
Integr. Equ. Oper. Theory 68 (2010), 115–150
DOI 10.1007/s00020-010-1803-x
Published online June 19, 2010
c© The Author(s) This article is published
with open access at Springerlink.com 2010

Integral Equations
and Operator Theory

Krein Systems and Canonical Systems
on a Finite Interval: Accelerants
with a Jump Discontinuity at the Origin
and Continuous Potentials

D. Alpay, I. Gohberg (Z′′L), M. A. Kaashoek,
L. Lerer and A. L. Sakhnovich

Abstract. This paper is devoted to connections between accelerants and
potentials of Krein systems and of canonical systems of Dirac type,
both on a finite interval. It is shown that a continuous potential is
always generated by an accelerant, provided the latter is continuous with
a possible jump discontinuity at the origin. Moreover, the generating
accelerant is uniquely determined by the potential. The results are illus-
trated on pseudo-exponential potentials. The paper is a continuation of
the earlier paper of the authors (Alpay et al. in Modern Analysis and
Applications. The Mark Krein Centenary Conference, vol. 2, pp. 19–36,
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1. Introduction

Let T > 0, and let k be a scalar continuous function on the interval [−T,T]
which is hermitian, that is, k(−t) = k(t) on −T ≤ t ≤ T. Assume that
for each 0 < τ ≤ T the corresponding convolution integral operator Tτ on
L2(0, τ),

(Tτf)(t) = f(t) −
τ∫

0

k(t − s)f(s) ds, 0 ≤ t ≤ τ, (1.1)

is invertible, and let γτ (t, s) be the corresponding resolvent kernel, i.e.,

γτ (t, s) −
τ∫

0

k(t − ξ)γτ (ξ, s) dξ = k(t − s), 0 ≤ t, s ≤ τ. (1.2)

Consider the entire functions

P(τ, λ) = eiλτ

⎛
⎝1 +

τ∫

0

e−iλxγτ (x, 0)dx

⎞
⎠ , (1.3)

P∗(τ, λ) = 1 +

τ∫

0

eiλxγτ (τ − x, τ)dx, (1.4)

and put Y (τ, λ) =
[P(τ, λ) P∗(τ, λ)

]
. Then, as was proved by M.G. Krein in

[8], the function Y (τ, λ) satisfies the differential system

∂

∂τ
Y (τ, λ) = Y (τ, λ)

(
iλ

[
1 0
0 0

]
+
[

0 a(τ)
a(τ) 0

])
, (1.5)

with a(τ) = γτ (τ, 0) for τ ∈ (0,T]. The functions P(τ, λ) and P∗(τ, λ) are
usually referred to as Krein orthogonal functions.

We call (1.5) a Krein system when, as in the previous paragraph, the
function a is given by a(τ) = γτ (τ, 0), where γτ (t, s) is the resolvent kernel
corresponding to some k on [−T,T] with the properties described in the pre-
vious paragraph. In that case, following Krein, the function k is called an
accelerant for (1.5), and we shall refer to a as the potential associated with
the accelerant k.

The result referred to above holds in greater generality, namely for sys-
tems with matrix-valued accelerants that are allowed to have a jump discon-
tinuity at the origin. In fact, in [1] the following result is proved.

Theorem 1.1. Let k be an r × r-matrix function, which is hermitian, i.e.,
k(−t) = k(t)∗, and continuous on −T ≤ t ≤ T with possibly a jump dis-
continuity at the origin. Assume that for each 0 < τ ≤ T the corresponding
integral operator Tτ on L2

r(0, τ) given by (1.1) is invertible, and let γτ (t, s)
be the corresponding resolvent kernel as in (1.2). Put
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P(τ, λ) = eiλτ

⎛
⎝Ir +

τ∫

0

e−iλxγτ (x, 0)dx

⎞
⎠ (1.6)

P∗(τ, λ) = Ir +

τ∫

0

eiλxγτ (τ − x, τ)dx. (1.7)

Then a(τ) = γτ (0, τ), with 0 < τ ≤ T, extends to a continuous function on
[0,T] and Y (τ, λ) =

[P(τ, λ) P∗(τ, λ)
]

satisfies

∂

∂τ
Y (τ, λ) = Y (τ, λ)

(
iλ

[
Ir 0

0 0

]
+

[
0 a(τ)

a(τ)∗ 0

])
. (1.8)

The phrase k is continuous on −T ≤ t ≤ T with possibly a jump dis-
continuity at the origin, which appears in the above theorem, means that the
function k is continuous on the intervals −T ≤ t < 0 and 0 < t ≤ T and
that the two limits limt↓0 k(t) and limt↑0 k(t) exist. The actual value of k at
the origin does not play a role.

From [6] we know that under the conditions in Theorem 1.1 the resolvent
kernel function γτ (t, s) is continuous on the triangles on 0 ≤ s < t ≤ τ and
0 ≤ t < s ≤ τ , and that γτ (t, s) has a continuous extension on the closures of
each of these triangles. Jumps may appear on the diagonal 0 ≤ s = x ≤ τ . In
particular, the evaluation of γτ at the point (τ, 0), appearing in Theorem 1.1,
is well-defined.

As for the scalar case we call (1.8) a Krein system when the potential
a is obtained in the way described in Theorem 1.1, and in that case we say
that k is an accelerant for (1.8).

In this paper we deal, among other things, with the following inverse
problem. Consider the system (1.8) and assume that the potential a is an
r × r-matrix valued function continuous on [0,T]. Does it follow that (1.8)
is a Krein system? In other words, does there exist an r × r-matrix valued
accelerant k on [−T,T], with possibly a jump discontinuity at the origin,
such that the potential corresponding to k is the given potential a? If we
restrict to continuous accelerants, the answer is negative. For instance (see
[1]), the potential

a(τ) =
2i

1 + e−2iτ
, τ ∈ [0, 1],

does not have a continuous accelerant. However, we shall prove that for the
larger class of accelerants introduced here, the answer is affirmative.

Krein systems are closely related to canonical differential systems of
Dirac type. In fact, if Y is a C

2r×2r-valued solution of the system (1.8) with
potential a, then the function

U(τ, λ) = e−iτλY (τ,−2λ̄)∗ (1.9)

is a solution of the canonical system

− ij
d
dτ

U(τ, λ) = λU(τ, λ) +

[
0 v(τ)

v(τ)∗ 0

]
U(τ, λ), (1.10)
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where

j =
[
Ir 0
0 −Ir

]
and v(τ) = −ia(τ) (0 ≤ τ ≤ T). (1.11)

It will be convenient to state our main results in terms of a canonical system
rather than a Krein system.

In this paper we show that a continuous matrix-valued potential v is
always generated by an accelerant (provided a jump discontinuity at the ori-
gin is allowed) and that an accelerant is uniquely determined by the potential,
that is, if two accelerants generate the same potential, then they are equal.
In fact, we shall prove the following theorem.

Theorem 1.2. Consider the canonical system (1.10), and assume that its
potential v is continuous on the interval [0, T]. Then, there is a unique r × r
matrix function k, which is hermitian, i.e., k(−t) = k(t)∗, and continuous
on −T ≤ t ≤ T with possibly a jump discontinuity at the origin, such that
the following holds: for each 0 < τ ≤ T the convolution operator

(Tτf)(t) = f(t) −
τ∫

0

k(t − s)f(s) ds, 0 ≤ t ≤ τ, (1.12)

is invertible on L2
r(0, τ), and the potential v of (1.10) is given by

v(τ) = −iγτ (τ, 0), 0 < τ ≤ T. (1.13)

Here γτ (t, s) is the resolvent kernel corresponding to Tτ as in (1.2).

In analogy with the theory of Krein systems, an r × r matrix function k
with the properties described in the above theorem will be called an acceler-
ant for the canonical system (1.10). In this case we also say that the potential
v is generated by the accelerant k. Using this terminology, Theorem 1.2 just
tells us that a canonical system with a continuous potential has a unique
accelerant.

Given a continuous matrix-valued potential v we shall also present a for-
mula for the fundamental solution of the canonical system (1.10) in terms of
the accelerant generating the potential v. The result (Theorem 2.1 in Sect. 2)
can be viewed as an addition to Theorem 1.1

The statement in Theorem 1.2 about the uniqueness of the accelerant is
known and has been proved in [1] using recent results about the continuous
analogue of the resultant for certain entire matrix functions (see Theorem 1.3
in [1] for further details). In this paper we give a new proof of the uniqueness
using a formula for the fundamental solution of the canonical system (1.10)
in terms of a given accelerant, which is presented in Theorem 2.1.

For the case when the potential v is bounded, bounded accelerants k
have been constructed in [10] following the scheme outlined in Section 8.2 of
[15] (see also [9]). In the present paper, to prove Theorem 1.2, the approach
of [10] is specified and developed further for the case of continuous potentials.
Also the material related to Theorem 2.1 below is inspired by and builds on
results from Sections 3 and 4 in [10].
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The paper consists of six sections including this introduction. In Sect. 2
we derive a formula for the fundamental solution of the canonical system
(1.10) in terms of its accelerant. The result is used in in Sect. 3 to give a
new proof of the uniqueness of the accelerant given the potential as stated in
Theorem 1.2. The next two sections complete the proof of Theorem 1.2. Sec-
tion 4 has an auxiliary character and is interesting in its own right. We show
that a lower triangular semi-separable integral operator from a certain class
is similar to the operator of integration and that the corresponding similarity
operator can be chosen in such a way that both this similarity operator and
its inverse map functions with a continuous derivative into functions with
a continuous derivative. This result is then used in Sect. 5 to prove Theo-
rem 1.2. In the final section the main result of Sect. 2 is specified further for
pseudo-exponential potentials.

2. The Fundamental Solution

Throughout this section k is a r × r matrix function on [−T, T], which is
hermitian, i.e. k(−t) = k(t)∗, and k is continuous on −T ≤ t ≤ T with pos-
sibly a jump discontinuity at the origin. We assume that k is an accelerant
for the canonical system (1.10). The latter means that for each 0 < τ ≤ T
the convolution operator (1.1) is invertible on L2

r(0, τ), and the potential v
is the r × r continuous matrix function on [0, T] determined by k via the
formula

v(τ) = −iγτ (τ, 0), 0 < τ ≤ T, (2.1)

where γτ (t, s)is the corresponding resolvent kernel as in (1.2).
We shall derive (explicitly in terms of the accelerant k) the fundamental

solution u(x, λ) of (1.10) satisfying the initial condition

u(0, λ) = Q∗, where Q =
1√
2

[
Ir −Ir

Ir Ir

]
. (2.2)

For this purpose we need the following r × r matrix functions:

�1(x, λ) = e2iλx

⎛
⎝Ir − 2

x∫

0

e−2iλtk(t) dt

⎞
⎠ , �2(x, λ) = e2iλxIr. (2.3)

Both �1(·, λ) and �2(·, λ) are defined on [0, T]. Note that for 0 ≤ x ≤ T we
have

d

dx
�1(x, λ) = 2iλ�1(x, λ) − 2k(x),

d

dx
�2(x, λ) = 2iλ�2(x, λ). (2.4)

The next theorem is the main result of this section.

