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have a potential role in tumor invasion and drug insensitiv-
ity (Fig. 1).

EMT causes a loss of cell-cell and cell-extracellular 
matrix adhesion, causing cells with a mesenchymal pheno-
type to detach from their primary site and separate from sur-
rounding tissues. The process of EMT is not only vital for 
cancer metastasis but is essential for embryogenesis, tissue 
fibrosis, and wound healing [6]. Upon EMT induction, the 
motility of cancer cells increases, and epithelial cells lose 
their apical-basal polarity in order to transform into mes-
enchymal cells [7]. The generation of adherens junctions 
by E-cadherin is vital for cell adhesion and polarity in epi-
thelia and leads to cell-cell attachment and recruitment of 
signaling complexes [8, 9]. The earliest step in the process 
of EMT is the loss of E-cadherin levels. EMT-TFs medi-
ate epithelial reorganization via changing and decreasing 

Introduction

Since cancer mortality is associated with metastasis, it is 
essential to emphasize the role of factors that regulate 
tumor invasion [1]. Therefore, improving treatment and 
the survival of patients rely on reducing invasion and the 
malignancy of tumors. Metastasis is one of the hallmarks of 
tumor and was coined in 1829 by Jean Claude [2]. The word 
“metastasis” has Greek roots and means “displacement”, 
with “meta” meaning next and “statis” meaning place-
ment [3]. Metastasis refers to the process in which tumor 
cells migrate to another part of the body from their primary 
site to form new cancer cells, leading to death [4]. Cancer 
metastasis can be modulated via various mechanisms, such 
as EMT. Increasing evidence reveals that EMT mechanisms 
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E-cadherin levels [10, 11]. EMT is associated with epithe-
lial-mesenchymal transitions, changes in EMT-TF expres-
sion levels, including ZEB proteins, TGF-β, Twist and 
Snail, as well as Wnt/β-catenin and Notch regulation. The 
induction of EMT and overexpression of PD-L1 by ERK 
signaling can cause drug resistance lung tumor. Suppressing 
PAR2 leads to inhibition of ERK-induced EMT to inhibit 
osimertinib resistance in lung cancer [12]. Also, Bakuchiol 
administration is critical for suppressing EMT and cancer 
invasion by downregulating TGF-β [13]. Low expression 
levels of ADRB2 by cardamonin are advantageous in inhib-
iting EMT and reducing the metastasis of colorectal tumor 
[14]. Besides, activation of Hedgehog signaling is vital for 
EMT induction in breast tumor [15]. Hence, the regulation 
of EMT in cancer occurs via various molecular pathways, 
and targeting inducers of EMT is therefore beneficial in 
reversing tumor invasion [16–18]. Interestingly, non-coding 
RNAs can control EMT mechanism [19], and the purpose 
of the present review is to shed some light on the function 
of circular RNAs (circRNAs) in regulating EMT and tumor 
invasion. The Figs.  2 and 3 demonstrate an overview of 
EMT-related pathways.

The function of EMT in tumorigenesis

Despite the valuable functions of EMT during the physi-
ological and developmental stages, the function of EMT in 
cancer is oncogenic. Although EMT has been confirmed as 
a modulator of cancer migration, the increasing evidences 
have shown that EMT can also mediate the drug resistance 
[21, 22]. Therefore, the recent experiments have empha-
sized on highlighting the underlying mechanisms modu-
lating EMT in human cancers. The androgen receptor has 
shown ability in increasing prostate cancer invasion. The 
androgen receptor stimulates eIF5A2 expression to enhance 
vimentin and N-cadherin levels for EMT induction in pros-
tate tumor [23]. In pancreatic cancer, the induction of EMT 
can significantly increase cancer metastasis and mediate 
poor prognosis. The upregulation of MACC1 in nucleus 
and itsinteraction with SNAI1 as EMT regulator can signifi-
cantly enhance the metastasis of pancreatic tumor [24]. The 
lncRNA NRON has been shown as an inducer of metasta-
sis and progression in bladder tumor. LncRNA NRON can 
upregulate EZH2 to stimulate EMT for bladder tumor inva-
sion [25]. Noteworthy, the induction of EMT can also par-
ticipate in the immunosuppression in human cancers. The 
ZEB1 is an inducer of EMT in which can stimulate exo-
cytotoic vesicular trafficking through release of Rab6A and 
Rab8A. Then, MMP14-mediated focal adhesion turnover 
occurs in lung cancer and induces CD8 + T cell exhaustion 

