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Abstract. We give a new concise proof of a certain one-scale epsilon regularity criterion using weak-strong uniqueness for
solutions of the Navier–Stokes equations with non-zero boundary conditions. It is inspired by an analogous approach for
the stationary system due to Struwe.

1. Introduction

In the regularity theory of the three-dimensional non-stationary Navier–Stokes equations, so-called epsilon
regularity theory remains the state-of-the-art. As well as being of independent interest, epsilon regularity
at one scale (‘one-scale epsilon regularity’) has been a crucial tool for proving some of the best results in
the field. See [3,5,22,27], for example. Thus far, there have been three main methods for proving one-scale
epsilon regularity results:

• direct iteration arguments (see [3]),
• compactness arguments (see [19,21]),
• De Giorgi techniques (see [28]).

This short article is devoted to a new concise proof of a certain one-scale epsilon regularity criterion
for the three-dimensional non-stationary Navier–Stokes equations away from boundaries. Theorem B is
based on slicing techniques and a comparison to a solution for which we have improved integrability. To
the best of our knowledge, related arguments in the Navier–Stokes context were introduced by Struwe in
[26] for the five-dimensional stationary Navier–Stokes equations. Our paper is, in spirit, an analogue for
the non-stationary Navier–Stokes equations.

The following localized weak-strong uniqueness result is the keystone of our paper.

Theorem A (first version of weak-strong uniqueness with boundary conditions). Let Ω ⊂ R
3 be a smooth

bounded domain1 and T > 0. There exists κ̄ = κ̄Ω,T ∈ (0,∞) and C(Ω, T ) ∈ (0,∞) such that the following
holds.2 There exists a unique very weak solution

U ∈ L4(Ω × (0, T )) (1.1)

This article is part of the Topical collection Ladyzhenskaya Centennial Anniversary edited by Gregory Seregin, Konstantinas
Pileckas and Lev Kapitanski.
1We rely on linear results of [10], which require ∂Ω to be of class C2,1.
2See (3.9) for an estimate of κ̄Ω,T . One can take C(Ω, T ) := KΩ,T (1 + C0C2). Here C0 is defined in (3.4), C2 is defined in

(3.7) and KΩ,T ∈ (0, ∞) is defined in (3.1).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00021-023-00780-0&domain=pdf
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to the Navier–Stokes equations on Ω × (0, T ) in the sense of Definition 2.1 with boundary data a and
initial data b satisfying the integrability conditions

a ∈ L4(∂Ω × (0, T )), b ∈ L4(Ω), (1.2)

the compatibility conditions∫

∂Ω

a(·, t) · n = 0,

∫

Ω

b · ∇q = 0 for all q ∈ C∞(R3) (1.3)

and the smallness condition
κ := ‖a‖L4(∂Ω×(0,T )) + ‖b‖L4(Ω) < κ̄. (1.4)

Moreover, U ∈ L4(0, T ;L6(Ω)), and

‖U‖L4(0,T ;L6(Ω)) ≤ C(Ω, T )κ. (1.5)

The critical integrability in (1.5) is the main practical outcome of the theorem.
Below, we give a second version of this localized uniqueness result, see Theorem A’, that can be

directly used to prove the epsilon regularity result stated in Theorem B below.

Remark 1.1 (structure result). We actually prove a strengthened version of the uniqueness result. Namely,
we prove that any very weak solution U in the sense of Definition 2.1 with data satisfying (1.2), (1.3) and
the smallness condition (1.4) can be written as U = Ū + V , where Ū is the unique very weak solution
to the Stokes equation with boundary data a and initial data b and V is the unique mild solution to the
perturbed Navier–Stokes equations around Ū in Ω× (0, T ) with homogeneous boundary and initial data.
We refer to Sect. 3 below for more details.

Remark 1.2 (smallness assumption (1.4).) The smallness condition (1.4) is required in Sect. 3 (Step 1-b)
below in order to construct a mild solution to the perturbed Navier–Stokes equations around the solution
Ū to the linear Stokes equations lifting the boundary data a and the initial data b.