Theorem 2.1. Assume that the r × r matrix function k is an accelerant for
the canonical system (1.10), and let γτ (t, s) be the corresponding resolvent
kernel as in (1.2). For 0 ≤ τ ≤ T, λ ∈ C, and j = 1, 2 put
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θj(τ, λ) =
1√
2

e−iτλ

⎧⎨
⎩�j(τ, λ) +

τ∫

0

γτ (τ, s)�j(s, λ) ds

⎫⎬
⎭ (2.5)

ωj(τ, λ) =
1√
2

e−iτλ

⎧⎨
⎩(−1)jIr +

τ∫

0

γτ (0, s)�j(s, λ) ds

⎫⎬
⎭, (2.6)

where �1(·, λ) and �2(·, λ) are given by (2.3). Then the 2r×2r matrix function
u(τ, λ) defined by

u(τ, λ) =

[
θ1(τ, λ) θ2(τ, λ)

ω1(τ, λ) ω2(τ, λ)

]
, 0 ≤ τ ≤ T, (2.7)

is the fundamental solution of (1.10) with initial condition (2.2).

Using the definition of �2(·, λ) in the second part of (2.3) we see that

θ2(τ, λ) =
1√
2

eiτλ

⎛
⎝Ir +

τ∫

0

e−2iλsγτ (τ, τ − s) ds

⎞
⎠, (2.8)

ω2(τ, λ) =
1√
2

e−iτλ

⎛
⎝Ir +

τ∫

0

e2iλsγτ (0, s) ds

⎞
⎠. (2.9)

The formula for ω2(τ, λ) is immediate from the definition and the one for
θ2(τ, λ) follows using the following calculation:

θ2(τ, λ) =
1√
2

e−iτλ

⎛
⎝e2iλτIr +

τ∫

0

e2iλsγτ (τ, s) ds

⎞
⎠

=
1√
2

e−iτλ

⎛
⎝e2iλτIr +

τ∫

0

e2iλ(τ−s)γτ (τ, τ − s) ds

⎞
⎠

=
1√
2

eiτλ

⎛
⎝Ir +

τ∫

0

e−2iλsγτ (τ, τ − s) ds

⎞
⎠.

The expressions (2.8) and (2.9) show that the functions θ2(τ, λ) and ω2(τ, λ)
are closely related to the Krein orthogonal entire matrix functions P(τ, λ)
and P∗(τ, λ) appearing in Theorem 1.1. In fact we have

θ2(τ, λ) =
1√
2

e−iτλP∗(τ, 2λ̄)∗, ω2(τ, λ) =
1√
2

eiτλP(τ, 2λ̄)∗.

Thus Theorem 2.1 can be seen as an addition to Theorem 1.1.
To prove Theorem 2.1, we need some preliminaries. In the sequel we

write T in place of TT. The fact that Tτ is invertible for each 0 < τ ≤ T
is equivalent to T being strictly positive. The latter property implies that
T factorizes as T = ΓΓ∗, where Γ is an invertible lower triangular integral
operator,
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(Γf)(x) = f(x) +

x∫

0

γ−(x, t)f(s) ds, 0 ≤ x ≤ T, (2.10)

(Γ−1f)(x) = f(x) +

x∫

0

γ×
−(x, s)f(s) ds, 0 ≤ x ≤ T, (2.11)

with both γ−(x, s) and γ×
−(x, s) being continuous on 0 ≤ s ≤ x ≤ T. We

shall refer to T = ΓΓ∗ as the LU -factorization of T . From [6] we also know
that

γ×
−(τ, s) = γτ (τ, s), 0 ≤ s ≤ τ ≤ T. (2.12)

We shall need the following three lemmas.

Lemma 2.2. We have

(Γ−1k)(τ) =
(
T−1

τ (k|[ 0, τ ])
)
(τ) = γτ (τ, 0), 0 < τ ≤ T. (2.13)

Proof. We first prove the second equality in (2.13). Since γτ (t, s) is the resol-
vent kernel corresponding to Tτ , we know (cf., (1.2)) that

γτ (t, s) −
τ∫

0

k(t − ξ)γτ (ξ, s) dξ = k(t − s), 0 ≤ s ≤ t ≤ τ.

This equality holds a.e on 0 ≤ s ≤ t ≤ τ . But then, since both γτ (t, s) and
k(t − s) are continuous on 0 ≤ s ≤ t ≤ τ , the above equality holds at each
point of 0 ≤ s ≤ t ≤ τ . In particular, at the point (t, 0). Thus

γτ (t, 0) −
τ∫

0

k(t − α)γτ (α, 0) dα = k(t), 0 ≤ t ≤ τ.

This shows that Tτγτ (·, 0) = k|[ 0, τ ], and hence
(
T−1

τ (k|[ 0, τ ])
)
(x) = γτ (x, 0), 0 ≤ x ≤ τ. (2.14)

For x = τ this yields the second identity in (2.13).
Next we prove the first identity in (2.13). Fix 0 < τ ≤ T. Since k is

continuous on [0, T], the function Γ−1k is continuous on [0, T]. From the
previous part of the proof we know that T−1

τ (k|[ 0, τ ]) is continuous on [0, τ ].
Hence for both functions the evaluation at τ is well-defined. Moreover,

(Γ−1k)(τ) = k(τ) +

τ∫

0

γ×
−(τ, s)k(s) ds,

(T−1
τ (k|[ 0, τ ])(τ) = k(τ) +

τ∫

0

γτ (τ, s)k(s) ds.

According to (2.12) we have γ×
−(τ, s) = γτ (τ, s) for 0 ≤ s ≤ τ , which yields

the first equality in (2.13). �
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Lemma 2.3. Let f be a continuously differentiable C
r×m-valued function on

the interval [0, T]. Then Γ−1f is also continuously differentiable on [0, T]
and (

d

dτ
Γ−1f

)
(τ) −

(
Γ−1 d

dτ
f

)
(τ)

= γτ (τ, 0)

⎛
⎝f(0) +

τ∫

0

γτ (0, s)f(s) ds

⎞
⎠ , 0 < τ ≤ T. (2.15)

Proof. Recall that

(
Γ−1f

)
(τ) = f(τ) +

τ∫

0

γ×
−(τ, s)f(s) ds = f(τ) +

τ∫

0

γτ (τ, s)f(s) ds.

Next, using the generalized Krein–Sobolev identities in formulas (2.10) and
(2.11) of [1], we have

d

dτ

τ∫

0

γτ (τ, s)f(s) ds =
d

dτ

τ∫

0

γτ (τ, τ − s)f(τ − s) ds

= γτ (τ, 0)f(0) + (α),

where

(α) =

τ∫

0

d

dτ
(γτ (τ, τ − s)f(τ − s)) ds

=

τ∫

0

γτ (τ, 0)γτ (0, τ − s)f(τ − s) ds

+

τ∫

0

γτ (τ, τ − s)
(

d

dτ
f

)
(τ − s) ds.

We conclude that
(

d

dτ
Γ−1f

)
(τ) =

(
d

dτ
f

)
(τ) +

τ∫

0

γτ (τ, s)
(

d

dτ
f

)
(s) ds

+ γτ (τ, 0)

⎛
⎝f(0) +

τ∫

0

γτ (0, s)f(s) ds

⎞
⎠

=
(

Γ−1 d

dτ
f

)
(τ)

+ γτ (τ, 0)

⎛
⎝f(0) +

τ∫

0

γτ (0, s)f(s) ds

⎞
⎠ .

Thus Γ−1f is continuously differentiable and (2.15) holds. �
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Lemma 2.4. For each g ∈ L2
r(0, T) we have

τ∫

0

(Γ−1k)(t)∗(Γ−1g)(t) dt =

τ∫

0

γτ (0, t)g(t) dt, 0 ≤ τ ≤ T. (2.16)

Proof. The case when τ = 0 is trivial. Fix 0 < τ ≤ T. Let Πτ be the pro-
jection of L2

r(0, T) onto L2
r(0, τ) defined by Πτf = f |[ 0, τ ]. Note that Π∗

τ is
the canonical embedding of L2

r(0, τ) into L2
r(0, T). Put Pτ = Π∗

τΠτ . Then
Pτ is the orthogonal projection of L2

r(0, T) onto the subspace consisting of
all functions in L2

r(0, T) with support in [0, τ ]. Since Γ and Γ−1 are lower
triangular, we have

ΠτΓ = ΠτΓPτ , ΠτΓ−1 = ΠτΓ−1Pτ . (2.17)

From the second identity in (2.17), the definition of Tτ , and the factorization
TT = ΓΓ∗, we see that

Tτ = ΠτTTΠ∗
τ = ΠτΓΓ∗Π∗

τ = ΠτΓPτΓΠ∗
τ = ΠτΓΠ∗

τΠτΓ∗Π∗
τ .

Since, by lower triangularity, ΠτΓΠ∗
τ = (ΠτΓ−1Π∗

τ )−1, we obtain

T−1
τ = ΠτΓ−∗PτΓ−1Π∗

τ . (2.18)

If follows that

T−1
τ (k|[ 0, τ ]) = ΠτΓ−∗PτΓ−1Π∗

τ (Πτk) = ΠτΓ−∗PτΓ−1Pτk. (2.19)

Now using (2.14), the lower triangularity of Γ−1, and the above identi-
ties one computes that

τ∫

0

(Γ−1k)(t)∗(Γ−1f)(t) dt =

T∫

0

(PτΓ−1k)(t)∗(PτΓ−1f)(t) dt

=

T∫

0

(PτΓ−1Pτk)(t)∗(PτΓ−1Pτf)(t) dt

=

T∫

0

(PτΓ−∗PτPτΓ−1Pτk)(t)∗f(t) dt

=

T∫

0

(Π∗
τT−1

τ Πτk)(t)∗f(t) dt

=

τ∫

0

(
T−1

τ (k|[ 0, τ ]

)
(t)∗f(t) dt =

τ∫

0

γτ (0, t)f(t) dt.

