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1. Introduction

Although much attention has been paid to Lagrangian water waves in recent years, there exist rather
few Lagrangian studies which are specifically for gravity–capillary waves. Gravity–capillary waves are
of considerable practical interest not only because of their relevance to the energy transfer between the
atmosphere and the ocean, but also because of their contribution to the remote sensing of the ocean
surface by airborne and spaceborne radars, and also to the underwater acoustical background generated
during the process of bubble formation [33]. In-depth knowledge of the characteristics of gravity–capillary
waves is therefore important.

The study of nonlinear gravity–capillary waves was pioneered by Wilton [40]. It was followed by
Crapper [14], who studied pure capillary waves in water of infinite depth, and Kinnersley [28], who
generalized the theory to finite depth. For nonlinear water waves, the existence of the fully nonlinear
equations was proven in [12,13,38,41], firstly for gravity water waves and then for waves incorporating
surface tension. Further properties of the flow for these waves were enunciated in [4,7,8,17,21], such as
the symmetry of the flow. Recent analytically rigorous results which provide a qualitative description of
the particle trajectories for a wide variety of both linear and nonlinear flow are [3–11,15–21,26,27,39].
These works prove that there does not exist any closed particle paths throughout the fluid domain for the
irrotational flows detailed therein. The particle motion predicted in these papers is borne out by exper-
imental evidence [2]. Longuet-Higgins [31] and Hogan [23,24] used the Euler–Lagrange transformation
to describe particle orbits in capillary waves and nonlinear gravity–capillary waves. Their models are,
however, applicable only to particles on the water surface, and cannot be generalized to interior fluid
particles.

Recently, some exact solutions using the phase-plane method for particle trajectories in linearized cap-
illary and capillary–gravity water waves have been contributed by Henry [18,19]. However, the solutions
and the details about the flow under the nonlinear waves are still not available. This paper aims to study
particle trajectories of nonlinear gravity–capillary waves completely based on the Lagrangian system,
and to derive asymptotic solutions that can be used to describe the dynamics for the entire flow field.
Previous works on progressive, standing and short-crested gravity waves have been summarized in the
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papers by Chen and Hsu [1] and Hsu et al. [25]. In this paper, we look into the effect of surface tension
(capillary) on a gravity water wave, the motion of which is assumed to be inviscid, incompressible and
irrotational. We will construct asymptotic expansions of the solution in powers of the wave amplitude,
which is assumed to be small. Approximate solutions are derived up to the third order, without admitting
internal resonances [35]. A detailed analysis of influences of the surface tension is then carried out.

The problem formulation, and the procedures for constructing asymptotic solutions are described in
Sect. 2. In Sect. 3, we derive equations for the properties of surface-particle trajectories, and present
results for some selected gravity–capillary waves. In Sect. 4 the trajectories of surface and subsurface
particles, and wave profiles of nonlinear capillary–gravity waves are presented. Finally, some concluding
remarks are given in Sect. 5.

2. Formulation of the Problem

We consider steady, symmetric, periodic, nonlinear gravity–capillary waves propagating on the surface
of an incompressible and inviscid body of water of uniform depth. The fluid motion is taken to be two-
dimensional and irrotational, and the wave is right-going. We choose Cartesian axes with x pointing
horizontally to the right and y vertically downward. The mathematical problem is formulated in terms of
Lagrangian variables, a and b, which define the original position of individual fluid particles. At any time
t, we let b = 0 be the free surface, and b = d be the bottom. The Cartesian coordinates (x(a, b, t), y(a, b, t))
of fluid particles and the fluid pressure P (a, b, t) are the unknowns. Based on the Lagrangian description,
the governing equations and boundary conditions for two-dimensional irrotational free-surface flow are
summarized as follows:

J =
∂(x, y)
∂(a, b)

= 1, (2.1)

xatyb − xbtya + xaybt − xbyat =
∂(xt, y)
∂(a, b)

+
∂(x, yt)
∂(a, b)

= 0, (2.2)

xatxb − xbtxa + yatyb − ybtya =
∂(xt, x)
∂(a, b)

+
∂(yt, y)
∂(a, b)

= 0, (2.3)

∂φ

∂a
= xtxa + ytya,

∂φ

∂b
= xtxb + ytyb, (2.4)

p

ρ
= −∂φ

∂t
− gy +

1
2

(
x2

t + y2
t

)
+

T

ρ
S,

S =
[
∂2y

∂a2

∂x

∂a
− ∂2x

∂a2

∂y

∂a

]
·
[(

∂x

∂a

)2

+
(

∂y

∂a

)2
]−3/2

,

(2.5)

p = 0, b = 0, (2.6)
v = yt = 0, y = b = −d, (2.7)