Fig. 1  A summary of EMT mechanism [5]. The EMT includes mor-
phological and biochemical alterations that can occur simultaneously. 
The biochemical features include the downregulation of E-cadherin 
and upregulation of vimentin and N-cadherin that can participate in 
EMT induction. The epithelial cells are changed into mesenchymal 

cells during EMT that demonstrate high levels of Slug, Snail1, vimen-
tin and fibronectin. The occurrence of EMT can result in escape of a 
number of cells from other population of colony that diffuse into blood 
steam to reach to a new site for the establishment of a new colony, 
participating in the metastasis and progression of tumor
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[26]. In cholangiocarcinoma, the upregulation of PLCB1 
occurs to induce PI3K/Akt axis. Then, phosphorylation of 
GSK-3β pccurs to increase Snail levels for induction of 
EMT and increasing cancer progression. However, miR-
26b-5p suppresses EMT through PLCB1 downregulation 
[27]. These experiments provide the insight that EMT has 
a versatile function in tumorigenesis and it is not limited to 
metastasis, while it can affect therapy response and impair 
the immune system.

CircRNAs: an overview in oncology

More than four decades ago, a new kind of RNA molecule 
without the capability of protein coding was recognized as 
circular RNA (circRNA). The first circRNA was identified 
by Sanger and colleagues with a covalently closed loop 
structure in plant viroids [28]. After that, circRNAs were 

recognized in eukaryotic cells and viruses [29, 30]. In 1991, 
the first mammalian circular transcript from the DCC gene 
was identified in cancerous and non-cancerous cells. Nev-
ertheless, circRNAs were not easily accepted after their 
discovery and were initially dismissed. They were believed 
to be by-products of erroneous splicing and transcription 
errors, and their function was called into question [31]. 
Progress and efforts on the identification of these RNA mol-
ecules were stopped until recently with the discovery of 
high-throughput sequencing technology and bioinformatic 
tools. A high number of circRNAs, 32,000 human exonic 
circRNAs, have been discovered to date [32]. As stable 
non-coding RNA molecules, circRNAs are mainly found 
in the cytoplasm of eukaryotic cells, although a number 
of them, such as intronic circRNAs, can be present in the 
nucleus [33]. Linear RNA molecules, such as lncRNAs and 
miRNAs, have a 5′ end cap and a 3′ end poly(A) tail, but 
circRNAs have a unique structure that lacks both 5′ and 3′ 

Fig. 2  An overview of a number of pathways regulating EMT. TGF-β, 
Wnt, PI3K/Akt, mTOR, YAP, MAPK and RTK are a number of molec-
ular interactions contributing to the regulation of EMT. Such pathways 
are related to the proteins that finally translocate into the nucleus to 

regulate expression levels of EMT-related genes. The process of EMT 
is vital for carcinogenesis, since EMT participates in metastasis, ther-
apy resistance and immunosuppression in human cancers. (Created by 
Biorender.com)
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back-splicing of the 5′ splice site (splice donor site) to a 
3’ splice site (splice acceptor site) [45, 46]. The second 
subclass is intronic circRNAs (ciRNAs) that are originated 
from the intronic lariat precursoes escaping from the deb-
ranching step of canonical linear splicing [47]. The third 
subclass is exon-intron circRNA (ElciRNAs) that increase 
the expression of parental genes in cis through circulariz-
ing with the retained intronic sequences among circularized 
exosones [48]. Moreover, a new kind of circRNAs have 
been recognized known as mitochondria-encoded circRNAs 
(mecciRNA) that their biogenesis occurs through a splicing-
idependent pathway and can function as molecular chaper-
ons to accelerate the mitochondrial entry of nuclear-encoded 
proteins [49]. The biogenesis of circRNAs has been high-
lighted somehow and there are still many unknown aspects. 
The circRNAs have been shown to be derived from pre-
mRNAs and they undergo canonical spliceosomal machin-
ery [50]. The back-splicing reactions in circRNAs require 
the covalent linking of the 3′ splice site with the 5’ splice 
site, occurring during biogenesis of circRNAs and can be 

