣
∣
∇v2

ϕ

r

∣
∣
∣
∣
∣

2

dxdt′ +
ν

2

∫

Ωt

∣
∣
∣
vϕ

r

∣
∣
∣
4

dxdt′

≤ 3
2

∫

Ωt

vr

r

v4
ϕ

r2
dxdt′ +

27
4ν3

∫

Ωt

f4
ϕr4 dxdt′ +

1
4

∫

Ω

v4
ϕ(0)
r2

dx. (4.2)

Proof. Multiply (1.9)1 by v3
ϕ

r2 (see expansion (4.4) of vϕ near the axis of symmetry) and integrate over Ω.
Then we have

1
4

d
dt

∫

Ω

v4
ϕ

r2
dx +

∫

Ω

v · ∇vϕ

v3
ϕ

r2
dx − ν

∫

Ω

Δvϕ

v3
ϕ

r2
dx + ν

∫

Ω

v4
ϕ

r4
dx +

∫

Ω

vr

r

v4
ϕ

r2
dx =

∫

Ω

fϕ

v3
ϕ

r2
dx. (4.3)

The second term in (4.3) equals

1
4

∫

Ω

v · ∇v4
ϕr−2dx =

1
4

∫

Ω

v · ∇ (
v4

ϕr−2
)

dx +
1
2

∫

Ω

vrv
4
ϕr−3dx =

1
2

∫

Ω

vr

r

v4
ϕ

r2
dx,

where we used that v · n̄
∣
∣
S

= 0 and divv = 0.
Integrating by parts in the third term on the l.h.s. of (4.3) yields

∫

Ω

∇vϕ∇v3
ϕr−2dx +

∫

Ω

∇vϕv3
ϕ∇r−2dx = 3

∫

Ω

v2
ϕ|∇vϕ|2r−2dx − 2

∫

Ω

vϕ,rv
3
ϕr−3dx

=
3
4

∫

Ω

|∇v2
ϕ|2r−2dx − 1

2

∫

Ω

∂rv
4
ϕr−2 drdz

=
3
4

∫

Ω

∣
∣
∣
∣
∣
∇v2

ϕ

r

∣
∣
∣
∣
∣

2

dx − 1
2

∫

Ω

∂r

(
v4

ϕr−2
)

drdz −
∫

Ω

v4
ϕr−3 drdz ≡ I.

The first term in I equals

3
4

∫

Ω

∣
∣
∣
∣
∣
∇v2

ϕ

r
− v2

ϕ∇1
r

∣
∣
∣
∣
∣

2

dx =
3
4

∫

Ω

∣
∣
∣
∣
∣
∇v2

ϕ

r

∣
∣
∣
∣
∣

2

dx − 3
2

∫

Ω

∇v2
ϕ

r
· v2

ϕ∇1
r
dx

+
3
4

∫

Ω

∣
∣
∣
∣v

2
ϕ∇1

r

∣
∣
∣
∣

2

dx =
3
4

∫

Ω

∣
∣
∣
∣
∣
∇v2

ϕ

r

∣
∣
∣
∣
∣

2

dx +
3
2

∫

Ω

∂r

v2
ϕ

r

v2
ϕ

r2
dx +

3
4

∫

Ω

∣
∣
∣
vϕ

r

∣
∣
∣
4

dx ≡ J.

The middle term in J can be written in the form

3
4

∫

Ω

∂r

v4
ϕ

r2
drdz =

3
4

∫ a

−a

v4
ϕ

r2

∣
∣
∣
∣

r=R

r=0

dz ≡ L.

From [25, Remark 4] it follows that vϕ behaves as

vϕ = a1(r, z, t)
∣
∣
r=0

r + a3(r, z, t)
∣
∣
r=0

r3 + o(r4), r ≈ 0, (4.4)

for some functions a1 and a3. Since vϕ

∣
∣
r=R

= 0 the second terms in I and L vanish.
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Using the above calculations in (4.3) yields

1
4

d
dt

∫

Ω

v4
ϕ

r2
dx +

3
4
ν

∫

Ω

∣
∣
∣
∣
∣
∇v2

ϕ

r

∣
∣
∣
∣
∣

2

dx +
3
4
ν

∫

Ω

v4
ϕ

r4
dx +

3
2

∫

Ω

vr

r

v4
ϕ

r2
dx =

∫

Ω

fϕ

v3
ϕ

r2
dx. (4.5)