In Eqs. (2.1)–(2.7), subscripts a, b, and t denote partial derivatives with respect to the specified vari-
ables, T is the surface tension coefficient, S is the radius of curvature, g is the gravitational acceleration,
p(a, b, t) is water pressure, φ(a, b, t) is a velocity potential function in the Lagrangian system. Except
for Eqs. (2.4) and (2.5), the fundamental physical relationships defining the equations above have been
derived previously [29,34,37,41]. Equation (2.1) is the continuity equation based on the invariant condi-
tion on the volume of a Lagrangian particle; Eq. (2.2) is the differentiation of Eq. (2.1) with respect to
time. Equations (2.3) and (2.4) denote the irrotational flow condition and the corresponding Lagrang-
ian velocity potential, respectively. Equation (2.5) is the Bernoulli equation with surface tension for the
irrotational flow in the Lagrangian description. The wave motion has to satisfy a number of boundary
conditions at the bottom and on the free water surface. On a rigid and impermeable bottom the no-flux
bottom boundary condition gives Eq. (2.6). Equation (2.7) is the dynamic boundary condition of zero
pressure at the free surface.
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3. Asymptotic Solutions

To solve the nonlinear equations (2.1)–(2.7), we introduce the Lagrangian angular frequency σ of particle
motion which is a function of a nonlinear parameter and the Lagrangian level label (b), making the wave
periodic in time t and space x (or a) in order to avoid a secular term. We use the Lindstedt–Poincare
technique that yields uniform expansions to uncover the solutions in the Lagrangian system. In the
Lagrangian approach, the particle positions x and y, the potential function φ and pressure P are consid-
ered as functions of independent variables a, b and time t. Following Chen and Hsu [1], Pierson [37], and
Piedra-Cueva [36], these solutions are sought in perturbation series by introducing an ordering parameter,
which is inserted to identify the order of the associated term:

x = x(a, b, t) = a +
∞∑

n=1

εn[fn(a, b, σt) + f ′
n(b, σ0t)], (3.1)

y = y(a, b, t) = b +
∞∑

n=1

εn[gn(a, b, σt) + g′
n(b, σ0t)], (3.2)

φ = φ(a, b, t) =
∞∑

n=1

εn[φn(a, b, σt) + φ′
n(b, σ0t)], (3.3)

p = p(a, b, t) = −ρgb +
∞∑

n=1

εnpn(a, b, σt), (3.4)

σ = σ(b) = σ0 +
∞∑

n=1

εnσn(b) = 2π/TL(b), (3.5)

where the Lagrangian variables (a, b) are defined as the two characteristic parameters. In these expres-
sions, fn, gn, φn and pn are expected to be associated with the nth-order harmonic solutions. f ′

n, g′
n and

φ′
n are non-periodic functions that increase linearly with time. σ = 2π/TL is the angular frequency of

particle motion or the Lagrangian angular frequency for a particle reappearing at the same elevation. TL

is the corresponding period of particle motion. Upon substituting Eqs. (3.1)–(3.5) into Eqs. (2.1)–(2.7),
and collecting terms of equal order, we obtain a sequence of nonhomogeneous governing equations that
can be solved successively, as shown in the following sections. Recently, it was proven that the conver-
gence and consequent validity of the power series expansions from a mathematical rigorous viewpoint is
ensured since the streamlines are analytic [8,22].

3.1. First-Order Approximation

Collecting terms of order ε, the governing equations and the boundary conditions can be obtained as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1a + f ′
1a + g1b + g′

1b = 0,

σ0(f1aσt + f ′
1aσ0t + g1bσt + g′

1bσ0t) = 0,

σ0(f1bσt + f ′
1bσ0t − g1aσt − g′

1aσ0t) = 0,

φ1a + φ′
1a = σ0(f1σt + f ′

1σ0t),

φ1b + φ′
1b = σ0(g1σt + g′

1σ0t),
p1
ρ = −σ0(φ1σt + φ′

1σ0t) − g(g1 + g′
1) + T

ρ {(g1aa + g′
1aa) + [σ0a(g1σt + g′

1σ0t)]a},

p1 = 0, b = 0,

g1σt = g′
1σ0t = 0, b = −d,

(3.6)
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The flow is assumed periodic with a crest at a = 0 and t = 0, and hence the first-order solution can
be easily written as

f ′
1 = g′

1 = φ′
1 = σ0a = σ0b = 0, (3.7)

f1 = −α
cosh k(b + d)

cosh kd
sin(ka − σt), (3.8)

g1 = α
sinh k(b + d)

cosh kd
cos(ka − σt), (3.9)

φ1 =
ασ0

k

cosh k(b + d)
cosh kd

sin(ka − σt), (3.10)

p1

ρ
= −αρg

(
1 +

Tk2

ρg

)
sinh kb

cosh2kd
cos(ka − σt), (3.11)

σ2
0 = gk

(
1 +

Tk2

ρg

)
tanh kd, (3.12)

where the parameter α represents the amplitude function of the particle displacement; the wave ampli-
tude is as usual taken as a0 = α tanh kd. φ1(a, b, t) is the first-order Lagrangian velocity potential and
p1(a, b, t) is the first-order wave dynamic pressure in the Lagrangian form with pressure p1 = 0 at the free
surface b = 0. Equations (3.7)–(3.11) satisfy all the hydrodynamic equations formulated in Lagrangian
terms including the irrotational condition, and differ from Gerstner’s wave in infinite water depth that
possesses finite vorticity. The dispersion relation shows that the first-order Lagrangian wave frequency
(σ0) is the same as that of the first-order Stokes wave frequency in the Eulerian approach [35]. The
first-order free surface in Lagrangian coordinates is given by setting b = 0 in Eqs. (3.8) and (3.9), and is
similar to expressions for the profile found from the first-order Eulerian equations.