ends. Therefore, expression of circRNAs is stable, and their 
stability is high due to a lack of degradation by endonu-
cleases [34]. CircRNAs are able to sponge miRNAs in the 
cytoplasm and accelerate the procedure of protein transla-
tion. Moreover, circRNAs regulate the transcription process 
by interacting with RBPs [35–37]. The action of circRNAs 
in affecting tumor progression is mainly performed via 
sponging miRNAs. For example, circCCDC85A sponges 
miR-550a-5p, increasing MOB1A levels and impairing 
breast tumor progression [38]. Tumor progression and pro-
liferation are tightly regulated by the function of circRNAs 
[39]. Hsa-circ-0001013 upregulates TWSG1 via miR-136 
inhibition, promoting gastric tumorigenesis [40]. The cir-
cMET contributes to tamoxifen resistance in breast tumor 
via increasing AHR level [41]. Furthermore, stabilization of 
ATP7A and upregulation of PHLPP2 by circPBX3 and circ-
0001017, respectively, can lead to tumorigenesis [42, 43].

There are three subcategories of circRNAs based on 
the distribution and biogenesis [44]. The first subclass is 
exonic circRNAs (ecRNAs) that are generated through 

Fig. 3  The other mechanisms regulating EMT [20]. A number of these 
pathways demonstrate interaction in the regulation of EMT such as 
TGF-β that modulates mTORC2 and the integrin that regulates AKT. 

Finally, mTOCR2 can induce AKT. TKB, Wnt/β-catenin, Notch, 
GLI1, STAT3 and HIF-1α are among the other pathways regulating 
EMT. (Created by Biorender.com)
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accelerated through reverse complementary Alu repeats 
flanking the circularized exon [51].

The function of circRNAs occurs through four distinct 
mechanisms [52]. For influencing the expression of genes, 
the circRNAs affect the parental gene mRNA mediated 
through interaction with RNA binding proteins [53–55]. 
Notably, the function of circRNAs is also related to acting 
as ceRNAs to spong miRNAs [56–58]. Moreover, the cir-
cRNAs have been shown to regulate the immune responses 
[59–61]. Although circRNAs are mainly believed as non-
coding RNA factors, a variety of circRNAs have been shown 
to exert their function through encoding proteins [62–64]. 
The circRNAs are considered as potential factors in car-
cinogenesis. The circ-403,658 increases LDHA expres-
sion to induce glycolysis in bladder tumor [65]. Moreover, 
circ-103,809 facilitates the tumorigenesis of hepatocellular 
carcinoma through acting as tumor-promoting factor [66]. 
Table  1 summarizes the function of circRNAs in tumors. 
Table 2 summarizes the role of circRNAs in the controlling 
EMT.

Function of circRNAs as biomarkers

The distinct biochemical characteristics of circRNAs has 
led to the application of circRNAs as potential cancer bio-
markers. The circRNAs possess high stability and they have 
cell-, tissue- and developmental-stage-specific paradigms of 
expression [90]. Moreover, the circRNAs are demonstrated 
to be highly conserved among the species and resistant to 
RNase R activity. The enrichment of circRNAs in exosomes 
can occur and they are found in body fluids including saliva, 
plasma and blood. The RNA sequencing has led to the rec-
ognition of high number of circRNAs in human peripheral 
whole blood cell [91]. In high number of cases, the level 
of circRNAs is higher compared to the corresponding lin-
ear RNA isoform [91]. According to this fact, a variety of 
experiments have emphasized on application of circRNAs 
as biomarkers in various human cancers [92]. The circ-
002059 has a poor expression in gastric tumor compared 
to the healthy tissues and can influence the distal metastasis 
and TNM stage, highlighting its function as biomarker in 
gastric tumor [93]. The circRNA-PVT1 has upregulation in 
gastric tumor that can affect the overall survival and disease-
free survival of patients and through sponging miR-125 
family, it functions as tumor-promoting factor [94]. In addi-
tion to gastric tumor, the circRNAs have been considered as 
biomarkers in other kinds of tumors. The circ-0005075 has 
differential expression between hepatocellular carcinoma 
and health tissues and its expression can increase tumor size 
[95]. Moreover, the circ-0001649 has differential expres-
sion and shows low expression in hepatocellular carcinoma 