Remark 1.3 (qualitative integrability assumption L4). The integrability condition (1.1) on the solution
is essential to prove that the perturbation in Sect. 3 (Step 2) has finite energy. The integrability condi-
tion (1.2) on the boundary data a is assumed in order to apply the linear results of Farwig et al. [10]
(see Sect. 2 below). Notice that according to [10], the boundary data can be taken in the larger space
L4(0, T ;W− 1

6 ,6(∂Ω)). However, we do not state such an improved result, because in the application to
epsilon regularity that we have in mind, the data a satisfies (1.2).

In the second version of the localized uniqueness stated below, the main change with respect to the
previous theorem is in the conditions on the initial data b. Indeed the requirement (1.3) is strong and
imposes not only that b is divergence-free, but also that b ·n = 0 on ∂Ω. This condition cannot be satisfied
in general for data b arising from slicing in the proof of the epsilon regularity result, Theorem B below;
for details see Step 1 in Sect. 4. The assumptions in Theorem A’, contrary to those of Theorem A, are
immediately satisfied for the data stemming from the slicing in the proof of Theorem B. In order to fit
into the framework of Theorem B, we take Ω = Br0 for some r0 ∈ ( 5

8 , 7
8 ). This specific choice is only for

convenience. It is easy to extend the result to more general domains, the key point being that one has to
assume that b is defined and divergence-free on a larger domain than Ω, so that it is possible to cut-off.

TheoremA’ (second version of weak-strong uniqueness with boundary conditions). Let Ω = Br0 for some
r0 ∈ ( 5

8 , 7
8 ) and t0 ∈ (−1,− 3

4 ). There exists universal constants κ̄ ∈ (0,∞) and C ∈ (0,∞) such that the
following holds.3 There exists a unique very weak solution

U ∈ L4(Br0 × (t0, 0)) (1.6)

3See (3.14) for an estimate of κ̄. One can take C = K(1 + C0C2). Here C0 is defined in (3.4), C2 is defined in (3.7) and
K ∈ (0, ∞) is a universal constant (see (3.13)).
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to the Navier–Stokes equations on Br0 × (t0, 0) in the sense of Definition 2.1 with boundary data a and
initial data b satisfying the integrability conditions

a ∈ L4(∂Br0 × (t0, 0)), b ∈ L4(B1), (1.7)
4 the compatibility condition ∫

∂Br0

a(·, t) · n = 0, (1.8)

the incompressibility condition ∇ · b = 0 in B1 in the sense of distributions and the smallness condition

κ := ‖a‖L4(∂Br0×(t0,0)) + ‖b‖L4(B1) < κ̄. (1.9)

Moreover, U ∈ L4(t0, 0;L6(Br0)), and

‖U‖L4(t0,0;L6(Br0 )) ≤ Cκ. (1.10)

Again, the critical integrability is the main practical outcome of the theorem.
We now state the epsilon regularity result. Let (U,P ) be a finite-energy weak solution to the three-

dimensional Navier–Stokes equations in Q1 = B1(0) × (−1, 0) i.e.

∂tU − ΔU + U · ∇U + ∇P = 0, ∇ · U = 0 in Q1,

in the sense of distributions, and (1.11)
(

sup
t∈(−1,0)

∫

B1

|U(·, t)|2 +

0∫

−1

∫

B1

|∇U |2
) 1

2

≤ M < ∞. (1.12)

Theorem B (epsilon regularity). There exists ε̄ ∈ (0, 1) such that for any M ∈ (0,∞), for any finite-
energy weak solution U to the Navier–Stokes equations in the sense of (1.11)–(1.12) belonging to C∞(B1×
(−1, T )) for all T ∈ (−1, 0),5 the following result holds.

Qualitative statement Assume that U satisfies the smallness condition in Theorem A’, i.e.

‖U‖L4(Q1) < ε̄. (1.13)

Then U ∈ L∞(Q 1
4
).

Quantitative statement Let 0 < ε < ε̄. Assume that

‖U‖L4(Q1) ≤ ε. (1.14)

Then U ∈ L∞(Q 1
4
) and in addition we have the quantitative estimate

‖U‖L∞(Q 1
4
) ≤ P (ε,M), (1.15)

where P (ε,M) is a positive polynomial in 0 < ε, M .

This result is a mere corollary of Theorem A’.