3.2. Second-Order Approximation

Collecting terms of order ε2 and using Eq. (3.7), the governing equations and the boundary conditions
can be obtained as

f2a + f ′
2a + g2b + g′

2b + f1ag1b − f1bg1a + (σ1af1σt + σ1bg1σt)t = 0, (3.13)

σ0(f2aσt + f ′
2aσ0t + g2bσt + g′

2bσ0t) + σ1(f1a + g1b)σt

+σ0(f1ag1b − f1bg1a)σt + σ1af1σt + σ1bg1σt

+σ0[σ1af1(σt)2 + σ1bg1(σt)2 ]t = 0, (3.14)

σ0(f2bσt + f ′
2bσ0t − g2aσt − g′

2aσ0t) + σ1(f1b − g1a)σt

+σ1bf1σt − σ1ag1σt + σ0(f1af1bσt − f1aσtf1b + g1ag1bσt

−g1aσtg1b) + σ0[σ1bf1(σt)2 − σ1ag1(σt)2 ]t = 0, (3.15)

φ2a + φ′
2a = σ0(f2σt + f ′

2σ0t) + σ1f1σt + σ0(f1af1σt + g1ag1σt) − σ1aφ1σtt, (3.16)

φ2b + φ′
2b = σ0(g2σt + g′

2σ0t) + σ1g1σt + σ0(f1bf1σt + g1bg1σt) − σ1bφ1σtt, (3.17)

P2

ρ
= −[σ0(φ2σt + φ′

2σ0t) + g(g2 + g′
2)] − σ1φ1σt

+
1
2
σ2

0(f2
1σt + g2

1σt) +
T

ρ
{(g2aa + g′

2aa) + (σ1atg1σt)a

−2(f1a + f ′
1a)(g1aa + g′

1aa) − (f1aa + f ′
1aa)(g1a + g′

1a)}, (3.18)
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Substituting Eqs. (3.8)–(3.12) into Eqs. (3.13)–(3.15), the second-order governing equations in terms of
ε2, including the continuity equation and the irrotational condition, are given by

f2a + f ′
2a + g2b + g′

2b =
1
2
α2k2

[
cosh 2k(b + d)

cosh2kd
+

cos 2(ka − σt)
cosh2kd

]

− ασ1b
sinh k(b + d)

cosh kd
sin(ka − σt) · t, (3.19)

σ0(f2aσt + f ′
2aσ0t + g2bσt + g′

2bσ0t) = α2k2σ0
sin 2(ka − σt)

cosh2kd

− ασ1b
sinh k(b + d)

cosh kd
sin(ka − σt) + ασ0σ1b

sinh k(b + d)
cosh kd

cos(ka − σt) · t, (3.20)

σ0(f2bσt + f ′
2bσ0t − g2aσt − g′

2aσ0t) = α2k2σ0
sin 2k(b + d)

cosh2kd

− ασ1b
cosh k(b + d)

cosh kd
cos(ka − σt) − ασ0σ1b

cosh k(b + d)
cosh kd

sin(ka − σt) · t, (3.21)

For gravity waves of permanent form, the terms t cos(ka − σt) and t sin(ka − σt) that increase linearly
with time have to be zero to avoid resonance. Noting that σ1b = 0 or σ1 = w1 = constant, then the
general solution which satisfies the bottom boundary condition can be written as

f2 = −β2
cosh 2k(b + d)

cosh2kd
sin 2(ka − σt) +

1
4
α2k

sin 2(ka − σt)
cosh2kd

−λ2
cosh k(b + d)

cosh kd
sin(ka − σt),

f ′
2 =

1
2
α2k

cosh 2k(b + d)
cosh2kd

σ0t, (3.22)

g2 = β2
sinh 2k(b + d)

cosh2kd
cos 2(ka − σt) + λ2

sinh k(b + d)
cosh kd

cos(ka − σt),

g′
2 =

1
4
α2k

sinh 2k(b + d)
cosh2kd

,

Substituting (3.22) into the irrotational equation (2.4) in ε2 order, we obtain

φ2a = σ0

[
2β2

cosh 2k(b + d)
cosh2kd

cos 2(ka − σt) − α2k
cos 2(ka − σt)

cosh2kd

]

+ (αw1 + σ0λ2)
cosh k(b + d)

cosh kd
cos(ka − σt) − φ′

2a,

φ2b = 2σ0β2
sinh 2k(b + d)

cosh2kd
sin 2(ka − σt)

+ (αw1 + σ0λ2)
sinh k(b + d)

cosh kd
sin(ka − σt) − φ′

2b,

(3.23)

Note that the secular terms in Eq. (3.23) have to be eliminated, which yields αw1 + σ0λ2 = 0. The
second-order Lagrangian velocity potential is obtained by integrating over the Lagrangian variables a
or b as