Ta
bl

e 
1 

A
 su

m
m

ar
y 

of
 c

irc
R

N
A

s f
un

ct
io

n
C

irc
R

N
A

C
an

ce
r t

yp
e

R
em

ar
k

Re
fe

re
nc

e
H

sa
_c

irc
_0

13
66

66
G

as
tri

c 
ca

nc
er

Sp
on

gi
ng

 m
iR

-3
75

-3
p 

to
 in

cr
ea

se
 P

R
K

D
C

 e
xp

re
ss

io
n 

an
d 

en
ha

nc
e 

PD
-L

1 
le

ve
ls

 in
 im

m
un

e 
ev

as
io

n
 [6

7]
H

sa
_c

irc
_0

00
64

01
C

ol
or

ec
ta

l c
an

ce
r

D
ow

nr
eg

ul
at

io
n 

of
 c

irc
R

N
A

 d
ec

re
as

es
 g

ro
w

th
 a

nd
 in

va
si

on
 o

f t
um

or
 c

el
ls

 [6
8]

C
irc

_0
00

41
40

Lu
ng

 a
de

no
ca

rc
in

om
a

C
irc

_0
00

41
40

 sp
on

ge
s m

iR
-1

18
4 

to
 u

pr
eg

ul
at

e 
C

C
L2

2 
in

 tu
m

or
ig

en
es

is
 [6

9]
H

sa
_c

irc
_0

00
04

37
G

as
tri

c 
ca

nc
er

In
cr

ea
si

ng
 ly

m
ph

 n
od

e 
m

et
as

ta
si

s t
hr

ou
gh

 H
SP

A
2/

ER
K

 a
xi

s r
eg

ul
at

io
n

 [7
0]

H
sa

_c
irc

_0
00

32
58

Pr
os

ta
te

 c
an

ce
r

Sp
on

gi
ng

 m
iR

-6
53

-5
p 

an
d 

co
m

pl
ex

at
io

n 
w

ith
 IG

F2
B

P3
 to

 e
nh

an
ce

 in
va

si
on

 [7
1]

C
irc

_0
00

02
35

B
la

dd
er

 c
an

ce
r

D
ow

nr
eg

ul
at

io
n 

of
 m

iR
-3

30
-5

p 
to

 st
im

ul
at

e 
gl

yc
ol

ys
is

 [7
2]

C
irc

_0
04

28
81

B
re

as
t c

an
ce

r
EI

F4
A

3 
in

cr
ea

se
s c

irc
-0

04
28

81
 le

ve
ls

 to
 st

im
ul

at
e 

R
A

S 
pa

th
w

ay
 in

 tu
m

or
ig

en
es

is
 [7

3]
H

sa
_c

irc
_0

06
04

67
B

re
as

t c
an

ce
r

H
sa

_c
irc

_0
06

04
67

 in
hi

bi
ts

 m
iR

-1
20

5 
an

d 
m

ed
ia

te
s c

om
pl

ex
at

io
n 

w
ith

 e
IF

4A
3 

to
 e

nh
an

ce
 li

ve
r i

nv
as

io
n

 [7
4]

C
irc

-h
nR

N
PU

G
as

tri
c 

ca
nc

er
Su

pp
re

ss
io

n 
of

 N
O

N
O

-m
ed

ia
te

d 
c-

M
yc

 tr
an

sa
ct

iv
at

io
n 

an
d 

m
R

N
A

 st
ab

ili
za

tio
n 

vi
ta

l f
or

 g
ly

co
ly

sa
tio

n 
an

d 
tu

m
or

ig
en

es
is

 [7
5]

1 3

Page 5 of 25    214 



M. Ashrafizadeh et al.

circ-0001666 also enhances the progression of lung and thy-
roid cancers via regulating ETV4 and AGO1, among oth-
ers [105, 106]. Circ-0001666 acts as an onco-suppressor to 
regulate the EMT mechanism in colorectal cancer.

“Once miR-576-5p is synthesized in the nucleus, it’s 
shuttled into the cytoplasm via Exportin5, where it acts 
to diminish PCDH10 expression, consequently promoting 
the progression of colorectal cancer. In contrast, the back-
splicing event between exon 2 and exon 4 in FAM120B 
pre-mRNA leads to the creation of circ-0001666. This 
particular circRNA elevates PCDH10 levels by inhibiting 
miRNA-576-5p. The outcome is a decrease in the ‘stem-
ness’ of colorectal cancer cells due to the suppression of 
EMT, which is facilitated by hindering Wnt/β-catenin sig-
naling pathways.” [79]. Circ-0001017 is another example of 
circRNAs with onco-suppressor function in gliomas, which 
reduce let-7 g-3p level to upregulate NDST3, suppressing 
EMT [107]. Drawing from these studies, it becomes clear 
that the circRNA/EMT axis serves as a key regulatory 
mechanism in cancer metastasis (Table 3; Fig. 4).