Remark 1.4 (smallness condition (1.13).) Ultimately, the reason for the space L4(Q1) in Theorem B is
that the solution of the linear Stokes equation with boundary data in L4(∂Ω × (0, T )) and zero initial
condition belongs to the critical space L4(0, T ;L6(Ω)) (see Theorem 2.2). Notably, the proof we present
below apparently does not work in L4−ε(Q1).

Remark 1.5 (nonlocality and pressure). Theorem B is in the spirit of some other epsilon regularity results
that do not involve the pressure, such as [18,29].

4Notice here that b is defined on a domain strictly larger than Br0 so that one can cut-off b.
5This assumption is there to keep technicalities to a minimum. It makes our result applicable to rule out first-time
singularities.
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Outline of the paper

In Sect. 2, we review the concept of very weak solution with Lp initial and boundary data. In Sect. 3, we
prove weak-strong uniqueness, Theorems A and A’. In Sect. 4, we prove the epsilon regularity criterion,
Theorem B.

Notations

For r > 0 and p ∈ (1,∞), we denote by A the Stokes operator realized on Lp
σ(Br). Notice that A = −PΔD,

where P is the Helmholtz-Leray projection and ΔD is the realization of the Laplace operator under the
Dirichlet boundary condition on ∂Br. We also use the notation (e−tA)t∈(0,∞) for the Stokes semigroup on
Br. Notice that these notations do not involve explicitly the parameter r in order to lighten the notation
and because the parameter r will be fixed. For further details concerning the Stokes operator and the
Stokes semigroup, we refer to [25, Chapter III.2 and IV.1] and [16]. For definitions of Sobolev spaces on
∂Ω, we refer to [25, Chapter I.3]. We define C2

0,σ(Ω̄) := {f ∈ C2(Ω̄;R3) : div f = 0, f |∂Ω = 0}.
As is usual, the notation C denotes a numerical constant possibly depending on parameters that we

do not track. This constant may change from line to line. When a constant depends on parameters that
we track, we denote this by Cα,β,....

2. Preliminaries

Let Ω ⊂ R
3 be a smooth bounded domain.6 Let −∞ < T1 < T2 < ∞. Let a ∈ L1(∂Ω × (T1, T2);R3),

b ∈ L1(Ω;R3) and F ∈ L1(Ω × (T1, T2);R3×3) satisfying the compatibility conditions (1.3).
We consider the following Stokes problem:

∂tU − ΔU + ∇P = ∇ · F, ∇ · U = 0 in Ω × (T1, T2),

Ū = a on ∂Ω × (T1, T2),

Ū(·, T1) = b.

(2.1)

This problem includes in particular the standard Navier–Stokes problem taking F = −U ⊗ U .

Definition 2.1 (very weak solution.) For a, b and F given as above, we say that U ∈ L1(Ω× (T1, T2)) is a
very weak solution of (2.1) if for all Φ ∈ C1

0 ([T1, T2);C2
0,σ(Ω̄) and for all q ∈ C∞(Ω× [T1, T2];R), we have

−
T2∫

T1

∫

Ω

U · (∂tΦ + ΔΦ + ∇q) = −
T2∫

T1

∫

Ω

F : ∇Φ

+
∫

Ω

b · Φ(·, T1) −
T2∫

T1

∫

∂Ω

a · (∇Φ · n) −
T2∫

T1

∫

∂Ω

(a · n)q.

(2.2)

We state here an existence and uniqueness result of very weak solutions to the Stokes system. Results
in this direction were established in [9], though the version we use below is from [10].

Theorem 2.2 (very weak solutions for the Stokes problem, [10, Lemma 1.2]). Let 4 ≤ s, q < ∞ such
that 2

s + 3
q = 1, and let r := 2

3q. Let a ∈ Ls(T1, T2;Lr(Ω)) and F = b = 0. Assume that a satisfies the
compatibility condition (1.3).