φ2 =
σ0

k
β2

cosh 2k(b + d)
cosh2kd

sin 2(ka − σt) − 1
2
α2σ0

sin 2(ka − σt)
cosh2kd

,

φ′
2 = D′

2(σ0t),
(3.24)
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Substituting the solutions up to the second order into the energy equation (3.18) in ε2 order, we can get

p2

ρ
=

{
β2

[
2
σ2

0

k

cosh 2k(b + d)
cosh2kd

− g
sinh 2k(b + d)

cosh2kd

]
− 3

4
α2σ2

0

1
cosh2kd

}
cos 2(ka − σt)

+
[
α

σ2
0

k
w1

cosh k(b + d)
cosh kd

− gλ2
sinh k(b + d)

cosh kd

]
cos(ka − σt)

+
[
1
4
α2σ2

0

cosh 2k(b + d)
cosh2kd

− 1
4
gα2k

sinh 2k(b + d)
cosh2kd

]
− σ0D

′
2σ0t

−T

ρ

{(
4k2β2 +

3
4
α2k3

)
sinh 2k(b + d)

cosh2kd
cos 2(ka − σt) +

1
4
α2k3 sinh 2k(b + d)

cosh2kd

+ kλ2
sinh k(b + d)

cosh kd
cos(ka − σt)

}
, (3.25)

Applying the zero pressure condition at the free surface, the unknown coefficients in Eq. (3.25) are
obtained as

w1 = λ2 = 0, φ′
2 = D′

2(σ0t) =
1
4
α2σ2

0(tanh2kd − 1)t, (3.26)

β2 =
3
4

α2k

2σ2
0 − gk(1 + 4Tk2

ρg ) tanh 2kd

(
σ2

0

1
cosh 2kd

+
T

ρ
k3 tanh 2kd

)
, (3.27)

The second-order Lagrangian solutions are assembled as

f2 =
[
−β2

cosh 2k(b + d)
cosh2kd

+
1
4
α2k(1 − tanh2kd)

]
sin 2(ka − σt), (3.28)

f ′
2 =

1
2
α2k(1 + tanh2kd)

cosh 2k(b + d)
cosh 2kd

σ0t, (3.29)

g2 = β2
sinh 2k(b + d)

cosh2kd
cos 2(ka − σt) +

1
4
α2k(1 + tanh2kd)

sinh 2k(b + d)
cos k2kd

, (3.30)

g′
2 =

1
4
α2k

sinh 2k(b + d)
cosh2kd

, (3.31)

φ2 =
σ0

k
β2(1 + tanh2kd)

cosh 2k(b + d)
cosh 2kd

sin 2(ka − σt)

−1
2
α2σ0(1 − tanh2kd) sin 2(ka − σt), (3.32)

φ′
2 =

1
4
α2σ2

0(tanh2kd − 1)t, (3.33)

The horizontal particle trajectory in the second-order approximation includes a periodic component f2

and a non-periodic function f ′
2 that increases linearly with time and represents the mass transport. This

implies that, on average, a fluid particle moves forward and does not form a closed orbit as occurring in the
first-order approximation. The vertical trajectory y in this order includes a second harmonic component
g2 and a term g′

2 that is a function of b and independent of time. This second-order vertical mean level
g′
2 for a particle decays with the water depth. Equation (3.30) also confirms that the Lagrangian mean

level of gravity waves is higher than the Eulerian mean level [32]. Unlike Longuet-Higgins [32] who used
the Euler–Lagrange transformation to derive the above result, the present theory is perfectly constructed
in the Lagrangian framework. For the limiting case T = 0, one can verify that the present theory reduces
to pure progressive waves of constant depth, as was previously obtained by Chen et al. [2].
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3.3. Third-Order Approximation

The third-order governing equations and boundary conditions can be obtained by collecting the terms of
O(ε3)

f3a + f ′
3a + g3b + g′

3b + f1a(g2b + g′
2b) + f2ag1b − f1bg2a

−(f2b + f ′
2b)g1a + (σ2af1σt + σ2bg1σt)t = 0, (3.34)

σ0(f3aσt + f ′
3aσ0t + g3bσt + g′

3bσ0t) + σ2(f1aσt + g1bσt) + σ2af1σt

+σ2bg1σt + σ0[σ2af1(σt)2 + σ2bg1(σt)2 ]t + σ0[f1aσtg2b

+f1aσtg
′
2b + f1ag2bσt + f2aσtg1b + f2ag1bσt − f1bσtg2a − f1bg2aσt

−(f2bσt + f ′
2bσ0t)g1a − (f2b + f ′

2b)g1aσt = 0, (3.35)

σ0(f3bσt + f ′
3bσ0t − g3aσt − g′

3aσ0t) + σ2(f1bσt − g1aσt) + σ2bf1σt

−σ2ag1σt + σ0[σ2bf1(σt)2 − σ2ag1(σt)2 ]t + σ0[f1a(f2bσt + f ′
2bσ0t)

+f2af1bσt − f2aσtf1b − f1aσt(f2b + f ′
2b) + g1ag2bσt

+g2ag1bσt − g1bg2aσt − g2bg1aσt] = 0, (3.36)