This proves (2.16). �

Using the identities (2.12) and (2.16) we see that the expressions for
θj(τ, λ) and ωj(τ, λ) in (2.5) and (2.6), respectively, can be rewritten as
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follows:

θj(τ, λ) =
1√
2

e−iτλ
(
Γ−1�j(· , λ)

)
(τ), (2.20)

ωj(τ, λ) =
1√
2

e−iτλ

×
⎧⎨
⎩(−1)jIr +

τ∫

0

(Γ−1k)(t)∗ (Γ−1�j(· , λ)
)
(t) dt

⎫⎬
⎭. (2.21)

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We split the proof into three parts. The first part deals
with the initial value condition; the two other parts concern the proof that
u(τ, λ) satisfies the differential equation (1.10).
Part 1. Using the expressions for θj and ωj in (2.20) and (2.21), respectively,
and the fact that Γ−1 is a lower triangular integral operator (see (2.11)), we
obtain the following identities

θj(0, λ) =
1√
2

�j(0 , λ) =
1√
2

Ir, ωj(0, λ) =
1√
2

(−1)jIr (j = 1, 2).

Thus

u(0, λ) =

⎡
⎣

1√
2

Ir
1√
2

Ir

− 1√
2

Ir
1√
2

Ir

⎤
⎦ =

1√
2

[
Ir Ir

−Ir Ir

]
= Q∗.

Hence u(τ, λ) has the desired value at τ = 0.
To complete the proof it suffices to prove the following differential

expressions:

d

dτ
ωj(τ , λ) = −iλωj(τ , λ) − iv(τ)∗θj(τ, λ), j = 1, 2, (2.22)

d

dτ
θj(τ , λ) = iλθj(τ , λ) + iv(τ)ωj(τ, λ), j = 1, 2. (2.23)

The first two identities will be proved in the next part and the other two in
the final part.
Part 2. In this part we prove (2.22). Since k is continuous on [0, T], the
fact that the kernel function of the lower triangular integral operator G−1

is continuous on 0 ≤ s ≤ x ≤ T implies that Γ−1k is also continuous on
[0, T]. Similarly, using the continuity of �1(· , λ) and �2(· , λ) on [0, T], we see
that Γ−1�1(· , λ) and Γ−1�2(· , λ) are continuous on [0, T]. Thus the functions
under the integrals in the definitions of ω1(· , λ) and ω2(· , λ) are continuous.
This implies that ω1(· , λ) and ω2(· , λ) are continuously differentiable and

d

dτ
ωj(τ , λ) = −iλωj(τ , λ)

+
1√
2

e−iτλ(Γ−1k)(τ)∗ (Γ−1�j(· , λ)
)
(τ), j = 1, 2.
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Using (2.13) and (2.1) we see that (Γ−1k)(τ) = iv(τ). This together with the
expression of θj in (2.20) shows that (2.22) holds.

Part 3. In this part we prove (2.23). First note that

d

dτ
θj(τ, λ) = −iλθj(τ, λ) +

1√
2

e−iτλ

(
d

dτ
Γ−1�j(· , λ)

)
(τ), j = 1, 2.

(2.24)

Applying Lemma 2.3 with f = �j(· , λ), j = 1, 2, yields

(
d

dτ
Γ−1�j(· , λ)

)
(τ) =

(
Γ−1 d

dτ
�j(· , λ)

)
(τ)

+ γτ (τ, 0)

⎛
⎝�j(0 , λ) +

τ∫

0

γτ (0, s)�j(s, λ) ds

⎞
⎠ ,

0 ≤ τ ≤ T.

Using the formula for the potential v in (2.1) and the identity in (2.16) we
obtain

(
d

dτ
Γ−1�j(· , λ)

)
(τ) =

(
Γ−1 d

dτ
�j(· , λ)

)
(τ) + iv(τ)

+ iv(τ)

τ∫

0

(Γ−1k)(t)∗ (Γ−1�j(· , λ)
)
(t) dt, 0≤τ ≤T.

Next we use the identities in (2.4) and (Γ−1k)(τ) = iv(τ) to show that

1√
2

e−iτλ

(
Γ−1 d

dτ
�1(· , λ)

)
(τ)

= 2iλ
1√
2

e−iτλ
(
Γ−1�1(· , λ)

)
(τ) − 2

1√
2

e−iτλ
(
Γ−1k

)
(τ),

= 2iλθ1(τ, λ) −
√

2 e−iτλiv(τ),

and

1√
2

e−iτλ

(
Γ−1 d

dτ
�2(· , λ)

)
(τ) = 2iλ

1√
2

e−iτλ
(
Γ−1�2(· , λ)

)
(τ)

= 2iλθ2(τ, λ).
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Returning to (2.24), first for j = 1 and next for j = 2, we obtain

d

dτ
θ1(τ, λ) = −iλθ1(τ, λ) + 2iλθ1(τ, λ) −

√
2 e−iτλiv(τ)

+ iv(τ)
1√
2

e−iτλ

⎛
⎝Ir +

τ∫

0

(Γ−1k)(t)∗ (Γ−1�1(· , λ)
)
(t) dt

⎞
⎠

= iλθ1(τ, λ) + iv(τ)
1√
2

e−iτλ

×
⎛
⎝−2Ir + Ir +

τ∫

0

(Γ−1k)(t)∗ (Γ−1�j(· , λ)
)
(t) dt

⎞
⎠

= iλθ1(τ, λ) + iv(τ)ω1(τ, λ),

and
d

dτ
θ2(τ, λ) = −iλθ2(τ, λ) + 2iλθ2(τ, λ)

+ iv(τ)
1√
2

e−iτλ

⎛
⎝Ir +

τ∫

0

(Γ−1k)(t)∗ (Γ−1�2(· , λ)
)
(t) dt

⎞
⎠

= iλθ2(τ, λ) + iv(τ)ω2(τ, λ),

Thus (2.23) is proved. �

3. Uniqueness of the Accelerant

Let u(x, λ) be the fundamental solution of the canonical system (1.10) satis-
fying the initial condition (2.2), and put

θ(x) =
[
Ir 0

]
u(x, 0), 0 ≤ x ≤ T. (3.1)

Since the potential v of (1.10) is assumed to be continuous, the function θ is
continuously differentiable on [0, T]. With θ we associate a lower triangular
semi-separable integral operator L acting on L2

r(0, T), namely

(Lf)(x) = θ(x)J

x∫

0

θ(t)∗f(t) dt, 0 ≤ x ≤ T, (3.2)

J =

[
0 Ir

Ir 0

]
. (3.3)

Note that L depends only on (1.10); accelerants do not play a role yet.
The operator L will play an important role in the proof of the uniqueness

of the accelerant (in the present section), and also later on in the construction
of the accelerant given a continuous potential (in Sect. 5).

In this section k is an accelerant for the canonical system (1.10), and
we will show that k is uniquely determined by the potential v. First we recall
that the statement “T is a convolution operator with kernel function k” can
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be expressed in terms of an intertwining relation involving the operator of
integration which is the operator A on the space L2

r(0, T) defined by

(Af)(x) =

x∫

0

f(t) dt (0 ≤ x ≤ T). (3.4)

In fact, using Theorem 1.2 in Chapter 1 of [14], we know that

AT + TA∗ = BJB∗, where J is defined by (3.3), (3.5)

B : C
2r → L2

r(0, T), By =
1√
2

�(·)y (y ∈ C
2r). (3.6)

Here � is the r × 2r matrix function given by

�(x) =
[
h(x) Ir

]
with h(x) = Ir − 2

x∫

0

k(t)dt, 0 ≤ x ≤ T. (3.7)

We shall need the following proposition and an additional lemma.

Proposition 3.1. Let k be an accelerant for the canonical system (1.10), and
let T = ΓΓ∗ be the LU -factrization of the corresponding convolution integral
operator T . Then the operator L defined by (3.2) is similar to the operator
of integration A; in fact, L = Γ−1AΓ.

Proof. We first show that L + L∗ = Γ−1BJB∗Γ−∗. The fact that k is an
accelerant for the canonical system (1.10) allows us to use the results of the
previous section. Let �1(x, λ) and �2(x, λ) be the r×r matrix functions defined
by (2.3). Note that �1(x, 0) is equal to h(x), where h is the function appearing
in (3.7), and �2(x, 0) = Ir. It follows that

�(x) =
[
�1(x, 0) �2(x, 0)

]
, 0 ≤ x ≤ T.

But then we see from (3.1), (2.7), and (2.20) that

θ(x) =
1√
2
(Γ−1�)(x), 0 ≤ x ≤ T. (3.8)

Using the definition of B in (3.6), the preceding identity yields Γ−1By = θ( ·)y
for each y ∈ C

2r. As L is defined by (3.2), we obtain L+L∗ = Γ−1BJB∗Γ−∗.
Next, since T = ΓΓ∗, the identity in (3.5) can be rewritten as

AΓΓ∗ + ΓΓ∗A∗ = BJB∗.

Multiplying the latter identity from the left by Γ−1 and from the right by
the operator Γ−∗ yields

Γ−1AΓ + (Γ−1AΓ)∗ = Γ−1BJB∗Γ−∗.

By the result of the first paragraph, L + L∗ = Γ−1BJB∗Γ−∗. It follows that

L − Γ−1AΓ = (Γ−1AΓ)∗ − L∗. (3.9)

Note that the operator in the left hand side of (3.9) is a lower triangular
integral operator of the first kind, while the operator in the right hand side
of (3.9) is an upper triangular operator of the first kind. Hence both sides
are equal to the zero operator. Thus L = Γ−1AΓ. �
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Lemma 3.2. Let R be an operator on L2
r(0, T) commuting with the operator

of integration A given by (3.4). If, in addition, (Ru)(x) = u for each u ∈ C
r

and each 0 ≤ x ≤ T, then R is the identity operator on L2
r(0, T).