6Below, we apply the results for the fixed smooth domain Ω = Br0 . Hence, we pay no attention here to how the constants
in the estimates will depend quantitatively on the regularity of the domain. This dependence is not tracked in [10]. See also
Footnote 1.
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Then, there exists a unique very weak solution U ∈ Ls(T1, T2;Lq(Ω)) to the Stokes problem (2.1) in the
sense of Definition 2.1. Morever,

‖U‖Ls(T1,T2;Lq(Ω)) ≤ CΩ,T1,T2,q‖a‖Ls(T1,T2;Lr(Ω)). (2.3)

Notice that our boundary data a is slightly less general (but general enough for our purposes) than the
data considered in [10, Lemma 1.2]. It follows that any term in the very weak formulation of the equation
(2.2) makes sense in a classical integral sense and duality brackets are not needed. The statement of
Theorem 2.2 follows directly from [10, Lemma 1.2]. Indeed, W− 1

q ,q(∂Ω) is the dual space of W 1− 1
q′ ,q′

(∂Ω)
with 1

q + 1
q′ = 1, and by the Sobolev embedding theorem [4, Theorem 4.1.3], W 1− 1

q′ ,q′
(∂Ω) embeds into

Lr′
(∂Ω) for r = 2

3q and 1
r + 1

r′ = 1. Therefore, a ∈ Ls(T1, T2;Lr(∂Ω)) embeds into Ls(T1, T2;W− 1
q ,q(∂Ω)).

Remark 2.3 (non-zero initial data). We handle non-zero initial data b as a separate issue. Indeed this
point is more classical than the case of rough boundary data which is treated in the result above. For
non-zero initial data, we rely on the Stokes semigroup estimates in Lebesgue spaces, see for instance [16].

Remark 2.4 (on alternative linear results with rough boundary data). It is also possible to rely on the
results of Fabes, Lewis and Rivière for boundary value problems with Lp data obtained in [20] for the
half-space and in [7,8] for bounded smooth domains. However, due to an additional integrability condition
on a · n on ∂Ω in [7, Theorem (IV.3.3), page 643], these results require us to work in L4+ε, ε > 0, rather
than L4. Moreover, notice that there is a typo in the statement of [7, Theorem (IV.3.1)]. The space for

a · n is Lq̄
tL

2
3 p̄
x , not Lq̄

tL
3
2 p̄
x as written in [7, Theorem IV.3.1]. Indeed, to get the estimate of the term

involving the normal data, namely ∇H, one relies on Theorem IV.2.3.

Lemma 2.5 (Uniqueness of square integrable very weak solutions). Let U ∈ L2(T1, T2;L2(Ω)) be a very
weak solution to the Stokes problem (2.1), in the sense of Definition 2.1, with F = a = b = 0. Then U ≡ 0
on Ω × (T1, T2).

Proof. The proof relies on classical duality arguments, which we include for completeness. Without loss
of generality, let T1 = −1 and T2 = 0. Let f ∈ C∞

0 (Ω× (−1, 0);R3) be arbitrary. Define f̃(x, t) = f(x,−t)
and let Φ̃ solve

∂tΦ̃ − ΔΦ̃ + ∇q̃ = f̃ and div Φ̃ = 0 in Ω × (0,∞), Φ̃|∂Ω = 0, Φ̃(·, 0) = 0.

From [25, Theorem 2.7.3, IV], there is a classical solution to the above linear problem satisfying Φ̃, q̃ ∈
C∞(Ω × (δ, 2)) for all δ ∈ (0, 2). Furthermore, since f̃ is supported in time away from zero we can apply
[25, Lemma 2.4.2, Chapter IV] to infer that Φ̃ is supported in time away from zero.

We define

Φ(x, t) = −Φ̃(x,−t) and q(x, t) = q̃(x,−t).

Inserting Φ and q into (2.2) (where F , a and b are all zero) gives
0∫

−1

∫

Ω

U · fdxds = 0 ∀f ∈ C∞
0 (Ω × (−1, 0);R3).

This implies the desired conclusion. �

Remark 2.6. (Very weak solutions and the energy equality) Let U ∈ L2(T1, T2;L2(Ω)) be a very weak
solution to the Stokes problem (2.1) in the sense of Definition 2.1, with a = b = 0 and F ∈ L2(Ω ×
(T1, T2);R3×3). Applying [25, Theorem 2.3.1 and Theorem 2.4.1, IV], together with Lemma 2.5, gives
that U ∈ C([T1, T2];L2

σ(Ω)) ∩ L2(T1, T2;W
1,2
0,σ (Ω)) with

‖U(·, t)‖2
L2(Ω) + 2

t∫

T1

∫

Ω

|∇U |2dxds = −2

t∫

T1

∫

Ω

F : ∇Udxds ∀t ∈ [T1, T2].
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This can also be used to show that very weak solutions to the Navier–Stokes equations (with a = 0)
satisfy the energy equality. For results in this direction, see [13].