φ3a + φ′
3a = σ0(f3σt + f ′

3σ0t) + σ2f1σt + σ0[f1σtf2a

+(f2σt + f ′
2σ0t)f1a + g2ag1σt + g1ag2σt] − σ2aφ1σtt, (3.37)

φ3b + φ′
3b = σ0(g3σt + g′

3σ0t) + σ2g1σt + σ0[f1σt(f2b

+f ′
2b) + (f2σt + f ′

2σ0t)f1b + g2bg1σt + g1bg2σt] − σ2bφ1σtt, (3.38)

p3

ρ
= −[σ0(φ3σt + φ′

3σ0t) + g(g3 + g′
3)] − σ2φ1σt + σ2

0 [f1σt(f2σt

+f ′
2σ0t) + g1σtg2σt)] +

T

ρ

{
(g3aa + g′

3aa) + (σ2atg1σt)a − 2f1ag2aa

−2f2ag1aa − f2aag1a − f1aag2a + 3f2
1ag1aa + 3f1aaf1ag1a − 3

2
g1aag2

1a

}
, (3.39)

On substituting the first- and second-order approximations into the governing equations (3.34)–(3.39),
the third-order continuity, irrotational and energy equations become

f3a + f ′
3a + g3b + g′

3b

= −f1ag2b − f2ag1b + f1bg2a + (f2b + f ′
2b)g1a − σ2bg1σtt

= αk2

(
2β2 +

1
4
α2k

)
cosh 3k(b + d)

cosh3kd
cos(ka − σt)

+ αk2

(
2β2 − 1

4
α2k

)
cosh k(b + d)

cosh3kd
cos 3(ka − σt)

− α

[
α2k3σ0

sinh 2k(b + d)
cosh2kd

+ σ2b

]
sinh k(b + d)

cosh kd
sin(ka − σt) · t, (3.40)
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σ0(f3aσt + f ′
3aσ0t + g3bσt + g′

3bσ0t)

= αk2σ0

[(
2β2 +

1
4
α2k

)
cosh 3k(b + d)

cosh3kd
sin(ka − σt)

+
(

6β2 − 3
4
α2k

)
cosh k(b + d)

cosh3kd
sin 3(ka − σt)

]
− α

[
α2k3σ0

sinh 2k(b + d)
cosh2kd

+ σ2b

]

× sinh k(b + d)
cosh kd

sin(ka − σt) + ασ0

[
α2k3σ0

sinh 2k(b + d)
cosh2kd

+ σ2b

]
sinh k(b + d)

cosh kd
cos(ka − σt) · t,

(3.41)
σ0(f3bσt + f ′

3bσ0t − g3aσt − g′
3aσ0t)

= αk2σ0

[(
6β2 +

3
4
α2k

)
sinh 3k(b + d)

cosh3kd
cos(ka − σt)

+
(

2β2 +
1
4
α2k

)
sinh k(b + d)

cosh3kd
cos 3(ka − σt)] − α

[
1
2
α2k3σ0

sinh k(b + d)
cosh3kd

+σ2b
cosh k(b + d)

cosh kd

]
cos(ka − σt) − ασ0

[
α2k3σ0

sinh 2k(b + d)
cosh2kd

+ σ2b

]
cosh k(b + d)

cosh kd
sin(ka−σt) · t,

(3.42)

From Eqs. (3.40)–(3.42), the secular terms that grow with time have to be zero. We can obtain

σ2a = 0, σ2b = −α2k3σo
sinh 2k(b + d)

cosh2kd
. (3.43)

Integrating Eq. (3.43) with b, σ2 is given by

σ2 = −1
2
α2k3 cosh 2k(b + d)

cosh2kd
σo + w2, (3.44)

where omega is a constant which needs to be solved.
Using Eq. (3.43), Eqs. (3.40)–(3.42) can be reduced to

f3a + f ′
3a + g3b + g′

3b = αk2

(
2β2 +

1
4
α2k

)
cosh 3k (b + d)

cosh3kd
cos (ka − σt)

+ αk2

(
2β2 − 1

4
α2k

)
cosh k (b + d)

cosh3kd
cos 3 (ka − σt) , (3.45)

σo

(
f3aσt + f ′

3aσ0t + g3bσt + g′
3bσ0t

)

= αk2σo

[(
2β2 +

1
4
α2k

)
cosh 3k (b + d)

cosh3kd
sin (ka − σt)

+
(

6β2 − 3
4
α2k

)
cosh k (b + d)

cosh3kd
sin 3 (ka − σt)

]
, (3.46)

σo

(
f3bσt + f ′

3bσ0t − g3aσt − g′
3aσ0t

)

= αk2σo

[(
6β2 +

5
4
α2k

)
sinh 3k (b + d)

cosh3kd
cos (ka − σt)

+
(

2β2 +
1
4
α2k

)
sinh k (b + d)

cosh3kd
cos 3 (ka − σt)

]
, (3.47)
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From Eqs. (3.45)–(3.47), the solutions of f3, f ′
3, g3 and g′