Proof. Let β be the canonical embedding operator from C
r into L2

r(0, T),
that is, β is given by (βu)(x) = u for each u ∈ C

r and 0 ≤ x ≤ T. Then
Rβ = β. Since R commutes with operator of integration A, we have RAnβ =
AnRβ = Anβ. Thus R acts as the identity operator on the closed linear hull∨∞

n=0 Im Anβ. By induction one shows that Im β + Im Aβ + · · · + Im Anβ
consists of all C

r-valued polynomials of degree at most n. Since the set of all
C

r-valued polynomials is dense in L2
r(0, T), we conclude that

∨∞
n=0 Im Anβ

coincides with L2
r(0, T), and hence R is identity operator on L2

r(0, T). �

Theorem 3.3. The accelerant is uniquely determined by the potential.

Proof. By specifying (2.8) for λ = 0 we see (using (2.12)) that

1
2

√
2 (Γ−1Ir)(x) = θ2(x, 0) =

[
Ir 0

]
u(x, 0)

[
0
Ir

]
, 0 ≤ x ≤ T. (3.10)

Thus Γ−1Ir depends on the potential v only and not on the particular choice
of the accelerant.

Now fix the potential v, and let k̃ be another accelerant determining v.
Thus k̃ is a hermitian r × r matrix function on the interval −T ≤ t ≤ T,
which is is continuous on the interval −T ≤ t ≤ T with possibly a jump
discontinuity at the origin. Furthermore, the convolution integral operator T̃
defined by

(T̃ f)(x) = f(x) −
T∫

0

k̃(x − s)f(s) ds, 0 ≤ x ≤ T,

is a strictly positive operator on L2
r(0, T). Let Γ̃Γ̃∗ be the LU -factorization

of T̃ . Then Proposition 3.1, together with the fact that L depends on (1.10)
only, shows that Γ−1AΓ = Γ̃−1AΓ̃. In other words, the operator Γ̃Γ−1 com-
mutes with the operator A. The result of the first paragraph of the proof yields
Γ−1Ir = Γ̃−1Ir. Thus the operator Γ̃Γ−1 commutes with A and (Γ̃Γ−1u)(x) =
u for each u ∈ C

r and 0 ≤ x ≤ T. According to Lemma 3.2 this implies that
Γ̃Γ−1 is the identity operator on L2

r(0, T). Hence Γ̃ = Γ. But then T̃ = T ,
and thus k̃ = k. This proves the uniqueness of the accelerant. �

4. Semi-Separable Triangular Operators Similar
to the Operator of Integration

Throughout this section K is a semi-separable lower triangular integral oper-
ator on L2

r(0, T), that is, the action of K is given by

(Kf)(x) = F (x)

x∫

0

G(t)f(t) dt, f ∈ L2
r(0, T). (4.1)
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Here F (·) and G(·) are matrix functions of sizes r × p and p× r, respectively,
and their entries are square summable on the interval [0, T]. In fact, we shall
assume that F (·) and G(·) are continuously differentiable on [0, T] and such
that

F (x)G(x) = Ir, 0 ≤ x ≤ T. (4.2)

A simple example of such an operator is the operator of integration A on
L2

r(0, T) defined by (3.4).
We shall see that any semi-separable lower triangular operator K satis-

fying the conditions referred to above is similar to the operator of integration
A and with a similarity operator of a special kind. The precise result is pre-
sented in the next proposition.

Proposition 4.1. Let F and G be continuously differentiable, and assume
(4.2) holds. Then the operator K defined by (4.1) is similar to the operator
of integration A. More precisely, K = EAE−1 where E is a lower triangular
operator of the form

(Ef)(x) = ρ(x)f(x) +

x∫

0

e(x, t)f(t)dt, f ∈ L2
r(0, T). (4.3)

Here, e(x, t) is a continuous r × r matrix function on 0 ≤ t ≤ x ≤ T, which
is zero at t = 0, and the r × r matrix function ρ is given by

d

dx
ρ(x) = F ′(x)G(x)ρ(x), ρ(0) = Ir. (4.4)

Moreover, the operators E±1 map functions with a continuous derivative into
functions with a continuous derivative.

When F and G are boundedly differentiable and continuous derivatives
are replaced by bounded derivatives, the above proposition is a particular
case of Theorem 1 in [11]. The restriction to continuously differentiable F
and G is the new element here. Since the above proposition plays an essential
role in the proof of our main theorem, we will present a full proof.

In order to prove Proposition 4.1 we first make some heuristic remarks
explaining the line of reasoning that we will follow. Assume we have an oper-
ator E on L2

r(0, T) with all the properties described in Proposition 4.1. In
particular, KE = EA. By rewriting this identity in terms of the kernel func-
tions of the integral operators A, K, E, we get

F (x)G(t)ρ(t) + F (x)

x∫

t

G(s)e(s, t) ds = ρ(x) +

x∫

t

e(x, s) ds.

Taking t = 0 and using e(x, 0) = 0 for each 0 ≤ x ≤ T, we conclude that

(EIr)(x) = ρ(x) +

x∫

0

e(x, s) ds = F (x)G(0), 0 ≤ x ≤ T. (4.5)

Here we view Ir as the r × r matrix function on [0, T] which is identically
equal to the r × r identity matrix, and E is applied to Ir column wise.
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On the other hand, since K and A are Volterra operators (cf., Section
12.9 in [2]) the identity KE = EA implies that (I −λK)−1E = E(I −λA)−1

for each λ ∈ C. Here, and in the sequel, I denotes the identity operator on
L2

r(0, T). As is well known, for each f in L2
r(0,T) we have

(
(I − λA)−1f

)
(x) = f(x) + λ

x∫

0

eλ(x−t)f(t) dt, 0 ≤ x ≤ T. (4.6)

With f(·) = Ir this yields
(
(I − λA)−1Ir

)
(x) = eλxIr, 0 ≤ x ≤ T. (4.7)

It follows (using the identity (4.5)) that

ρ(x)eλxIr +

x∫

0

e(x, t)eλtIr dt

=
(
E(eλ·Ir)

)
(x) =

(
E(I − λA)−1Ir

)
(x)

=
(
(I − λK)−1EIr

)
(x) =

(
(I − λK)−1F (·)G(0)

)
(x), 0 ≤ x ≤ T.

Hence in order to find the kernel function e(x, t) it is natural to solve the
equation (I −λK)g(·, λ) = F (·)G(0) and to analyze its solution. This will be
done in Lemmas 4.2 and 4.3 below.

We begin with some preparations According to the general theory of
semiseparable integral operators (see Chapter IX in [3]), the inverse of oper-
ator I − λK is given by

(
(I − λK)−1f

)
(x) = f(x) +

x∫

0

η(x, t, λ)f(t)dt, (4.8)

where and

η(x, t, λ) = λF (x)u1(x, λ)u1(t, λ)−1G(t), 0 ≤ t ≤ x ≤ T, (4.9)
d

dx
u1(x, λ) = λG(x)F (x)u1(x, λ), 0 ≤ x ≤ T, (4.10)

u1(0, λ) = Ir. (4.11)

We also need the r × r matrix function ũ1(x) defined by

d

dx
ũ1(x) = −G(x)F ′(x)ũ1(x), 0 ≤ x ≤ T, ũ1(0) = Ir. (4.12)

We are now ready to prove the first lemma.

Lemma 4.2. Let F and G be continuously differentiable, and assume (4.2)
holds. Let h be the r × r matrix function defined by h(x) = F (x)G(0) on
0 ≤ x ≤ T, and let ρ be the r × r matrix function given by (4.4). Put

g(x, λ) = ρ(x)−1
(
(I − λK)−1h

)
(x), 0 ≤ x ≤ T, (4.13)
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where (I − λK)−1 is applied to h columnwise. Then g satisfies the following
integro-differential equation

d

dx
g(x, λ) − α(x)

x∫

0

β(t)g(t, λ)dt − λg(x, λ) = 0, g(0, λ) = Ir, (4.14)

where α and β are the continuous functions on [0, T] given by

α(x) = ρ(x)−1F ′(x)ũ1(x), 0 ≤ x ≤ T, (4.15)
β(t) = −ũ1(t)−1 (G(t)F ′(t)G(t) + G′(t)) ρ(t), 0 ≤ t ≤ T. (4.16)

Proof. Put g̃(x, λ) = ρ(x)g(x, λ). Using (4.8)–(4.11), (4.13), and the defini-
tion of the matrix function h, we present g̃ in the form

g̃(x, λ)

= F (x)G(0) + λF (x)u1(x, λ)

x∫

0

u1(t, λ)−1G(t)F (t)G(0)dt

= F (x)G(0) − F (x)u1(x, λ)

x∫

0

d

dt

(
u1(t, λ)−1G(0)

)
dt

= F (x)G(0) − F (x)u1(x, λ)
(
u1(x, λ)−1 − Ir

)
G(0)

= F (x)u1(x, λ)G(0). (4.17)

It follows that

g(x, λ) = ρ(x)−1F (x)u1(x, λ)G(0). (4.18)

Clearly g is differentiable and

d

dx
g(x, λ) = ρ(x)−1g̃x(x, λ) − ρ(x)−1ρ′(x)ρ(x)−1g̃(x, λ)

=ρ(x)−1 {λF (x)G(x)F (x)+F ′(x)−F ′(x)G(x)F (x)} u1(x, λ)G(0)
= λg(x, λ) + ρ(x)−1F ′(x) (Ip − G(x)F (x)) u1(x, λ)G(0). (4.19)

Here we took into account the identity (4.2). From (4.12) we see that

d

dt
ũ1(t)−1 = −ũ1(t)−1

(
d

dt
ũ1(t)

)
ũ1(t)−1 = ũ1(t)−1G(t)F ′(t).

Hence

d

dt

(
ũ1(t)−1 (Ip − G(t)F (t)) u1(t, λ)

)
= ũ1(t)−1G(t)F ′(t) (Ip − G(t)F (t)) u1(t, λ)

+ ũ1(t)−1 (−G′(t)F (t) − G(t)F ′(t)) u1(t, λ)
+ λũ1(t)−1 (Ip − G(t)F (t)) G(t)F (t)u1(t, λ).
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Since (Ip − G(t)F (t))G(t) = 0 because of condition (4.2), we see that

d

dt

(
ũ1(t)−1 (Ip − G(t)F (t)) u1(t, λ)

)
= ũ1(t)−1 (G(t)F ′(t) − G(t)F ′(t)G(t)F (t)

− G′(t)F (t) − G(t)F ′(t)) u1(t, λ)
= −ũ1(t)−1 (G(t)F ′(t)G(t) + G′(t)) F (t)u1(t, λ).