Applying the Hölder and Young inequalities to the r.h.s. of (4.5) and integrating the result with respect
to time imply (4.2). This concludes the proof. �

5. Global Estimate

Multiplying (3.1) by ν2

4 and adding (4.2) we obtain

ν2

8

∫

Ω

ω2
1(t) dx +

ν3

8

∫

Ωt

|∇ω1|2 dxdt′ +
1
2

∫

Ω

v4
ϕ(t)
r2

dx

+
3ν

4

∫

Ωt

∣
∣
∣
∣∇

v2
ϕ

r

∣
∣
∣
∣

2

dxdt′ +
ν

4

∫

Ωt

∣
∣
∣
∣
vϕ

r

∣
∣
∣
∣

4

dx dt′ ≤ 3
2

∣
∣
∣
∣

∫

Ωt

vr

r

v4
ϕ

r2
dxdt′

∣
∣
∣
∣

+c

(
|F1|26/5,2,Ωt + |ω1(0)|22,Ω +

∫

Ωt

r4f4
ϕ dxdt′ +

∫

Ω

v4
ϕ(0)
r2

dx

)
. (5.1)

Therefore, we have to estimate the first term on the r.h.s. of (5.1). To examine it we introduce the sets

Ωr0 = {x ∈ Ω: r ≤ r0}, Ω̄r0 = {x ∈ Ω: r ≥ r0}, (5.2)

where r0 > 0 is given.
We write the first term on the r.h.s. of (5.1) in the form

∫

Ωt

vr

r

v4
ϕ

r2
dxdt′ =

∫

Ωt
r0

vr

r

v4
ϕ

r2
dxdt′ +

∫

Ω̄t
r0

vr

r

v4
ϕ

r2
dxdt′ ≡ I + J. (5.3)

Lemma 5.1. Under the assumptions of Lemmas 2.3 and 2.5 we have

|J | ≤ ε1

∫

Ω̄t
r0

∣
∣
∣
∣
∣
∂z

v2
ϕ

r

∣
∣
∣
∣
∣

2

dxdt′ + ε2 sup
t

|ψ,xx|22,Ω + c

(
1
ε1

,
1
ε2

)
D10

1 D8
2

r16
0

. (5.4)

Proof. Since vr

r = −ψ1,z we have

|J | =
∣
∣
∣
∣

∫

Ω̄t
r0

ψ1,z

v4
ϕ

r2
dxdt′

∣
∣
∣
∣ ≤ ε1

∫

Ω̄t
r0

∣
∣
∣
∣∂z

v2
ϕ

r

∣
∣
∣
∣

2

dxdt′ + c

(
1
ε1

) ∫

Ω̄t
r0

ψ2
1

v4
ϕ

r2
dxdt′ ≡ J1.

In view of Lemma 2.5 the second term in J1 is bounded by

1
r4
0

∫

Ω̄t
r0

ψ2v4
ϕ dxdt′ ≤ D2

1D
2
2

r4
0

sup
Ω̄t

r0

ψ2 ≤ c
D2

1D
2
2

r4
0

sup
t

|ψ,xx| 3
2
2,Ω |ψ| 1

2
2,Ω ≡ J2.

Note that all consideration are either a priori or performed for regular, local solutions. Then, derivation
of regular, global solutions can be achieved by extension with respect to time. Since ψ is a solution to
the problem

⎧
⎨

⎩
− Δψ +

ψ

r2
= ω in ΩT ,

ψ = 0 on ST ,

we have
∫

Ω

|∇ψ|2 dx +
∫

Ω

ψ2

r2
dx ≤

∫

Ω

v′2 dx ≤ cD2
1.
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Then J2 is bounded by

J2 ≤ ε2 sup
t

|ψ,xx|22,Ω + c

(
1
ε2

)
D8

1D
8
2

r16
0

D2
1.