3. Proof of the Localized Weak-Strong Uniqueness Results

3.1. Proof of Theorem A

Step 1 Existence of a ‘strong’ solution to the Navier–Stokes system7 in L4(0, T ;L6(Ω)).
Step 1-a Linear problem.
Our goal is to lift the boundary data a and the initial data b satisfying (1.2) and (1.3) by constructing
a very weak solution Ū to the Stokes problem (2.1) in Ω × (0, T ) with source F = 0. By Theorem
2.2 of Farwig, Kozono and Sohr, with s = r = 4 and q = 6, there exists a unique very weak solution
Ua ∈ L4(0, T ;L6(Ω)) in the sense of Definition 2.1 to the Stokes system with F = b = 0. Hence we
construct Ū the unique very weak solution to the Stokes system with F = 0 (in the sense of Definition
2.1) as follows:

Ū = Ua + e−tAb.

Thanks to the semigroup estimates of [16], we have for t ∈ (0,∞),

‖e−tAb‖L6(Ω) ≤ CΩt−
1
8 ‖b‖L4(Ω).

Hence,
‖Ū‖L4(0,T ;L6(Ω)) ≤ KΩ,T

(‖a‖L4(∂Ω×(t0,0)) + ‖b‖L4(Ω)

)
, (3.1)

for KΩ,T ∈ (0,∞).
Step 1-b Existence of a unique strong solution V to the perturbed system.
In this step, we construct a mild solution to the perturbed Navier–Stokes system

∂tV − ΔV + ∇Q = −∇ · (V ⊗ V ) − ∇ · (V ⊗ Ū) − ∇ · (Ū ⊗ V ) − ∇ · (Ū ⊗ Ū),

∇ · V = 0 in Ω × (0, T ),

V = 0 on ∂Ω × (0, T ),

V (·, 0) = 0 on Ω.

(3.2)

for a small drift Ū . We show that the Duhamel equation associated to (3.2)

V (·, t) = −
t∫

0

e−(t−s)A
(∇ · (V ⊗ V ) + ∇ · (V ⊗ Ū) + ∇ · (Ū ⊗ V ) + ∇ · (Ū ⊗ Ū)

)
ds (3.3)

has a unique fixed point in the critical space L4(0, T ;L6(Ω)).
For t ∈ (0, T ), define

B(D,E)(·, t) := −
t∫

0

e−(t−s)A∇ · (D ⊗ E) ds.

Using [17, Proposition 20], we see that∥∥∥e−(t−s)A∇ · (D ⊗ E)
∥∥∥

L6(Ω)
≤ C

(t − s)
3
4
‖D(·, t)‖L6(Ω)‖E(·, t)‖L6(Ω),

and hence, by Hardy-Littlewood-Sobolev’s theorem [15, Theorem 7.25],

‖B(D,E)‖L4(0,T ;L6(Ω)) ≤ C0‖D‖L4(0,T ;L6(Ω))‖E‖L4(0,T ;L6(Ω)). (3.4)

7After completion of this paper, we became aware that in [9] the existence of a ‘strong solution’ with small non-zero
boundary data is also shown. To make this paper self-contained, we include such arguments in Step 1 below.
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Define the linear operator

L(D)(·, t) := −
t∫

0

e−(t−s)A∇ · (D ⊗ Ū + Ū ⊗ D) ds.

Then by the same reasoning as above

‖L(D)‖L4(0,T ;L6(Ω)) ≤ C1‖D‖L4(0,T ;L6(Ω))‖Ū‖L4(0,T ;L6(Ω)), (3.5)

and for the source term quadratic in Ū ,∥∥B(Ū , Ū)
∥∥

L4(0,T ;L6(Ω))
≤ C0‖Ū‖2

L4(0,T ;L6(Ω)). (3.6)

Let

C2 := min
( 1

C0
,

1
C1

)
. (3.7)

Using (3.4)–(3.6), we can apply [14, Lemma 4.1]. This gives the existence of a fixed point/strong
solution V ∈ L4(0, T ;L6(Ω)) provided that

‖Ū‖L4(0,T ;L6(Ω)) <
C2

4
. (3.8)

Moreover,

‖V ‖L4(0,T ;L6(Ω)) ≤ 4C0‖Ū‖2
L4(0,T ;L6(Ω)).