Using the definition of β in (4.16) and the identity (4.18), we obtain

d

dt

(
ũ1(t)−1 (Ip − G(t)F (t)) u1(t, λ)

)
G(0) = β(t)g(t, λ). (4.20)

Recall that (Ip − G(t)F (t))G(t) = 0 and (Ip − G(0)F (0))G(0) = 0, in partic-
ular. From integration by parts it follows that

x∫

0

β(t)g(t, λ) dt = ũ1(x)−1 (Ip − G(x)F (x)) u1(x, λ)G(0)

− (Ip − G(0)F (0)) G(0)−λ

x∫

0

ũ1(t)−1 (Ip−G(t)F (t)) G(t)

× F (t)u1(t, λ)G(0)dt

= ũ1(x)−1 (Ip − G(x)F (x)) u1(x, λ)G(0).

But then, using (4.19) and the definition of α in (4.15), we arrive at the
identity (4.14). �

The following lemma provides an integral representation of g.

Lemma 4.3. Let γ(x, t) be an r×r matrix function, continuous on the interval
0 ≤ t ≤ x ≤ T. Then the integro-differential equation

d

dx
g(x, λ) −

x∫

0

γ(x, t)g(t, λ)dt − λg(x, λ) = 0, g(0, λ) = Ir, (4.21)

has a unique continuously differentiable solution g. Moreover, g is of the form

g(x, λ) = eλxIr +

x∫

0

eλtN(x, t) dt, 0 ≤ x ≤ T, (4.22)

where N(x, t) is continuous on 0 ≤ t ≤ x ≤ T and N(x, 0) = 0 for each
0 ≤ x ≤ T.

Proof. Throughout the proof we fix λ ∈ C. By definition a solution g(x, λ)
of (4.21) is absolutely continuous on 0 ≤ x ≤ T. In that case, since γ(x, t) is
continuous on 0 ≤ t ≤ x ≤ T, we see that

λg(x, λ) +

x∫

0

γ(x, t)g(t, λ) ds is continuous on 0 ≤ x ≤ T.
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But then d
dx g(x, λ) is also continuous on 0 ≤ x ≤ T. Thus any solution of

(4.21) is automatically continuously differentiable.
By integrating the equation in (4.21) over 0 ≤ x ≤ τ , where 0 ≤ τ ≤ T,

we obtain the equation

g(·, λ) − λAg(·, λ) − ARg(·, λ) = Ir. (4.23)

Here A is the operator of integration on L2
r(0,T) defined by (3.4) and R is

the operator on L2
r(0,T) given by

(Rf)(x) =

x∫

0

γ(x, t)f(t) dt, f ∈ L2
r(0,T).

Note that for each f in L2
r(0,T) the function Af is absolutely continuous

on [0,T]. It follows that any solution of (4.23) is absolutely continuous, and
thus the problems (4.21) and (4.23) are equivalent. Using (4.6) we get

(
(I − λA)−1Af

)
(x) =

x∫

0

eλ(x−t)f(t) dt, 0 ≤ x ≤ T. (4.24)

From (4.24) and the definition of R we see that for each f in L2
r(0,T)

(
(I − λA)−1ARf

)
(x) =

x∫

0

γ̃(x, t;λ)f(t) dt, 0 ≤ x ≤ T,

where

γ̃(x, t;λ) =

x∫

t

eλ(x−s)γ(s, t) ds, 0 ≤ t ≤ x ≤ T.

It follows that I − (I −λA)−1AR is an invertible operator on L2
r(0,T). Hence

the problem (4.23) has a unique solution in L2
r(0,T), namely

g(·, λ) =
(
I − (I − λA)−1AR

)−1
(I − λA)−1Ir. (4.25)

We conclude that Eq. (4.21) has a unique continuously differentiable solution.
It remains to show that the solution g(·, λ) is of the form (4.22). To do

this, we use (4.7) and rewrite (4.25) as

g(·, λ) = eλ·Ir +
∞∑

k=1

(
(I − λA)−1AR

)k
eλ·Ir. (4.26)
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Let us compute the first term with k = 1. Using (4.24) and the definition of
R, we get

((
(I − λA)−1AR

)
eλ·Ir

)
(x) =

x∫

0

eλ(x−r)

⎛
⎝

r∫

0

γ(r, t)eλtIrdt

⎞
⎠ dr

=

x∫

0

⎛
⎝

r∫

0

eλ(x+t−r)γ(r, t) dt

⎞
⎠ dr

=

x∫

0

⎛
⎝

x∫

x−r

eλtγ(r, r + t − x)dt

⎞
⎠ dr

=

x∫

0

eλt

⎛
⎝

x∫

x−t

γ(r, r + t − x)dr

⎞
⎠ dt

=

x∫

0

eλtγ1(x, t) dt,

where

γ1(x, t) =

x∫

x−t

γ(r, r + t − x)dr, 0 ≤ t ≤ x ≤ T. (4.27)

Next define matrix γk(t, s), k = 2, 3, . . ., recursively by

γk+1(x, t) =

x∫

x−t

y∫

y+t−x

γ(y, s)γk(s, t + y − x) ds dy. (4.28)

Then, using similar calculations as for k = 1 above, one proves by induction
that for each k ≥ 1 we have

((
(I − λA)−1AR

)k
eλ·Ir

)
(x) =

x∫

0

eλtγk(x, t) dt, 0 ≤ x ≤ T. (4.29)

Observe that for each k the function γk(x, t) is continuous on 0 ≤ t ≤ x ≤ T.
Furthermore, as we see from (4.27) and (4.28), we have

‖γk(x, t)‖ ≤ ck x2k−1

(2k − 1)!
, 0 ≤ t ≤ x ≤ T, k ≥ 1. (4.30)

Here c is a constant independent of k. Finally, using (4.26), we conclude that
(4.22) holds with

N(x, t) =
∞∑

k=1

γk(x, t), 0 ≤ t ≤ x ≤ T.

By (4.30) the convergence in the preceding formula is uniform on the triangle
0 ≤ t ≤ x ≤ T. Since each of the terms γk(x, t) is continuous on this triangle,
it follows that N(x, t) is continuous on 0 ≤ t ≤ x ≤ T as desired. Finally,
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from (4.27) and (4.28) it is clear that γk(x, 0) = 0 for each 0 ≤ x ≤ T and
each positive integer k. But then N(·, 0) is identically equal to zero too. �

Proof of Proposition 4.1. We split the proof into three parts. In the first part
we define the operator E and establish the similarity KE = EA. In the two
other parts we prove that E±1 map functions with a continuous derivative
into functions with a continuous derivative.
Part 1. Let g(x, λ) be the matrix function defined by (4.13). From Lemma 4.2
we know that g(x, λ) satisfies the integro-differential equation (4.14). But
then we can apply Lemma 4.3 with γ(x, t) = α(x)β(t), where α(·) and β(·)
are defined by (4.15) and (4.16). It follows that g admits the representation

g(x, λ) = eλxIr +

x∫

0

N(x, t)eλtIr dt, 0 ≤ x ≤ T, (4.31)

with N(x, t) being continuous on 0 ≤ t ≤ x ≤ T and with N(·, 0) identically
equal to zero. Now let E be the operator on L2

r(0, T) defined by

(Ef)(x) = ρ(x)f(x) +

x∫

0

ρ(x)N(x, t)f(t) dt, 0 ≤ x ≤ T. (4.32)

Here the r×r matrix function ρ is defined by (4.4). Thus E has the form (4.3)
with e(x, t) = ρ(x)N(x, t). Obviously e(x, t) is continuous on 0 ≤ t ≤ x ≤ T
and e(·, 0) = 0 on [0, T]. We claim that this operator E has all the properties
described in Proposition 4.1.

From (4.7), (4.13), formula (4.32) applied to f = eλ·Ir, and the identity
in (4.31) we see that

E(I − λA)−1Ir = E(eλ·Ir) = ρ(·)g(·, λ) = (I − λK)−1h,

where h = F (·)G(0). Taking λ = 0 in the above identity, we obtain h = EIr.
Therefore,

(I − λK)−1EIr = E(I − λA)−1Ir. (4.33)

From the series expansion in (4.33) it follows that

KjEIr = EAjIr, j = 0, 1, 2, . . . . (4.34)

Therefore, for each j = 0, 1, 2, . . ., we have

(KE)AjIr = K(EAjIr) = Kj+1EIr = EAj+1Ir = (EA)AjIr. (4.35)

As the closed linear span of the columns of the matrices {AjIr}∞
j=0 coincides

with L2
r(0, T), the equalities in (4.35) yield KE = EA. Since E is invertible,

we obtain K = EAE−1, and hence K and A are similar. It remains to prove
that E±1 map functions with a continuous derivative into functions with a
continuous derivative.
Part 2. To show that E has this property, let f be any C

n-valued function
on [0, T] with a continuous derivative. Then f(·) = (Ag)(·) + u, where g is
the derivative of f and u is a constant r × r matrix. As we have seen in the
previous paragraph, EIr = h = F (·)G(0). Thus Eu = F (·)G(0)u. According
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to our hypotheses, F (·) is continuously differentiable. Hence the same holds
true for Eu. Next note that

(EAg)(x) = (KEg)(x) = F (x)

x∫

0

G(t)(Eg)(t) dt.

Since ρ is continuous on [0, T] and e(x, t) is continuous on 0 ≤ t ≤ x ≤ T,
we know that E maps continuous functions into continuous functions. In
particular, Eg is continuous, and hence the above formula shows that EAg
has a continuous derivative. Therefore, Ef = EAg + Eu is continuously
differentiable.
Part 3. Next, we prove that E−1 maps functions with a continuous derivative
into functions with a continuous derivative. First notice that E−1 admits the
representation

(E−1f)(x) = ρ(x)−1f(x) +

x∫

0

e×(x, t)f(t) dt, f ∈ L2
r(0, T). (4.36)

As e(x, t) is continuous on 0 ≤ t ≤ x ≤ T, the same holds true for e×(x, t),
and thus E−1 maps continuous function into continuous functions. In terms
of the kernel functions the identity E−1E = I means

e×(x, t)ρ(t) + ρ(x)−1e(x, t) +

x∫

t

e×(x, s)e(s, t) ds = 0, 0 ≤ t ≤ x ≤ T.

Recall that e(·, 0) ≡ 0. Thus by taking t = 0 in the preceding identity we
obtain e×(x, 0) = 0 for 0 ≤ x ≤ T.

We shall need the operator K1 on L2
r(0, T) defined by

(K1f)(x) = F ′(x)

x∫

0

G(t) dt, f ∈ L2
r(0, T).