3 can be assumed as

f3 =
[
−β3

cosh 3k (b + d)
cosh3kd

+
1
6
αk(5β2 − 1

2
α2k)

cosh k (b + d)
cosh3kd

]
sin 3 (ka − σt)

−
[
1
2
αk(5β2 + α2k)

cosh 3k (b + d)
cosh3kd

+ λ3
cosh k (b + d)

cosh3kd

]
sin (ka − σt), (3.48)

f ′
3 = 0, (3.49)

g3 =
[
β3

sinh 3k (b + d)
cosh3kd

− 1
2
αkβ2

sinh k (b + d)
cosh3kd

]
sin 3 (ka − σt)

+
[
1
2
αk

(
3β2 +

1
2
α2k

)
sinh 3k (b + d)

cosh3kd
+ λ3

sinh k (b + d)
cosh3kd

]
cos (ka − σt), (3.50)

g′
3 = 0. (3.51)

where β3 and λ3 are undetermined coefficients which can be found by using the dynamic free surface
boundary condition. Substituting these terms, the first- and the second-order solutions into Eqs. (3.37)
and (3.38), we can get

φ3a + φ′
3a

= 3σ0

[
β3

cosh 3k(b + d)
cosh3kd

− 1
2
αk(3β2 − 1

2
α2k)

cosh k(b + d)
cosh3kd

]
cos 3(ka − σt)

+ σ0

[
1
2
αkβ2

cosh 3k(b + d)
cosh3kd

+
(

α
w2

σ0
+ λ3sech2kd

)
cosh k(b + d)

cosh kd

]
cos(ka − σt), (3.52)

φ3b + φ′
3b = 3σo

[
β3 sin 3 (ka − σt) +

1
2
αkβ2 sin (ka − σt)

]
sinh 3k (b + d)

cosh3kd

+σ0

[
−1

2
αk(3β2 − 1

2
α2k) sin 3 (ka − σt) +

(
α

w2

σ0
cosh2kd + λ3

)

× sin (ka − σt)
]

sinh 3k (b + d)
cosh3kd

, (3.53)

From Eqs. (3.52) and (3.53), we get

φ3 =
σ0

k
β3

cosh 3k (b + d)
cosh3kd

sin 3 (ka − σt) +
1
2
αβ2σ0

cosh 3k (b + d)
cosh3kd

× sin (ka − σt) − 1
2
α

(
3β2 − 1

2
α2k

)
σ0

cosh k (b + d)
cosh3kd

sin 3 (ka − σt) + D3, (3.54)

and

φ′
3 = D′

3(σ0t), αw2 + σ0λ3sech2kd = 0, (3.55)
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The wave pressure can thus be given by

p3

ρ
=

{
β3

[
3
σ2

0

k

cosh 3k(b + d)
cosh3kd

− g
sinh 3k(b + d)

cosh3kd

]
− 1

2
α(7β2 − α2k)σ2

0

cosh k (b + d)
cosh3kd

+
1
2
αkgβ2

sinh k(b + d)
cosh3kd

}
cos 3(ka − σt) − σ0D

′
3σ0t

+
{

3
2
αβ2σ

2
0

cosh 3k(b + d)
cosh3kd

− 1
2
αkg(3β2 +

1
2
α2k)

sinh 3k(b + d)
cosh3kd

+
(

σ0
α

k
w2cosh2kd − 1

4
α3kσ2

0

)
cosh k(b + d)

cosh3kd
− gλ3

sinh k(b + d)
cosh3kd

}
cos(ka − σt)

+
T

ρ

(
−9k3β3 − 9

2
k3αβ2 − 15

32
k4α3

)
sinh 3k(b + d)

cosh3kd
cos 3(ka − σt)

−
(

3k3αβ2 +
17
32

k4α3

)
sinh 3k(b + d)

cosh3kd
cos(ka − σt)

+
(

4k3αβ2 +
29
32

k4α3

)
sinh k(b + d)

cosh3kd
cos 3(ka − σt)

+
(

−k2λ3 − 3
2
k3αβ2 − 21

32
k4α3

)
sinh k(b + d)

cosh3kd
cos(ka − σt) (3.56)

The procedure to obtain the solutions at this order is similar to that of O(ε2). The secular terms that
grow with time have to be zero. Using zero pressure condition at the free surface (p3 = 0 at b = 0), we
obtain

β3

[
3
σ2

0

k

cosh 3kd

cosh3kd
− g

sinh 3kd

cosh3kd

]

−1
2
α(7β2 − α2k)σ2

0

cosh kd

cosh3kd
− T

ρ

(
9
2
k3αβ2 +

15
32

k4α3 + 9k2β3

)
sinh 3kd

cosh3kd

+
[
1
2
αkgβ2 +

T

ρ
(4k3αβ2 +

29
32

k4α3)
]

sinh kd

cosh3kd
= 0, (3.57)

From Eq. (3.57), we get the solution of β3

β3 =
kα

(48ρσ2 cosh 3kd − 16ρgk
(
1 + 9Tk3

ρg

)
sinh 3kd)