In view of the linear estimate (3.1), this is achieved whenever

‖Ū‖L4(0,T ;L6(Ω)) ≤ KΩ,T

(‖a‖L4(0,T ;L4(Ω)) + ‖b‖L4(Ω)

)
= KΩ,T κ

< KΩ,T κ̄ =
C2

4
,

i.e.

κ̄ :=
C2

4KΩ,T
. (3.9)

Therefore, there is a strong solution such that

‖V ‖L4(0,T ;L6(Ω)) < 4C0K
2
Ω,T κ2 = C0C2KΩ,T κ. (3.10)

The fact that V is the only strong solution in L4(0, t;L6(Ω)) follows from (3.4) and arguments in [6,
Theorem (3.3)].

Step 2 Weak-strong uniqueness result.
Let W := U − Ū ∈ L4(Ω × (0, T )). Let V ∈ L4(0, T ;L6(Ω)) be the strong solution constructed

in Step 1-b above. Then V − W is a very weak solution to the Stokes system with a = b = 0 and
F := U ⊗ U − (V + Ū) ⊗ (V + Ū) ∈ L2(Ω × (0, T )). Applying Remark 2.6 gives that V − W has finite
energy on Ω × (0, T ) with zero initial data and satisfies the energy equality

1
2

∫

Ω

|V − W |2(x, t)dx +

t∫

0

∫

Ω

|∇(V − W )|2dxds

=

t∫

0

∫

Ω

(V − W ) ⊗ (V + Ū) : ∇(V − W )dxds ∀t ∈ [0, T ).
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For t ∈ [0, T ), we define

E(t) := sup
s∈[0,t]

1
2

∫

Ω

|V − W |2(x, s)dx +

t∫

0

∫

Ω

|∇(V − W )|2(x, s)dxds.

Using the above energy equality (combined with Hölder’s inequality, interpolation of Lebesgue spaces, the
Sobolev embedding theorem and Young’s inequality) yields that for t ∈ [0, T ) and some positive universal
constant C,

E(t) ≤ CE(t)

t∫

0

‖(V + Ū)(·, s)‖4
L6(Ω)ds.

Using this, together with the fact that V +Ū is in L4(0, T ;L6(Ω)), allows us to use an absorbing argument
to conclude that E(t) = 0 for all t ∈ (0, T ). This concludes the proof of Theorem A and of the structure
result mentioned in Remark 1.1. Notice that the quantitative estimate (1.5) directly follows from the
linear estimate (3.1), the estimate (3.10) for the mild solution and the definition of κ̄ in (3.9).

3.2. Proof of Theorem A’

The proof of this result only differs from the proof of Theorem A in the treatment of the linear evolution
of the initial data b. Let us outline the changes, which concern only Step 1-a of Sect. 3.1.

We take ϕ ∈ C∞
c (B 15

16
) a cut-off function such that ϕ ≡ 1 on B 7

8
, 0 ≤ ϕ ≤ 1 and |∇ϕ| ≤ 32. Thanks

to the Bogovskii operator [12] on the annulus B 15
16

\B 7
8
, there exists a divergence-free extension E(b) of

ϕb defined on R
3 that is compactly supported in B 15

16
, E(b) = b on B 7

8
⊂ Br0 and such that

‖E(b)‖L4(B1) ≤ C‖b‖L4(B1).

Let Γ be the heat kernel on R
3. We note that Γ(· − t0) � E(b) is divergence-free, which implies∫

∂Br0

(
Γ(· − t0) � E(b)

) · n = 0.