Here F ′ is the derivative of F , which is a continuous function on [0, T]. Notice
that K = A(I + K1). Since KE = EA, we have E−1K = AE−1 which yields

E−1A = E−1A(I + K1)(I + K1)−1 = E−1K(I + K1)−1

= AE−1(I + K1)−1. (4.37)

Since the kernel function F ′(x)G(t) of K1 is continuous, (I + K1)−1 maps
continuous functions into continuous functions.

Now let f be a C
r-valued function on [0, T] with a continuous deriva-

tive. As in the previous part, we can represent f as f(·) = (Ag)(·)+u, where
g is the derivative of f and u is a constant r × r matrix. According to (4.37)
we have E−1Ag = AE−1(I + K1)−1g. Since both E−1 and (I + K1)−1 map
continuous functions into continuous functions, the function E−1(I +K1)−1g
is continuous. Thus E−1Ag has a continuous derivative.

Hence in order to prove that E−1f has a continuous derivative, it suffices
to show that E−1Ir has a continuous derivative. By rewriting the identity
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E−1K = AE−1 in terms of the kernel functions of A, K, and E−1 we get

ρ(x)−1F (x)G(t) +

x∫

t

e×(x, s)F (s)dsG(t) = ρ(t)−1 +

x∫

t

e×(s, t)ds.

By taking t = 0 and using e×(x, 0) = 0 for 0 ≤ x ≤ T we obtain

Ir − ρ(x)−1F (x)G(0) −
x∫

0

e×(x, s)F (s)dsG(0) = 0. (4.38)

Since F (0)G(0) = Ir, we can use (4.36) and (4.38) to show that

(E−1Ir)(x) = Ir − ρ(x)−1 (F (x) − F (0)) G(0)

−
x∫

0

e×(x, s) (F (s) − F (0)) dsG(0). (4.39)

Using (AF ′(·)G(0))(x) = ((F (x) − F (0))G(0), it follows from (4.39) and
(4.36) that (E−1Ir)(x) = Ir − (E−1AF ′(·))(x)G(0). As the right-hand side
of the latter identity has a continuous derivative, we obtain that E−1Ir is
continuously differentiable. �

5. Construction of an Accelerant

In this section we establish the main part of Theorem 1.2. Throughout the
2r × 2r matrix function u(x, λ) is the fundamental solution of the canonical
system (1.10) normalized by

u(0, λ) = Q∗, where Q =
1√
2

[
Ir −Ir

Ir Ir

]
. (5.1)

The potential v of (1.10) is assumed to be continuous on [0, T]. Finally, j
and J are signature matrices, j is defined by (1.11) and J by (3.3). Our aim
is to show that v is generated by an accelerant.

In what follows θ and ω are the r×2r matrix functions on [0, T] defined
by

θ(x) =
[
Ir 0

]
u(x, 0), 0 ≤ x ≤ T, (5.2)

ω(x) =
[
0 Ir

]
u(x, 0), 0 ≤ x ≤ T. (5.3)

We begin with two lemmas. The first will enable us to use Proposition 4.1.

Lemma 5.1. Let θ be the r × 2r matrix function on [0, T] defined by (5.2).
Then θ is continuously differentiable on [0, T],

θ(x)Jθ(x)∗ = Ir and θ′(x)Jθ(x)∗ = 0 (0 ≤ x ≤ T). (5.4)

Proof. It is straightforward to check that Q defined in (5.1) satisfies the iden-
tities

Q∗ = Q−1, QjQ∗ = J, Q∗JQ = j. (5.5)
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Since u(x, λ) satisfies (1.10) and the potential v is continuous, the func-
tion u(x, λ) is continuously differentiable in x. Furthermore, again using that
u(x, λ) satisfies (1.10), we have d

dx

(
u(x, λ)∗ju(x, λ)

)
= 0. Hence, taking into

account (5.1) and (5.5), we derive

u(x, λ)∗ju(x, λ) = J, u(x, λ)Ju(x, λ)∗ = j. (5.6)

The fact that u(x, λ) is continuously differentiable in x, implies that θ
is continuously differentiable on [0, T]. Furthermore, from (5.6) and (1.10)
we see that for each 0 ≤ x ≤ T we have

θ(x)Jθ(x)∗ =
[
Ir 0

]
u(x, 0)Ju(x, 0)∗

[
Ir

0

]
= Ir, (5.7)

θ′(x)Jθ(x)∗ =
[
Ir 0

]( d

dx
u(x, 0)

)
Ju(x, 0)∗

[
Ir

0

]
= 0. (5.8)

Thus the identities in (5.4) hold. �

Lemma 5.2. Let ω be the r × 2r matrix function defined by (5.3), and let θ
be as in (5.2). Then ω is continuously differentiable on [0, T], and for each
0 ≤ x ≤ T we have

θ(x)Jω(x)∗ = 0, ω′(x)Jω(x)∗ = 0, ω(0) =
1√
2

[−Ir Ir
]
. (5.9)

Moreover, the three identities in (5.9) determine ω uniquely. Finally,

ω′(x)Jθ(x)∗ = −iv(x)∗, 0 ≤ x ≤ T. (5.10)

Proof. Since u(x, λ) is continuously differentiable in x on [0, T], the same
holds true for ω(x). From the second identity in (5.6) and the definitions of
θ and ω in (5.2) and in (5.3), respectively, we get

θ(x)Jω(x)∗ =
[
Ir 0

]
u(x, 0)Ju(x, 0)∗

[
0
Ir

]
=
[
Ir 0

]
j

[
0
Ir

]
= 0.

Analogously, using (1.10),

ω′(x)Jω(x)∗ =
[
0 Ir

]( d

dx
u(x, 0)

)
Ju(x, 0)∗

[
0
Ir

]

=
[
0 Ir

] [ 0 iv(x)
−iv(x)∗ 0

]
j

[
0
Ir

]
= 0.

Thus the first two identities in (5.9) are proved. The third follows directly
the normalizing condition (5.1).

To prove that the three identities in (5.9) determine ω uniquely, note
that the second identity in (5.9) implies that

d

dx
(ω(x)Jω(x)∗) = ω′(x)Jω(x)∗ + ω(x)J (ω′(x))∗ = 0.
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Thus, using the third identity in (5.9), we obtain ω(x)Jω(x)∗ = −Ir. The
latter identity, together with the first identity in (5.9), yields

u(x, 0)Jω(x)∗ =
[

0
−Ir

]
. (5.11)

Let ω̃ be another continuously differentiable function on [0, T] such that
the three identities in (5.9) hold with ω̃ in place of ω. Repeating the above
reasoning for ω̃ in place of ω we see that (5.11) holds for ω̃ in place of ω.
Thus u(x, 0)J(ω(x)∗ − ω̃(x)∗) = 0. But the matrices u(x, 0) and J are non-
singular. Thus ω̃(x) = ω(x) for each x ∈ [0, T]. It follows that ω is uniquely
determined by the identities in (5.9).

To prove the final identity (5.10) we use (1.10) and the definitions of θ
and ω in (5.2) and (5.3). This yields

ω′(x)Jθ(x)∗ =
[
0 Ir

]( d

dx
u(x, 0)

)
Ju(x, 0)∗

[
Ir

0

]

=
[
0 Ir

] [ 0 iv(x)
−iv(x)∗ 0

] [
Ir

0

]
= −iv(x)∗.

Hence (5.10) is proved. �

In what follows it will be convenient to use the following notation:

θ0,1(x) = θ(x)
[
Ir

0

]
, θ0,2(x) = θ(x)

[
0
Ir

]
(0 ≤ x ≤ T); (5.12)

ω0,1(x) = ω(x)
[
Ir

0

]
, ω0,2(x) = ω(x)

[
0
Ir

]
(0 ≤ x ≤ T). (5.13)

Thus

u(x, 0) =
[
θ(x)
ω(x)

]
=
[
θ0,1(x) θ0,2(x)
ω0,1(x) ω0,2(x)

]
, 0 ≤ x ≤ T.

We now return to the operator L defined by (3.2). Thus L is the lower
triangular semi-separable integral operator on L2

r(0, T) defined by

(Lf)(x) = θ(x)J

x∫

0

θ(t)∗f(t) dt, 0 ≤ x ≤ T. (5.14)

Here θ is as in (5.2) (cf., (3.1)) and J as in (3.3). Recall (see the first par-
agraph of Sect. 3) that the definition of L does not involve accelerants and
depends on (1.10) only. However, if the potential v of (1.10) is given by an
accelerant, then Proposition 3.1 tells us that L is similar to the operator of
integration with a similarity operator of a special kind. The next proposition
goes in the reverse direction.

Proposition 5.3. Assume that the operator L defined by (5.14) is similar to
the operator of integration, L = Λ−1AΛ, where Λ and Λ−1 have the following
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properties. Both Λ and Λ−1 are lower triangular operators,

(Λf)(x) = f(x) +

x∫

0

ρ(x, t)f(s) ds, 0 ≤ x ≤ T, (5.15)

(Λ−1f)(x) = f(x) +

x∫

0

ρ×(x, s)f(s) ds, 0 ≤ x ≤ T, (5.16)

with ρ(x, s) and ρ×(x, s) being continuous r × r matrix functions on the tri-
angles 0 ≤ s ≤ x ≤ T. Furthermore, we assume that Λ and Λ−1 map con-
tinuously differentiable functions into continuously differentiable functions,
and

(Λθ0,1)(0) =
1√
2
Ir,

1√
2
(Λ−1Ir)(x) = θ0,2(x) (0 ≤ x ≤ T). (5.17)

Then the r × r matrix function k given by

k(x) =

⎧⎨
⎩

− 1√
2

d
dx (Λθ0,1)(x), for 0 < x ≤ T,

k(−x)∗, for −T ≤ x < 0.
(5.18)

is an accelerant and k generates the potential v.

The above result will allow us to complete the proof of Theorem 1.2. In
fact, using Proposition 4.1, we shall show that given L as above a similarity
operator Λ with the properties described in Proposition 5.3 always exists.

Proof. Let k be defined by (5.18). Clearly, k is hermitian on [−T, T]. Since
θ0,1 is continuously differentiable, the fact that Λ maps continuously differ-
entiable functions into continuously differentiable functions implies that k is
continuous on [−T, T] with a possible jump discontinuity at the origin. The
proof that k is an accelerant and generates the potential v will be split into
two parts.