[
−8(kα2 − 7β2)ρσ2

0 cosh kd

+k

(
−7Tk3α2 − 8ρgβ2

(
1 − Tk2

ρg

)
+ 3k2T (5kα2 + 48β2) cosh 2kd

)
sinh kd

]
(3.58)

and

3
2
αβ2σ

2
0

cosh 3kd

cosh3kd
− 1

2
αkg(3β2 +

1
2
α2k)

sinh 3kd

cosh3kd
+

(
σ0

α

k
w2cosh2kd

−1
4
α3kσ2

0

)
cosh kd

cosh3kd
− gλ3

sinh kd

cosh3kd
+

T

ρ

[(
−3k3αβ2 − 17

32
k4α3

)
sinh 3kd

cosh3kd

−
(

k2λ3 +
3
2
k3αβ2 +

21
32

k4α3

)
sinh kd

cosh3kd

]
= 0, (3.59)
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From Eq. (3.59), we can obtain the solution of λ3.

λ3 =
k2α3

64(k2T + ρg)(4k2T + ρg + (2k2T − gρ) cosh 2kd))
[
106k4T 2 + 179gρk2T

+ 64g2ρ2 + 60k2T (k2T + ρg) cosh 2kd + (2k4T 2 + ρgk2T + 8ρ2g2) cosh 4kd
]
.

From Eq. (3.55), the solution of w2 is

w2 = −σ0

α
λ3sech2kd. (3.60)

Finally, the physical parameters to the third-order solutions in Lagrangian form are given. Equa-
tion (3.60) is the second-order angular frequency correction for a particle, in which the first term is the
second-order Stokes wave frequency and the second term varies monotonically with the vertical label b or
the wavelength-averaged level of the particles. The third-order solutions of Eqs. (3.48)–(3.51) are periodic
functions and have a combination of both first and third harmonic components. Thus, the solution of
system has the following expressions:

x = x(a, b, t) = a + f1 + f2 + f ′
2 + f3, (3.61)

y = y(a, b, t) = b + g1 + g2 + g′
2 + g3, (3.62)

φ = φ(a, b, t) = φ1 + φ2 + φ3, (3.63)
p = p(a, b, t) = −ρgb + p1 + p2 + p3, (3.64)
σ = σ(b) = σ0 + σ2 = 2π/TL(b), (3.65)

The set of Eqs. (3.61)–(3.65) ensures that Bernoulli’s condition of constant pressure is satisfied on the
free surface.

4. Further Results on the Fluid Motion

4.1. Mass Transport Velocity

Taking time-average over one Lagrangian wave period in terms of the horizontal particle displacement,
the so-called drift velocity over the whole range of depths can be obtained as follows:

x̄t

c0
=

∑3
n=1 εn[fnt(a, b, σLt) + f ′

nt(a, b, σL0t)]
c0

=
1
2
α2k2(1 + tanh2kd)

cosh 2k(b + d)
cosh 2kd

,

(4.1)
c0 =

σ0

k
,

where the overbar denotes time-average over a Lagrangian wave period, i.e. the period of particle motion,
where c0 is the linear phase speed. The first term of Eq. (4.1) on the right-hand side, a second-order
correction quantity, is the same as that obtained by Longuet-Higgins [30] as T = 0. From (4.1), the
mass transport velocity is a function of the wave steepness, the water depth, the surface tension and the
vertical Lagrangian label. Differentiating (4.1) with respect to the vertical Lagrangian label b shows that
the second-order drift velocity is always positive but monotonically decays with depth from the surface
to the bottom. In Fig. 1 the mass transport velocity is plotted against the relative water depth d/L = 0.5
and the relative wave height ka = 0.03π for various Bond numbers (κ = Tk2

ρg = 0, 0.4, 0.45) and vertical
label b. It can be seen that the effect of increasing surface tension is generally to augment the magnitude
and extent of the time-averaged drift velocity, thus resulting in large horizontal distance traveled by a
particle compared with the case without surface tension. It is also remarkable that under the same wave
subsurface particles travel slower and diminishes rapidly with the vertical position below the free surface.
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Fig. 1. Drift-velocity ratio as a function of the vertical label of fluid particles for gravity–capillary waves with various

surface tension conditions κ = Tk2

ρg
= 0 (solid line), 0.1 (dash-dotted line), 0.3 (dotted line), 0.4 (dash line), d/L = 0.5,

ka = 0.03

4.2. Lagrangian Wave Frequency

The Lagrangian angular frequency σ up to third order can also be obtained as

σ = σ0 + σ2(b)

= σ0 − 1
2
α2k2(1 + tanh2kd)

cosh 2k(b + d)
cosh 2kd

σo − σ0
λ3

α
sech2kd, (4.2)

Hence, a general Lagrangian wave period σ differing from the Eulerian wave period for all particles at
different vertical level b can be obtained directly in the odd-order Lagrangian solutions. The difference
between the Lagrangian frequency σ and the Eulerian wave frequency σw, as well as the Eulerian wave
frequency itself, are

σ − σw = −1
2
α2k2(1 + tanh2kd)

cosh 2k(b + d)
cosh 2kd

σ0,

σw = w2 = σ0 − σ0
λ3

α
sech2kd.

(4.3)

where σw is the angular frequency computed by Stokes expansion in the Eulerian system [35].