CircRNA/EMT axis in chemoresistance and 
radioresistance

Chemoresistance is an intriguing concept and can develop in 
two ways, including intrinsic and acquired chemoresistance. 
Although understanding drug resistance is a key focus in the 
past decade, the failure of therapy has not been appropriately 
solved. Non-coding RNAs are regulators of tumorigenesis, 
and interestingly, circRNAs can determine therapy response 
in cancer patients. Hsa-circ-0007883 interacts with FUS 
to increase the FOXR2 stability in developing paclitaxel 
resistance in ovarian cancer [114]. Exosomal circ-SFMBT2 
upregulates TRIB1 via miR-136-5p sponges to induce 
docetaxel resistance in prostate cancer [115]. Therefore, 
the association of circRNAs with downstream targets can 
change the chemotherapy response in cancer [116].

Paclitaxel is an inhibitor of tumor progression and 
increases polymerization of microtubules to disturb their 
stability in inhibiting proliferation. COL5A1 upregulation 
causes paclitaxel resistance [117]. KHDRBS3 increases 
MIR17HG level to stimulate glycolysis and paclitaxel 
insensitivity in ovarian tumor [118]. Upregulation of gp96 
and HIF-1α can also result in paclitaxel resistance in cancer 
[119, 120]. Overexpression of circ-0007534 in endometrial 
tumor results in paclitaxel resistance. The circ-0007534 
elevates ZEB2 level via miR-625 inhibition to acceler-
ate EMT and accelerate paclitaxel insensitivity [121]. 
Docetaxel functions similarly to paclitaxel and prevents 
the depolymerization of microtubules to suppress cancer. 
Upregulation of circ-CRIM1 in nasopharyngeal cancer is 

[96]. Circ-100,876 has high expression in lung cancer and 
mediates lymph node metastasis and tumor staging, acting 
as prognostic factor [97].

CircRNA/EMT axis in cancer metastasis

In this section, we discuss the function of the circRNA/EMT 
in regulating the invasion of tumor. Based on the role of 
circRNAs, the interaction of circRNAs and EMT in cancers 
mediates metastasis. Oncogenic circRNAs induce EMT to 
increase tumorigenesis, while onco-suppressor circRNAs 
reduce cancer invasion via EMT inhibition. The field of 
biology and next-generation sequencing enables the iden-
tification of new circRNAs with important functional roles 
in cancer. The first complexity that arises from circRNAs 
is that their function in cancer varies and is context-depen-
dent. For instance, circ-0008305 increases the progression 
of hepatocellular carcinoma via promoting TMED2 level 
and miR-186 inhibition [43]. Circ-0008305, on the other 
hand, acts as an oncosuppressor in lung cancer by regulat-
ing EMT. Circ-0008305, also known as circPTK2, interacts 
with miRNAs and EMT regulators such as TGF-β in lung 
tumor. TGF-β induced EMT in lung tumor promotes tumor 
cell progression and invasion. Notably, TIF1γ deficiency is 
required for TGF-β-associated EMT induction in lung tumor 
[98]. According to these studies, as circRNA induces EMT, 
it may be capable of suppressing EMT in other cancers.

The expression of certain factors can significantly pro-
mote the metastasis, and IGF2BP3 is one of them. USP11 
promotes the stability of IGF2BP3 to increase the colorectal 
cancer metastasis [99]. The upregulation of IGF2BP3 by linc 
01305 can lead to overexpression of HTR3A at the mRNA 
level, which elevates the progression of esophageal tumor 
[100]. Hence, IGF2BP3 upregulation also increases invasion 
[101, 102]. IGF2BP3 is the target of circRNAs in regulating 
the EMT. CircIGHG elevates the malignancy of oral tumor 
via EMT induction. CircIGHG increases IGF2BP3 level 
via miR-142-5p inhibition to elevate the progression of oral 
cancer via an EMT mechanism [103]. Although IGF2BP3 
is a target of circRNAs in increasing cancer metastasis, it 
is not the only mechanism. For instance, the function of 
circ-0003258 in prostate tumor has been shown to be onco-
genic as it induces EMT to elevate cancer metastasis. Circ-
0003258 affects two distinct molecular pathways to increase 
prostate tumor metastasis via EMT. Initially, circ-0003258 
sponges miR-635-5p to upregulate ARHGAP5 expression, 
which then elevates cancer metastasis. Subsequently, circ-
0003258 interacts with IGF2BP3 to upregulate HDAC4 and 
to induce ERK along with EMT [71].