Moreover, it follows from [7, Lemma IV.3.2] that∥∥Γ(· − t0) � E(b)
∥∥

L4(∂Br0×(t0,0))
≤ C

(
(−t0)

1
8 + (−t0)

1
4
)‖E(b)‖L4(R3) ≤ C‖b‖L4(B1), (3.11)

and ∥∥Γ(· − t0) � E(b)
∥∥

L4(t0,0;L6(Br0 ))
≤ C(−t0)

1
8 ‖E(b)‖L4(R3) ≤ C‖b‖L4(B1), (3.12)

where C ∈ (0,∞) denotes as usual a universal constant. We can now construct the linear solution Ū as
follows. Let

ã = a − Γ(· − t0) � E(b)|∂Br0
.

By Theorem 2.2 of Farwig et al. [10], with s = r = 4 and q = 6, there exists a unique very weak solution
Uã ∈ L4(t0, 0;L6(Br0)) in the sense of Definition 2.1 to the Stokes system with F = b = 0 and boundary
data ã. Hence we construct Ū the unique very weak solution in the sense of Definition 2.1 to the Stokes
system with F = 0 as follows:

Ū = Uã + Γ(· − t0) � E(b).

Hence, the estimates (2.3) and (3.12) lead to

‖Ū‖L4(t0,0;L6(Br0 )) ≤ K
(‖a‖L4(∂Br0×(t0,0)) + ‖b‖L4(Br0 )

)
, (3.13)

where K ∈ (0,∞) denotes a universal constant.
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The rest of the proof, Step 1-b to Step 2 of Sect. 3.1 are identical, replacing the constant KΩ,T by K.
The definition of κ̄ becomes

κ̄ :=
C2

4K
. (3.14)

Remark 3.1. (on the compatibility conditions) We emphasize that in the compatibility conditions (1.3),
the condition8 on the boundary data a is much weaker than the condition on b. Indeed we only ask
that a · n has mean zero on ∂Ω, while b · n is required to vanish identically on ∂Ω. This fact is the
essential redeeming feature that allows the above argument to work. Notice that owing to the fact that
Γ(· − t0) � E(b) is divergence-free,

(
Γ(· − t0) � E(b)

) · n has mean zero on ∂Br0 but is not necessarily zero
identically.

4. Proof of the Epsilon Regularity Result

This section is devoted to the proof of Theorem B. We directly prove the quantitative version, i.e. the
bound (1.15). We assume that U is a finite-energy weak solution to the Navier–Stokes equations, i.e.
(1.11) and (1.12) hold. In addition, we assume that U belongs to C∞(B1 × (−1, T )) for all T ∈ (−1, 0),
see Footnote 5, and satisfies the assumption (1.14) with 0 < ε ≤ ε̄ and ε̄ defined in (4.4).
Step 1 Finding good space and time scales. We need to select a space slice and a time slice. The choices
are completely independent, so the order in which we select the slices does not matter. Let us first select
a space slice r0 ∈ ( 5

8 , 7
8 ). By the coarea formula and Fubini’s theorem, we have

0∫

−1

∫

B1

|U |4 dxdt =

0∫

−1

1∫

0

∫

∂Br

|U |4 dSrdrdt =

1∫

0

0∫

−1

∫

∂Br

|U |4 dSrdtdr.

Therefore, the pigeonhole principle implies that there exists r0 ∈ ( 5
8 , 7

8 ) such that

0∫

−1

∫

∂Br0

|U |4 dSr0dt ≤ 4

0∫

−1

∫

B1

|U |4 dxdt. (4.1)

We now select a time slice. By the pigeonhole principle, there exists t0 ∈ (−1,− 3
4 ) such that

∫

B1

|U |4(x, t0) dx ≤ 4

0∫

−1

∫

B1

|U |4 dxdt. (4.2)

From now on, we call a := U |∂Br0×(−1,0) and b := U(·, t0). By (4.1) we have a ∈ L4(∂Br0 × (−1, 0)) and
by (4.2) we have b ∈ L4(B1). Moreover,

‖a‖L4(∂Br0×(t0,0)) + ‖b‖L4(B1) ≤ 2
√

2‖U‖L4(Q1) ≤ 2
√

2ε < 2
√

2ε̄ ≤ κ̄,

with κ̄ defined by (3.14), provided that ε̄ ≤ κ̄
2
√

2
.