Using estimates for J1 and J2 we derive (5.4). This ends the proof. �

Lemma 5.2. Let the assumptions of Lemma 2.3 hold. Additionally, assume that vϕ(0) ∈ L4(Ω), u ∈
L∞(Ωt), |u|∞,Ωt ≤ D2. Then I from (5.3) satisfies

|I| ≤ ε3

∣
∣
∣
∣
∣
∂z

v2
ϕ

r

∣
∣
∣
∣
∣

2

2,Ωt
r0

+ c

(
1
ε3

)
|u|2∞,Ωt

r0

(
D2

2 |∇ω1|22,Ωt

+ |ω1|42,∞,Ωt D2
1 +

(
|u1(0)|23,Ωr0

+ |f1|23,1,Ωt

)
|ω1|22,Ωt exp

(
c |ω1|22,Ωt

))
. (5.5)

Proof. We have

|I| ≤ ε3

∫

Ωt
r0

∣
∣
∣
∣∂z

v2
ϕ

r

∣
∣
∣
∣

2

dxdt′ + c(1/ε3)
∫

Ωt
r0

ψ2
1

v4
ϕ

r2
dxdt′ ≡ I1 + I2.

We estimate I2 by

I2 ≤
∫

Ωt
r0

|ψ1 − ψ1(0) − η|2 v4
ϕ

r2
dxdt′ +

∫

Ωt
r0

|η|2 v4
ϕ

r2
dxdt′ +

∫

Ωt
r0

|ψ1(0)|2 v4
ϕ

r2
dxdt′

≡ I1
2 + I2

2 + I3
2 ,

where ψ1(0) = ψ1

∣
∣
r=0

and η is defined in Corollary 2.11. Using this Corollary we have

I1
2 =

∫

Ωt
r0

|ψ1 − ψ1(0) − η|2
r6

r6v4
ϕ

r2
dxdt′

≤ c sup
Ωt

r0

|u|4
∫

Ωt
r0

|ψ1 − ψ1(0) − η|2
r6

dxdt′ ≤ c sup
Ωt

r0

|u|4 |∇ω1|22,Ωt .

Consider I3
2 ,

I3
2 ≤ sup

Ωr0

|ψ1(0)|2 sup
Ωt

r0

|u|
∫

Ωt
r0

∣
∣
∣
∣
vϕ

r

∣
∣
∣
∣

3

dxdt′

= sup
Ωr0

|ψ1(0)|2 sup
Ωt

r0

|u|
∫

Ωt
r0

v2
ϕ

r2

∣
∣
∣
∣
vϕ

r

∣
∣
∣
∣ dxdt′

≤ sup
Ωt

r0

|ψ1|2 sup
Ωt

r0

|u|
∣
∣
∣
vϕ

r

∣
∣
∣
2

4,Ωt
r0

∣
∣
∣
vϕ

r

∣
∣
∣
2,Ωt

r0

≤ ε
∣
∣
∣
vϕ

r

∣
∣
∣
4

4,Ωt
r0

+ c

(
1
ε

)
sup

t
|ω1|42,Ω sup

Ωt
r0

|u|2D2
1,

where we used Lemmas 2.3 and 2.8.
Consider I2

2 . To simplify presentation we express η in the short form

η =
∫ r

0

(r − τ)f(τ)dτ,

where f replaces
(

3
r ψ1,r + ψ1,zz + ω1

)
(1 + K(r)).
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Then

I2
2 =

∫

Ωt
r0

∣
∣
∣
∣

∫ r

0

(r − τ)f(τ)dτ

∣
∣
∣
∣

2 v4
ϕ

r2
dxdt′ =

∫

Ωt
r0

∣
∣
∣
∣
1
r

∫ r

0

(r − τ)f(τ)dτ

∣
∣
∣
∣

2

r2v2
ϕ

v2
ϕ

r2
dxdt′

≤ sup
Ωt

r0

|u|2
∫

Ωt
r0

∣
∣
∣
∣
1
r

∫ t

0

(r − τ)f(τ)dτ

∣
∣
∣
∣

2 v2
ϕ

r2
dxdt′ ≡ L1.