Circ-0001666 impairs breast carcinogenesis via spong-
ing miR-620 to upregulate WNK2 [104]. However, 
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CTSE expression [131]. PCAT6 downregulation of miR-
185-5p in osteosarcoma can result in TGF-β signaling 
activation and tumor cell progression [132]. Circ-001569 
is capable of sponging miR-185-5p in osteosarcoma, and 
this interaction results in upregulation of FLOT2, a factor 
involved in triggering EMT in cancer cells and thus enhanc-
ing tumor progression [133]. In esophageal cancer, the inter-
action of circRNA and miRNA is beneficial in determining 
the progression. Hsa-circ-0000277 undergoes overexpres-
sion in esophageal cancer, and by reducing miR-4766-5p 
expression, it paves the way for upregulation of LAMA1 
to induce EMT [134]. However, not all circRNAs sponge 
miRNA to induce EMT and tumor metastasis. Sometimes, 
circRNAs sponge oncogenic miRNAs to suppress EMT 
mechanisms. Hsa-circ-001988 reduces miR-197-3p level to 
suppress EMT and the progression of gastric tumor [135]. 
Moreover, miR-503-5p overexpression can result in EMT 
in oral cancer as circ-0072387 inhibits miR-503-3p to 
decrease its expression, disrupt EMT, and minimize tumor 
progression [136]. More importantly, the interaction of cir-
cRNAs and miRNAs can be affected by upstream media-
tors in cancer. The biogenesis of circ-DOCK5 is inhibited in 
esophageal cancer by ZEB1. To prevent circ-DOCK5 bio-
genesis in esophageal cancer, ZEB1 downregulates EIF4E3 
and DOCK5 mRNA levels to affect back-splicing between 
exon 49 and exon 50. When circ-DOXK5 is inhibited, miR-
527-3p expression decreases, resulting in decreased TGF-β 
secretion. TGF-β overexpression then forms a positive feed-
back loop with ZEB1 to elevate esophageal cancer EMT 
induction and progression [137]. Table 4; Fig. 6 summarize 
the function of circRNA/miRNA interactions in the control 
of EMT mechanisms.

CircRNAs regulating EMT-TFs in cancers

ZEB proteins

The ZEB family of proteins, which includes ZEB1 and 
ZEB2, is one of the best-known modulator of EMT. Upreg-
ulation of ZEB1 in cancer can lead to tumor metastasis. 
YTHDF3 increases the expression of ZEB1 and promotes 
its stability at the mRNA level to enhance breast cancer 
invasion [146]. Induction of PI3K/Akt signaling by BAG4 
leads to an increase in cancer metastasis via ZEB1 overex-
pression [147]. Furthermore, when the expression of ZEB1 
increases, it represses E-cadherin to enhance the mobil-
ity of tumor cells [148]. Similarly, ZEB2 functions as an 
oncogenic factor. ZEB2 down-regulation by miR-518a-5p 
leads to inhibition of breast cancer progression [149]. Pae-
onol increases the expression level of miR-126-5p to down-
regulate ZEB2, thereby decreasing the invasion of lung 

a positive indicator of docetaxel resistance in tumor cells. 
miR-422a decreases FOXQ1 level to inhibit the EMT and 
mediate docetaxel sensitivity. However, when expression of 
circ-CRIM1 increases, it sponges miR-422a to upregulate 
FOXQ1, induce EMT, and increase the docetaxel resistance 
[122]. The docetaxel potential in prostate tumor therapy 
increases upon upregulation of circ-Foxo3 and is related to 
Foxo3 and EMT suppression, thereby reducing the malig-
nancy of cancer cells [123].