Part 1. In this part we show that k is an accelerant. Let Tτ be the operator
on L2

r(0, τ) given by

(Tτf)(t) = f(t) −
τ∫

0

k(t − s)f(s) ds, 0 ≤ t ≤ τ. (5.19)

To prove that k is an accelerant, we have to show that the operator TT is
strictly positive on L2

r(0, τ). To establish the latter fact we prove the following
identity:

T = TT = ΛΛ∗. (5.20)

Note that the right hand side of (5.20) is an LU -factorization.
In order to establish (5.20), recall that L = Λ−1AΛ, where A is the

operator of integration. Take f ∈ L2
r(0, τ). Using the similarity relation
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L = Λ−1AΛ it follows that

Λ−1AΛf +
(
Λ−1AΛ

)∗
f = Lf + L∗f = θ(·)J

T∫

0

θ(t)∗f(t) dt. (5.21)

By multiplying (5.21) from the left by Λ and replacing f by Λ∗f we obtain

AΛΛ∗f + ΛΛ∗A∗f = (Λθ)(·)J
T∫

0

(Λθ)(t)∗f(t) dt. (5.22)

Thus the selfadjoint operator S = ΛΛ∗, which acts on L2
r(0, τ), satisfies the

identity

ASf + SA∗f = (Λθ)(·)J
T∫

0

(Λθ)(t)∗f(t) dt, f ∈ L2
r(0, τ). (5.23)

Now, with k given by (5.18), let s be the r × r matrix function defined
by

s(x) =
1
2
Ir −

x∫

0

k(t)dt 0 < x ≤ T. (5.24)

From the first identity in (5.17) and the definition of k in (5.18) we see that
Λθ0,1 =

√
2 s. By applying Λ to both sides of the second identity in (5.17) we

obtain Λθ0,2 = (
√

2)−1Ir. Summarizing we have

Λθ =
1√
2

[
2s(·) Ir

]
. (5.25)

Using the later identity in the right hand side of (5.23) we obtain

(Λθ)(·)J
T∫

0

(Λθ)(t)∗f(t) dt

=
1
2
[
2s(x) Ir

]
J

T∫

0

[
2s(t)∗

Ir

]
f(t) dt

=
1
2
[
2s(x) Ir

] T∫

0

[
Ir

2s(t)∗

]
f(t) dt

= s(x)

T∫

0

f(t) dt +

T∫

0

s(t)∗f(t) dt, 0 ≤ x ≤ T.
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But then (5.23) can be rewritten as

(ASf + SA∗f)(x) =

T∫

0

(s(x) + s(t)∗) f(t) dt, 0 ≤ x ≤ T. (5.26)

According to Theorem 2.2 in Chapter 1 of [14] (see also [7] and [12]), the
equation (5.26) has a unique solution which is given by

(Sf)(x) =
d

dx

T∫

0

s(x − t)f(t) dt, s(−x) = −s(x)∗ (0 < x ≤ T).

(5.27)

(Note Theorem 2.2 in Chapter 1 of [14] is stated for scalar kernel functions,
but the result also holds for matrix-valued kernel functions [13]. In fact, to
get the result for matrix-valued kernel functions one just writes S as a r × r
matrix with operator entries and applies the scalar-valued result to each of
these entries.) From (5.27) and (5.24) we see that S = TT, and thus (5.20) is
proved. In particular, k is an accelerant.
Part 2. Let ṽ be the potential generated by the accelerant k, where k is as in
the previous part. In this part we show that v = ṽ.

Consider the canonical system (1.10) with the potential v being replaced
by ṽ. Let ũ(x, λ) be the corresponding fundamental solution normalized at
x = 0 by ũ(0, λ) = Q∗, where Q is as in (2.2). Put

θ̃(x) =
[
Ir 0

]
ũ(x, 0), ω̃(x) =

[
0 Ir

]
ũ(x, 0 (0 ≤ x ≤ T).

From (5.10) we know that

ω̃′Jθ̃∗ = −iṽ∗, 0 ≤ x ≤ T. (5.28)

Thus to prove v = ṽ it suffices to show that θ = θ̃ and ω = ω̃.
We first show that θ = θ̃. Since k is an accelerant generating the poten-

tial ṽ, we can apply the results of Sects. 2 and 3 to the canonical system
(1.10) with ṽ in place of v. In particular, using (3.8) in the present setting,
we see that

θ̃ =
1√
2
Λ−1�̃, where �̃(x) =

⎡
⎣Ir − 2

x∫

0

k(t) dt Ir

⎤
⎦ .

Here Λ is the lower triangular integral operator which appears in the LU -
factorization (5.20) of the convolution operator T = TT defined by k via
(5.19). By (5.24) we have �̃(x) =

[
2s(x) Ir

]
, and hence, using (5.25), we

obtain θ̃ = θ.
Next we prove that ω̃ = ω. By applying Lemma 5.2 to the canonical

system (1.10) with ṽ in place of v, we have

θ̃(x)Jω̃(x)∗ = 0, ω̃′(x)Jω̃(x)∗ = 0, ω̃(0) =
1
2

√
2
[−Ir Ir

]
.

However, θ̃ = θ. Thus (5.9) holds with ω̃ in place of ω. But then we can use
the uniqueness statement in Lemma 5.2 to show that ω̃ = ω.
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We have now proved that v = ṽ, and hence k is an accelerant generating
the potential v. �

Completing the proof of Theorem 1.2. Let L be the lower triangular semi-
separable integral operator defined by (3.2); see also (5.14). In order to com-
plete the proof of Theorem 1.2 it suffices to show that L is similar to the
operator A of integration, L = Λ−1AΛ, where Λ has all the properties stated
in Proposition 5.3. For this purpose we use Proposition 4.1 with

K = L, F (x) = θ(x), G(x) = Jθ(x)∗ (0 ≤ x ≤ T). (5.29)

By Lemma 5.1, the functions F and G in (5.29) are continuously differentia-
ble on [0, T] and condition (4.2) is satisfied. Furthermore, the second identity
in (5.4) implies that for F and G in (5.29) the solution ρ of the differential
equation (4.4) is identically equal to Ir. Thus, by Proposition 4.1,

L = EAE−1, (5.30)

where A is the operator of integration defined by (3.4) and E on L2
r(0, T) is

a lower triangular integral operator of the form

(Ef)(x) = f(x) +

x∫

0

e(x, t)f(t)dt, f ∈ L2
r(0, T). (5.31)

Moreover, we know that e(x, t) is a continuous r × r matrix function on
0 ≤ t ≤ x ≤ T, which is zero at t = 0, and the operators E±1 map functions
with a continuous derivative into functions with a continuous derivative.

To construct the lower triangular integral operator Λ we need (apart
from the operator E) an additional normalizing lower triangular operator.
This operator is the lower triangular convolution operator E0 defined by

(E0f)(x) = θ0,2(0)f(x) +

x∫

0

e0(x − t)f(t)dt, where (5.32)

e0(x) :=
d

dx
(E−1θ0,2)(x). (5.33)

Recall that θ0,2 is defined by the second identity in (5.12). Since θ is con-
tinuously differentiable (see Lemma 5.1), the same holds true for θ0,2. Using
the fact that E−1 maps functions with a continuous derivative into functions
with a continuous derivative, we conclude that e0 is continuous (in fact,
continuously differentiable).

Lemma 5.4. Let E0 be the operator on L2
r(0, T) defined by (5.32), and let A

be the operator of integration defined by (3.4). Then

E0A = AE0 and (E0Ir)(x) = (E−1θ0,2)(x) (0 ≤ x ≤ T). (5.34)

Furthermore, E0 is invertible and E±1
0 map functions with a continuous deriv-

ative into functions with a continuous derivative.
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Proof. Since E0 is a lower triangular convolution integral operator, E0

commutes with the operator of integration. Thus the first identity in (5.34)
holds. From (5.31) with f = θ0,2 we see that (E−1θ0,2)(0) = θ0,2(0). By using
the latter identity, (5.32), and (5.33) we obtain

(E0Ir)(x) = θ0,2(0) +

x∫

0

e0(x − t) dt = θ0,2(0) +

x∫

0

e0(t) dt

= θ0,2(0) +

x∫

0

d

dt
(E−1θ0,2)(t) dt

= θ0,2(0) + (E−1θ0,2)(x) − θ0,2(0) = (E−1θ0,2)(x),

which yields the second identity in (5.34). According to (5.2), (5.12), and the
initial condition in (5.1), we have

[
θ0,1(0) θ0,2(0)

]
=
[
Ir 0

]
u(0, 0) =

1√
2

[
Ir Ir

]
. (5.35)

In particular, θ0,2(0) = Ir/
√

2, and so E0 is invertible. Furthermore, E−1
0 is

of the form

(E−1
0 f)(x) = θ2(0)−1f(x) +

x∫

0

e×
0 (x − t)f(t) dt, 0 ≤ x ≤ T, (5.36)

with e×
0 (x) being continuous on 0 ≤ x ≤ T.

Next, let f be any C
r-valued function on [0, T] with a continuous deriv-

ative. Write f as f(·) = (Ag)(·) + u, where g is the derivative of f and u is a
constant r× r matrix. Then E0f = E0Ag +E0u = AE0g +E0u. Since e0 and
g are continuous functions, E0g is continuous, and thus E0Ag is continuously
differentiable. Hence in order to prove that E0f is continuously differentia-
ble, it suffices to show that E0u has this property. The latter can be derived
from the second identity in (5.34) and the properties of E. A more direct
argument is as follows. From (5.32) we see that

(E0u)(x) = θ2(0)u +

x∫

0

e0(x − t)u dt = θ2(0)u +

x∫

0

e0(t)u dt.

Since e0 is continuous, this implies that E0u is continuously differentiable as
desired. In a similar way, using that E−1

0 commutes with A and that E−1
0 is

given by (5.36) with e×
0 being continuous, one shows that E−1

0 maps functions
with a continuous derivative into functions with a continuous derivative. �

For latter purposes we note that

(E−1
0 E−1θ0,1)(0) = Ir. (5.37)

To see this, observe that by (5.36) for any continuous C
r-valued function f

we have (E−1
0 f)(0) = θ0,2(0)−1f(0). We apply this identity to f = E−1θ0,1.

We know that θ0,1 is continuously differentiable, and hence E−1θ0,1 has the
same property. In particular, E−1θ0,1 is continuous. Using (4.36) and the
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fact that in this case ρ defined by (4.4) is identically equal to Ir, we see that
(E−1θ0,1)(0) = θ0,1(0). Thus

(E−1
0 E−1θ0,1)(0) = θ0,2(0)−1(E−1θ0,1)(0) = θ0,2(0)−1θ0,1(0).