Using the Hölder inequality in L1 implies

L1 ≤ |u|2∞,Ωt
r0

∫ t

0

(∫

Ωr0

∣
∣
∣
∣
1
r

∫ r

0

(r − τ)f(τ) dτ

∣
∣
∣
∣

2p

dx

)2/2p

dt sup
t

|u1|22p′,ΩT
r0

≡ L2,

where 1/p + 1/p′ = 1.
Applying the Hardy inequality for the middle term in L2, gives

∫ t

0

(∫

Ωr0

∣
∣
∣
∣
1
r

∫ r

0

(r − τ)f(τ)dτ

∣
∣
∣
∣

2p

dx

) 2
2p

dt′

≤ c

∫ t

0

(∫

Ωr0

∣
∣
∣
∣

∫ r

0

f(τ)dτ

∣
∣
∣
∣

2p

dx

) 2
2p

dt′

≤ c

∫ t

0

(∫

Ω0

∣
∣
∣
∣

∫ r

0

(ψ1,ττ + ψ1,ττK(τ)) dτ

∣
∣
∣
∣

2p

dx

) 2
2p

dt′ ≡ L3,

where we used that

f = −ψ1,rr (1 + K(r)) .

To apply the Hardy inequality we use the formula
∫ r

0

(r − τ)f(τ) dτ =
∫ r

0

∫ σ

0

f(τ) dτ dσ.

Then, we use the following Hardy inequality (see e.g. [26, Ch. 1, Sec. 2.16])
(∫ r0

0

∣
∣
∣
∣
1
r

∫ r

0

∫ σ

0

f(τ) dτ dσ

∣
∣
∣
∣

2p

rdr

) 1
2p

≤ c

(∫ r0

0

∣
∣
∣
∣

∫ r

0

f(τ) dτ

∣
∣
∣
∣

2p

rdr

) 1
2p

.

Integrating the result with respect to z we derive the first inequality in L3. Continuing,

L3 ≤ c

∫ t

0

( ∫

Ωr0

(
|ψ1,r|2p +

∣
∣
∣
∣

∫ r

0

ψ1,ττK(τ)dτ

∣
∣
∣
∣

2p)
dx

)2/2p

dt′ ≡ L4.

Using
∫ r

0

ψ1,ττK(τ)dτ = ψ1,rK(r) −
∫ r

0

ψ1,τK,τdτ

in L4 implies

L4 ≤ c

∫ t

0

‖ψ1,r‖2
2p,Ωr0

dt′

+
∫ t

0

(∫

Ωr0

(

|ψ1,rK(r)|2p +
∣
∣
∣
∣

∫ r

0

ψ1,τK,τdτ

∣
∣
∣
∣

2p
)

dx

) 1
p

≤ c

∫ t

0

‖ψ1,r‖2
2p,Ωr0

dt′ ≡ L5,
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where the properties of K are used. Finally, for p ≤ 3 and Lemma 2.8

L5 ≤ c |ω1|22,Ωt
r0

.

Summarizing

I2
2 ≤ c |u|2∞,Ωt

r0

(
|u1(0)|22p′,Ωr0

+ |f1|22p′,1,Ωt
r0

)

· exp
(

c

∫ t

0

|ω1(t′)|22,Ωr0
dt′

)
|ω1|22,Ωt

r0
,

where p′ ≥ 3
2 and Lemma 2.8 was used.

Using estimates of I1
2 , I2

2 , I3
2 , we obtain

I2 ≤ c |u|2∞,Ωt
r0

(
|u|2∞,Ωt

r0
|∇ω1|22,Ωt + |ω1|42,∞,Ωt D2

1

+
(
|u1(0)|23,Ωr0

+ |f1|23,1,Ωt
r0

)
|ω1|22,Ωt exp

(
c |ω1|22,Ωt

))
.

Exploiting the estimate in the bound of I we obtain (5.5). This concludes the proof. �

Proof. (r) Using (5.3) and estimates (5.4) and (5.5) in (5.1) and assuming that ε1 and ε3 are sufficiently
small we obtain the inequality

|ω1|22,∞,Ωt + ‖ω1‖2
L2(0,t;H1(Ω) ≤ c |u|2∞,Ωt

r0

(
D2

2 |∇ω1|22,Ωt + D2
1 |ω1|42,∞,Ωt

+
(
|u1(0)|23,Ωr0

+ |f1|23,1,Ωt
r0

)
|ω1|22,Ωt exp

(
c |ω1|22,Ωt

))
+ M(t), (5.6)

where M(t) is introduced in (1.4).
Let

X(t) = |ω1|22,∞,Ωt + ‖ω1‖2
L2(0,t;H1(Ω)) . (5.7)

In view of this notation, (5.6) takes the form

X(t) ≤ c |u|2∞,Ωt
r0

(
D2

2X + D2
1X

2

+ X2 exp
(
cX2

) (
|u1(0)|23,Ω + |f1|23,1,Ωt

r0

))
+ M(t) ≡ εF (X(t)) + M(t). (5.8)

Consider the equality

X ′(t) = εF (X ′(t)) + M(t). (5.9)

Using the method of successive approximations we will show that there exists a solution X ′(t) and
determine the magnitude of ε which ensures the existence of this solutions.