Circ-0003998 is another regulator of tumor progression 
and can enhance proliferation and invasion in lung tumor 
via miR-326 inhibition [124]. The function of circ-0003998 
in triggering chemoresistance has been evaluated in hepa-
tocellular carcinoma. Circ-0003998 stimulates the EMT to 
promote tumorigenesis. Additionally, Circ-0003998 reduces 
miR-218-5p level, which upregulates EIF5A2 [125].Circ-
0007022 is present on chromosome 19 and is formed as 
a result of back-splicing. Circ-0007022 suppresses miR-
338-3p to cause radioresistance. Following the inhibition of 
miR-338-3p by circ-0007022, the levels of NRP1 increased. 
Two molecular pathways, including PI3K/Akt and EMT, are 
activated to increase tumor progression and mediate radiore-
sistance [126]. However, only one experiment investigated 
the function of the circRNA/EMT axis in radioresistance, 
and more research is required to confirm and expand on the 
current findings (Fig. 5).

CircRNA/miRNA/EMT axis

Linear RNA molecules do not encode proteins with a length 
of less than 24 nucleotides, best known as microRNAs 
(miRNAs). MicroRNAs sequester mRNA to downregu-
late gene [127]. The expression level of miRNAs changes 
during cancer progression and can be used as biomarkers. 
Furthermore, miRNAs can be sponged by lncRNAs and cir-
cRNAs [128, 129]. miRNAs demonstrate dysregulation in 
tumorigenesis and are biomarkers. The malignancy of cervi-
cal tumor depends on the high level of circ-000322, a driver 
of tumor progression via EMT induction. Upregulation of 
S100A14 leads to EMT induction and cervical cancer pro-
gression. The role of circ-0003221 in enhancing cervical 
tumorigenesis is related to sponging miR-139-3p to stimu-
late EMT mechanisms via S100A14 upregulation. Knock-
ing down the expression of circ-0003221 is beneficial for 
impairing cervical cancer progression via EMT suppression 
[85]. miR-370 is inhibited by SNHG15 in ovarian cancer 
to increase the progression of tumor cells [117]. miR-370 
overexpression elevates the response of ovarian tumor to 
cisplatin chemotherapy [130].

Restoring expression of miR-185-5p is beneficial in sup-
pressing osteosarcoma malignancy, as miR-185-5p reduces 
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tumor cells [150]. Therefore, both ZEB1 and ZEB2 pro-
teins are inducers of cancer metastasis, and notably, their 
expression level is controlled by circRNAs in cancer [151]. 
Circ-VANGL1 upregulation is in favor of enhancing the 
metastasis of thyroid cancer cells as it affects ZEB1 expres-
sion. Depleting circ-VANGL1 with siRNA is advantageous 
in reducing the metastasis of tumor cells and decreasing 
their malignancy. Circ-VANGL1 acts as a ceRNA, decreas-
ing miR-194 expression while increasing ZEB1 expression. 
As EMT-TFs, ZEB1 stimulates EMT to promote the pro-
gression and metastasis of thyroid cancer cells [152]. The 
expression level of ZEB1 is tightly regulated by miRNAs 
in cancer. miR-429 is a negative regulator of ZEB1, lead-
ing to inhibition of hepatocellular carcinoma cells. In con-
trast, MAPKAPK5-AS1 increases ZEB1 via adsorption of 
miR-429 to elevate tumor progression [153]. Moreover, 
miR-144-3p reduces ZEB1 expression to interfere with 
lung cancer invasion [154]. Therefore, miRNAs and ZEB1 
closely interact to regulate cancer metastasis [155].

However, there are studies demonstrating that circRNAs 
can suppress ZEB1. Circ-ACAP2 is an inhibitor of EMT 
in head and neck cancer. Circ-ACAP2 sponges miR-21-5p 
to suppress STAT3 signaling in cancers, lowering ZEB1 
expression and impairing EMT [156]. In addition, ZEB2 is 
regulated by circRNAs in cancer. Circ-0007534 stimulates 
EMT in endometrial cancer and, in this way, promotes the 
progression of tumor cells to mediate paclitaxel resistance. 
Circ-0007534 increases ZEB2 expression via miR-625 inhi-
bition to trigger the EMT mechanism and paclitaxel resis-
tance [121]. According to these studies, circRNAs regulate 
ZEB1 and ZEB2, and more research is needed to understand 
ZEB2 regulation by circRNAs in cancers.