Step 2 Applying weak-strong uniqueness. We now apply the weak-strong uniqueness result of Theorem A’
to the solution U on Br0 × (t0, 0) with the data a and b from Step 1 above. By the quantitative estimate
(1.5) it follows that

‖U‖L4(t0,0;L6(Br0 )) ≤ 2
√

2εK(1 + C0C2). (4.3)

8We stress that this condition on a comes from the linear result Theorem 2.2 taken from [10]; these conditions are also
present in the work [7].
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Step 3 Conclusion via Ladyženskaja–Prodi–Serrin. We can now argue in a similar spirit to [2,23], except
we use the bound (4.3) to set up a contraction mapping9 related to the localized vorticity equation rather
than the velocity. In particular, there exists η̄ such that for any

0 < ε <
η̄

2
√

2K(1 + C0C2)
=: ε̄ (4.4)

we have

‖U‖L6(Q 1
2
) ≤ M(1 + ε).

With this, we can bootstrap in the same way as in [24] to obtain the estimate (1.15). This concludes the
proof of Theorem B.

Remark 4.1. (on the linear solution) In this proof, notice that we are not able to assert that the solution
Ū to the linear Stokes problem with rough boundary data a ∈ L4(Br0 × (t0, 0)) (see the structure result
in Remark 1.1) is smooth in space. However, the linear result is pivotal in order to establish that the
original solution U has improved critical integrability, hence is smooth in space. Notice that we obtain L∞

time integrability by appealing to the L∞
t L2

x control granted by being finite-energy. We cannot bootstrap
further in time without controlling the pressure p up to time 0.

Remark 4.2. (on the half-space) It remains an open problem as to whether such a proof can be done for
establishing epsilon regularity results near a boundary. Indeed, the linear results of Farwig et al. [10] and
of Fabes et al. [7] ask for smoothness of the domain Ω, see for instance Theorem 2.2 above. However, we
are unable to carry out the slicing procedure of Step 1 above near a smooth boundary.

Remark 4.3. (comparison with Struwe [26]) Struwe’s approach to the five-dimensional stationary Navier–
Stokes equations is technically different; it involves iterating the energy on a sequence of balls, which we
avoid. A version of our proof should work in the stationary setting of [26] as well. There, the smallness
condition in L4 could be replaced by smallness in H1, since in five dimensions, the slicing procedure yields
boundary data in H1(∂Br0) ⊂ L4(∂Br0) (four-dimensional Sobolev embedding). The slicing technique
has proven useful for the six-dimensional stationary Navier–Stokes equations [11] and advection–diffusion
equation with rough drifts [1], among others.
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elementary functional analytic approach, [2013 reprint of the 2001 original] [MR1928881]
[26] Struwe, M.: On partial regularity results for the Navier–Stokes equations. Commun. Pure Appl. Math. 41(4), 437–458

(1988)
[27] Tsai, T.-P.: On Leray’s self-similar solutions of the Navier–Stokes equations satisfying local energy estimates. Arch.

Ration. Mech. Anal. 143(1), 29–51 (1998)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2107.12511


49 Page 12 of 12 D. Albritton JMFM

[28] Vasseur, A.F.: A new proof of partial regularity of solutions to Navier–Stokes equations. Nonlinear Differ. Equ. Appl.
NoDEA 14(5), 753–785 (2007)

[29] Wolf, J.: On the local regularity of suitable weak solutions to the generalized Navier–Stokes equations. Ann. Univ.
Ferrara Sez. VII Sci. Mat. 61(1), 149–171 (2015)

Dallas Albritton
Department of Mathematics
Princeton University
Princeton NJ08544
USA
e-mail: dalbrit@princeton.edu

Tobias Barker
Department of Mathematical Sciences
University of Bath
Bath BA2 7AY
UK
e-mail: tb2130@bath.ac.uk

Christophe Prange
2 Avenue Adolphe Chauvin
95302 Cergy-Pontoise Cedex
France
e-mail: christophe.prange@cyu.fr

(accepted: February 4, 2023; published online: May 24, 2023)


	Epsilon Regularity for the Navier–Stokes Equations via Weak-Strong Uniqueness
	Abstract
	1. Introduction
	Outline of the paper
	Notations

	2. Preliminaries
	3. Proof of the Localized Weak-Strong Uniqueness Results
	3.1. Proof of Theorem A
	3.2. Proof of Theorem A'

	4. Proof of the Epsilon Regularity Result
	Acknowledgements
	References