Suppose that

X ′
n+1(t) = εF (Xn(t)) + M(t). (5.10)

Let γ > 1. Recall that M = M(T ) and assume that

|X ′
n(t)| ≤ γM. (5.11)

Then from (5.10) and (5.8) we obtain
∣
∣X ′

n+1(t)
∣
∣ ≤ c |u|∞,Ωt

(
D2

2(γM) + D2
1(γM)2

+(γM)2 exp
(
c(γM)2

) (
|u1(0)|23,Ω + |f1|23,1,Ωt

r0

))
+ M. (5.12)

Assume that

|u|∞,Ωt) ≤ c(γ − 1)M ·
(
γMD2

2 + D2
1(γM)2 + (γM)2 exp

(
c(γM)2

) (
|u1(0)|23,Ω + |f1|23,1,Ωt

r0

))−1

.

Then
∣
∣X ′

n+1(t)
∣
∣ ≤ γM. (5.13)
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Let now ω1(0) be given. Let ω̃1 be an extension of ω1(0) such that |ω̃1|22,∞(Ωt) + ‖ω̃1‖2
1,2,Ωt < ∞ and

ω̃1

∣
∣
t=0

= ω1(0). Let

X ′
0 = |ω̃1|22,∞(Ωt) + ‖ω̃1‖2

1,2,Ωt < γM. (5.14)

Then, (5.11), (5.13) and (5.14) imply that

|X ′
n| ≤ γM for all n ∈ N0.

It remains to check the convergence of X ′
n. Let

Y ′
n = X ′

n − X ′
n−1.

Then, (5.10) implies

Y ′
n+1 = c |u|∞,Ωt

(
D2

2Y
′
n + D2

1

(
X ′2

n − X ′2
n−1

)2

+
(
X ′2

n exp
(
cX ′2

n

) − X ′2
n+1 exp

(
cX ′2

n−1

)) (
|u1(0)|23,Ω + |f1|23,1,Ωt

r0

))
. (5.15)

Continuing, we have
∣
∣Y ′

n+1

∣
∣ ≤ c |u|∞,Ωt

(
D2

2 |Y ′
n| + D2

1 |Y ′
n| (|X ′

n| +
∣
∣X ′

n−1

∣
∣) +

((
X ′2

n − X ′2
n−1

)
exp

(
cX ′2

n

)

+
(
X ′2

n − X ′2
n−1

)
exp

(
cX ′2

n−1

)
+ X ′2

n−1

(
exp

(
cX ′2

n

) − exp
(
cX ′2

n−1

)))

·
(
|u1(0)|23,Ω + |f1|23,1,Ωt

r0

))

≤ c |u|∞,Ωt

(
D2

2 |Y ′
n| + 2γMD2

1 |Y ′
n| +

(
|Y ′

n| 2γM exp
(
c (γM)2

)

+ (γM)2 exp
(
c (γM)2

)
|Y ′

n| 2γM
) (

|u1(0)|23,Ω + |f1|23,1,Ωt
r0

))

= c |u|∞,Ωt

(
D2

2 + D2
12γM + 2γM

(
exp

(
c (γM)2

))
+ 2(γM)3 exp

(
c(γM)2

))

·
(
|u1(0)|23,Ω + |f1|23,1,Ωt

r0

)
|Y ′

n| .
Hence, the sequence converges if

|u|∞,Ωt

(
D2

2 + D2
1(2γM) +

(
2γM exp(c(γM)2)

+ 2(γM)3 exp(c(γM)2)
) (

|u1(0)|23,Ω + |f1|23,1,Ωt
r0

))
< 1.

This ends the proof. �

As explained after Theorem 1 we have to emphasize that (1.6) is crucial for deducing the regularity
of weak solutions to problem (1.1).
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