4.3. Lagrangian Mean Level

Averaging the particle elevation up to the third order over a given period of particle motion, the present
theory gives the Lagrangian mean level η̄L(b) which is higher than the Eulerian mean level η̄w = 0 as

η̄L − η̄w =
1

TL

TL∫

0

ydt = g′
2 =

1
4
α2k

sinh 2k(b + d)
cosh2kd

, (4.4)

Longuet-Higgins [31,32] also showed that the Lagrangian mean level is higher than the Eulerian mean
level for progressive water waves. However, his expression is applicable only to particles at the free surface
and is the same as that given by the first term of Eq. (4.4) at b = 0.
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Fig. 2. Water particle orbits calculated from analytical solutions to a third-order approximation in Lagrangian form at
different elevations b for water depth d/L = 0.5 and wave steepness ka = 0.03π under various surface tension conditions.

a κ = Tk2

ρg
= 0, b κ = Tk2

ρg
= 0.4, c κ = Tk2

ρg
= 0.45

4.4. The Particle Orbits

The most important characteristic of fluid motion described by the Lagrangian solution is the trajectories
of particles which are represented by Eqs. (3.61) and (3.62). The parameter α can be determined by the
wave height H defined as half the vertical distance between the wave crest and wave trough, wave number
k and the water depth d given. Hence, we have

H

2
= [g1 + g3]b=0,ka−σt=2nπ, n ∈ I (4.5)

the horizontal and vertical particle trajectories are

x = a +
3∑

n=1

(fn + f ′
n), y = b +

3∑

n=1

(gn + g′
n). (4.6)

It is immediately obvious that the orbit of the particles is not a closed curve but a spiraling-progressive
curve owing to the existence of a drift displacement persisting with it along the wave direction. In
Figs. 2 and 3, the particle trajectories for gravity–capillary waves with different values of wave steep-
ness (ka = 0.03π, 0.05π) in finite water depth have been plotted for several values of surface tension
(κ = Tk

ρg = 0, 0.4, 0.45) and level b, including b = 0 for particles at the free surface. While the absence
of closed particle paths has been shown previously [18,19], the present approach extends the theory to
nonlinear water waves and provides approximations that enable quantitative estimates. It can be seen in
each of the plotted orbits that a water particle advances a distance forward which is commonly referred
to as the mean horizontal drift or mass transport in the direction of wave propagation. The water particle
at the free surface (b = 0) travels furthest, whilst that in the interior of the fluid propagates less and
slower. To the third-order approximation, the particle trajectory has an open orbit, irrespective of their
initial mean locations. The orbital shapes near the bottom are more elliptical since the vertical excursion
of the particle is less than its horizontal counterpart. However, for the orbits near or at the still water
level, the vertical excursion is greater.
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Fig. 3. Water particle orbits calculated from analytical solutions to a third-order approximation in Lagrangian form at
different elevations b for water depth d/L = 0.5 and wave steepness ka = 0.05π under various surface tension conditions.

a κ = Tk2

ρg
= 0, b κ = Tk2

ρg
= 0.4, c κ = Tk2

ρg
= 0.45

From Fig. 2, it can be seen that the surface particles of the wave most influenced by surface tension
(κ = 0.45) travel further and faster than the wave with κ = 0 and κ = 0.4, where κ = 0 corresponds to pure
gravity water waves. In the case of gravity wave with surface tension, the effect of increasing surface ten-
sion is generally to augment the magnitude and extent of the time-averaged drift velocity, thus resulting
in large horizontal distance traveled by a particle compared with the case without surface tension. Both
the vertical and horizontal excursions of the water particles also increase with surface tension, where
the horizontal excursion of the particle is actually less than the vertical excursion. Shown in Fig. 2b is
a trajectory cusped in the trough. In particular, the double-loop trajectory of the free-surface particles
is remarkably shown in Fig. 2c, with the form persisting for some subsurface particles. Nevertheless, at
greater depths it becomes circular. Overall, an increase in surface tension tends to increase the motions
of water particles. For higher waves shown in Fig. 3, it could be expected that the cusps appeared
in Fig. 2b will become subloops and the double-loop become more noticeable as the wave steepness
increases.

5. Concluding Remarks

A particle-specific description of irrotational finite-amplitude progressive gravity–capillary waves in water
of uniform depth satisfying all the governing equations and the boundary conditions is presented. The
new Lagrangian solution is obtained to the third order. It can be used not only to determine the wave
properties available in the Eulerian solution, but also to get the trajectory, the period, the mass transport
and the Lagrangian mean level of a water particle which are not available from the Eulerian solution.
The results for the particle trajectories and mass transport velocity of nonlinear gravity waves influenced
by the surface tension are presented. The effect of increasing surface tension is to produce an increase in
the relative horizontal distance traveled by a surface particle in an orbit and generally to increase the
magnitude and extent of the mass transport velocity. Under the conditions of large surface tension or
higher waves, a free-surface particle may undergo an extraordinary trajectory with a subloop on a main
loop, with the form persisting for some depth below the free surface. At greater depths, the trajectory
becomes circular.
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