But then (5.35) yields (5.37).
Now define

Λ =
1√
2
E−1

0 E−1. (5.38)

We claim that Λ given by (5.38) satisfies all the conditions on Λ stated in
Proposition 5.3. Indeed, from (5.30) and the first identity in (5.34) we see
that L = ΛAΛ−1. Furthermore, Λ and Λ−1 are lower triangular integral oper-
ators of the form (5.15) and (5.16), respectively, and their respective kernel
functions are continuous on the triangles 0 ≤ s ≤ t ≤ T, because the kernel
functions of E±1 and E±1

0 have these properties. Since E±1 and E±1
0 map

functions with a continuous derivative into functions with a continuous deriv-
ative, the same holds true for Λ and Λ−1. It remains to check the identities
in (5.17). The first identity in (5.17) follows from the definition of Λ in (5.38)
and the equality in (5.37). Finally, we use the second equality in (5.34). The
latter can be rewritten as E−1

0 E−1θ0,2 = Ir. Using definition of Λ in (5.38),
this yields the second identity in (5.17).

Thus Λ given by (5.38) satisfies all the conditions on Λ appearing in
Proposition 5.3. Hence the potential v is generated by an accelerant, as
desired. �

6. Pseudo-Exponential Potentials

In this section we consider the class of so-called pseudo-exponential poten-
tials, which has been introduced in [4]; see also [5]. The aim is to show how
Theorem 2.1 can be used to present an alternative proof of the basic formula
for the fundamental solution given in Theorem 4.2 of [4]; see also Section 2
in [5].

We begin with some notation. Fix an integer n > 0 and a triple of
parameter matrices: an n×n matrix B and n× r matrices Φ1 and Φ2. Recall
that the triple B, Φ1, Φ2 is called admissible whenever

B∗ − B = iΦ2Φ∗
2. (6.1)

Throughout Φ is the n × r matrix given by Φ = Φ1 + iΦ2.
Now let B, Φ1 and Φ2 be an admissible triple, and put

k(t) = −2Φ∗
1e

2itB∗
Φ, k(−t) = k(t)∗, t > 0. (6.2)

By taking adjoints, a minor modification of the proof of Proposition 5.2 in
[1] shows that the function k is an accelerant on each interval [−T,T], and
the corresponding potential is given by

v(τ) = 2iΦ∗
1e

iτA∗
Σ(τ)−1eiτAΦ, A = B − Φ1Φ∗

2, (6.3)
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where

Σ(t) = In +

t∫

0

Π(s)Π(s)∗ ds, with Π(t) =
[
e−itAΦ1 −eitAΦ

]
. (6.4)

Note that with Φ1 = γ1 and Φ2 = γ2, we have Φ = γ1 + iγ2, and in this case
v in (6.3) is just equal to v given by (4.6) in [4]. The following result is a
variant of Theorem 4.2 in [4].

Proposition 6.1. Let B, Φ1 and Φ2 be an admissible triple, and let v be the
potential defined by (6.3). Then the fundamental solution u(x, λ) of the canon-
ical system (1.10) satisfying the initial condition (2.2) is given by

u(τ, λ) = wA,Π(τ, λ)eiτλjwA,Π(0, λ)−1Q∗, (6.5)

where j is the 2r × 2r matrix in the left hand side of (1.11) and

wA,Π(τ, λ) = I2r + ijΠ(τ)∗Σ(τ)−1(λIn − A)−1Π(τ). (6.6)

The proof of Proposition 6.1 given below is very different from the proof
of Theorem 4.2 in [1]. Here we shall use that the potential v in (6.3) is gen-
erated by the accelerant k in (6.2). This fact will allow us to employ the
formula for the fundamental solution given in Theorem 2.1.

We shall only prove equality (6.5) for the block ω2(τ, λ) of u(τ, λ) (see
(2.7)); the representation of the other blocks can be proved in a similar way.

Proof. We shall show that ω2 = ω̂2, where ω̂2 denotes the right lower block
on the right-hand side of (6.5). In Theorem 2.1 the block ω2(τ, λ is given (cf.,
(2.9)) by

ω2(τ, λ) =
1√
2

e−iτλ

⎧⎨
⎩Ir +

τ∫

0

e2isλγτ (0, s)ds

⎫⎬
⎭. (6.7)

Here γτ (t, s) is the resolvent kernel corresponding to the accelerant k. Using
adjoints, the same line of reasoning as in the proof of Proposition 5.2 in [1],
shows that

γτ (0, s) = −2Φ∗e−iτA∗
Σ(τ)−1e−iτA [

In 0
]
ei(s−τ)A×

M

[
Φ1

Φ2

]
, (6.8)

where

A×
M = −2

[
A −Φ1Φ∗

1

0 A∗

]
. (6.9)

In what follows we shall use the identity

[
In 0

]
e−iτA×

M

[
In

iIn

]
= eiτAΣ(τ)eiτA∗

. (6.10)

Here A×
M and Σ(τ) are as in (6.9) and (6.4), respectively. Note that (6.10) is

the analogue of formula (4.7) in [4].
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By substituting (6.8) in (6.7) we get

ω2(τ, λ) =
1√
2

e−iτλ

{
Ir + 2iΦ∗e−iτA∗

Σ(τ)−1e−iτA [
In 0

]

× (
2λI2n + A×

M

)−1
(
e2iτλI2n − e−iτA×

M

)[Φ1

Φ2

]}
. (6.11)

Since A×
M is given by (6.9), we can rewrite (6.11) in the form

ω2(τ, λ) =
1√
2

e−iτλ
{

Ir − iΦ∗e−iτA∗
Σ(τ)−1e−iτA(A − λIn)−1

×[
In Φ1Φ∗

1(A∗−λIn)−1
] (

e2iτλI2n−e−iτA×
M

)[Φ1

Φ2

]}
. (6.12)

Partition e−iτA×
M into n × n blocks

(
e−iτA×

M

)
kj

. From (6.9) and (6.10) it

follows that(
e−iτA×

M

)
11

= e2iτA,
(
e−iτA×

M

)
22

= e2iτA∗
, (6.13)

(
e−iτA×

M

)
21

= 0,
(
e−iτA×

M

)
12

= i
(
e2iτA − eiτAΣ(τ)eiτA∗)

.

(6.14)

Taking into account (6.12)–(6.14) we arrive at

ω2(τ, λ) =
1√
2
eiτλ

{
−iΦ∗e−iτA∗

Σ(τ)−1e−iτA(A − λIn)−1Φ1

× (
Ir + Φ∗

1(A∗ − λIn)−1Φ2

)}
+

1√
2
e−iτλ

×
{

Ir + iΦ∗e−iτA∗
Σ(τ)−1e−iτA(A − λIn)−1

(
e2iτAΦ1

+ Φ1Φ∗
1(A∗−λIn)−1e2iτA∗

Φ2+i
(
e2iτA−eiτAΣ(τ)eiτA∗)

Φ2

)}
.

(6.15)

Now, consider the right lower block ω̂2 of the right-hand side of (6.5).
The transfer matrix function wA,Π(τ, λ) has the property (see, e.g., [15]):

wA,Π(τ, λ)∗jwA,Π(τ, λ) = j.

In particular, we have wA,Π(0, λ)−1 = jwA,Π(0, λ)∗j. Hence, using (2.2),
(6.4), and (6.6), we can write

ω̂2(τ, λ)

=
1√
2

([
0 Ir

]− iΦ∗e−iτA∗
Σ(τ)−1(A − λIn)−1

[
e−iτAΦ1 −eiτAΦ

])

×eiτλj

(
I2r + ij

[
Φ∗

1

−Φ∗

]
(A∗ − λIn)−1

[
Φ1 −Φ

]) [
Ir

Ir

]
. (6.16)
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Formula (6.15) has the form

ω2(τ, λ) =
1√
2

eiτλc+(τ, λ) +
1√
2

e−iτλc−(τ, λ), (6.17)

where c± are the expressions between curly braces contained in (6.15). For-
mula (6.16) can be rewritten in a similar form

ω̂2(τ, λ) =
1√
2

eiτλĉ+(τ, λ) +
1√
2

e−iτλĉ−(τ, λ), (6.18)

where

ĉ+(τ, λ) = −iΦ∗e−iτA∗
Σ(τ)−1(A − λIn)−1e−iτAΦ1

× (
Ir + Φ∗

1(A∗ − λIn)−1Φ2

)
, (6.19)

ĉ−(τ, λ) =
(
Ir + iΦ∗e−iτA∗

Σ(τ)−1(A − λIn)−1eiτAΦ
)

× (
Ir + Φ∗(A∗ − λIn)−1Φ2

)
. (6.20)

In (6.19) and (6.20) we used the equality Φ1 −Φ = −iΦ2; see the second par-
agraph of this section. Comparing (6.15) and (6.19) yields c+ = ĉ+. To prove
that c− = ĉ− we shall need the equality AΣ(τ)−Σ(τ)A∗ = iΠ(τ)jΠ(τ)∗, that
is, equality (1.22) from [4] rewritten in our present notations. Equivalently,
we have

Σ(τ)(A∗ − λIn) + ie−iτAΦ1Φ∗
1e

iτA∗ − ieiτAΦΦ∗e−iτA∗

= (A − λIn)Σ(τ). (6.21)

Now, use (6.15), (6.20), and e2iτA(Φ1 + iΦ2) = e2iτAΦ to get

ĉ−(τ, λ) − c−(τ, λ) = Φ∗(A∗ − λIn)−1Φ2

−iΦ∗e−iτA∗
Σ(τ)−1(A − λIn)−1

×
(
−eiτAΦΦ∗e−iτA∗

+ e−iτAΦ1Φ∗
1e

iτA∗ − iΣ(τ)(A∗ − λIn)
)

×eiτA∗
(A∗ − λIn)−1Φ2. (6.22)

Finally, we substitute (6.21) into (6.22). This yields ĉ−(τ, λ) = c−(τ, λ).
Hence we have ĉ± = c±, and formulas (6.17) and (6.18) imply ω2 = ω̂2. �

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution Noncommercial License which permits any noncommercial use,
distribution, and reproduction in any medium, provided the original author(s) and
source are credited.
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[2] Gohberg, I., Goldberg, S., Kaashoek, M.A.: Basic Classes of Linear Operators.
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