Slug and Snail

Upregulation of Slug or Snail has been shown to be a 
driver for the progression and metastasis of cancer cells. 
Upon overexpression of Snail in cancer, EMT is induced to 
enhance metastasis. An experiment has shown that upregu-
lation of circ-0023642 can result in a significant enhance-
ment of metastasis in gastric cancer. Circ-0023642 promotes 
tumor invasion by increasing N-cadherin, vimentin, and 
Snail expression while decreasing E-cadherin expression 
[157]. As a result, circRNAs are regulators of snail and slug 
EMT mechanisms in cancer.

TGF-β

TGF-β is another important regulator of cancer progression, 
and abnormal expression can influence cancer metastasis and 
malignancy. Smad3 is one of the key players of TGF-β sig-
naling. LHPP inhibits phosphorylation of Smad3 to impair 
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TGF-β2 promotes the expression level of circ-PRDM5 to 
enhance COL1A2 expression via miR-92b-3p inhibition, 
thereby triggering EMT mechanisms and elevating cancer 
invasion [163].

Twist

Another important regulator of the EMT mechanism is 
Twist. Upregulation of Twist can lead to the induction of 
cancer metastasis via EMT. Silencing EGFR leads to sup-
pression of tamoxifen resistance in breast cancer via reduc-
ing Twist expression to impair the EMT mechanism [164]. 
Twist expression decreases when METTL14 is inhibited, 
resulting in a reduction in lung cancer progression and 
invasion [165]. Notably, non-coding RNA molecules can 
regulate Twist-mediated EMT in cancer [166]. CircRNAs 
are effective Twist regulators in cancer EMT mechanisms. 
CircRAB3IP increases the migration and invasion of osteo-
sarcoma cells. miR-580-3p is an inhibitor of Twist1, which 
reduces the malignancy of osteosarcoma cells. However, 

the progression and invasion of colorectal cancer [158]. 
Furthermore, overexpression of TGF-β has been implicated 
in inhibiting apoptosis in tumor cells and increasing their 
survival rate [159]. TGF-β and c-Myc signaling pathways 
are both involved in gastric tumor cell progression and the 
induction of EMT mechanisms. The expression levels of 
TGF-β and c-Myc increase in gastric cancer. Notably, circ-
CCDC66 stimulates EMT and accelerates the progression 
of gastric tumors by promoting TGF-β and c-Myc [160].

Circ-VANGL1 interacts with TGF-β to modulate tumori-
genesis. miR-150-5p is an inhibitor of TGF-β signaling 
to prevent EMT mechanism in melanoma. Circ-VANGL1 
sponges miR-150-5p to enhance TGF-β expression, result-
ing in EMT induction and enhancement of melanoma 
metastasis [161]. Furthermore, TGF-β can regulate expres-
sion of circRNAs to affect EMT mechanism. Activation 
of TGF-β signaling and phosphorylation of Smad2/3 can 
result in upregulation of circ-Akt1 which in turn increase 
Akt1 expression via miR-942-5p inhibition to then promote 
cancer metastasis and EMT induction [162]. Moreover, 

Fig. 4  CircRNA/EMT axis in modulating cancer invasion and metas-
tasis. The circRNAs mainly induce EMT in increasing progression of 
tumor cells. In some cases, including circ-GLIS2, circ-0089153 and 

circ-0004913, the circRNAs affect the proteins to regulate EMT. How-
ever, in other cases, such as circ-PTK2, the circRNAs sponge miRNAs 
to affect EMT.
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interconnected molecular pathways need to be highlighted 
in the near future.

CircRNA/EMT axis in different cancers

Brain cancers

One of the malignancies of the central nervous system is 
glioma, and due to its aggressive nature, the survival rate 
of patients is 12–14 months. Furthermore, other challenges, 
including resistance to therapy and recurrence, prevent 
effective strategies for treatment [172, 173]. Increasing evi-
dence demonstrates the role of circRNAs in regulating the 
progression of gliomas. Circ-0000215 promotes glioma pro-
gression by activating the EMT mechanism, which mediates 
metastasis. Circ-0000215 reduces the expression level of 
miR-495-3p to upregulate CXCR2, induce EMT, and pave 
the way for glioma metastasis [174]. miR-599 is an inhibitor 
of EMT in esophageal cancer that reduces the progression of 

circRAB3IP reduces miR-580-3p expression to upregu-
late Twist1 and promote osteosarcoma malignancy [167]. 
CircRNA PVT1 is upregulated in cancers and stimulates 
the Wnt4/β-catenin axis to increase carcinogenesis [168]. 
Silencing PVT1 is advantageous for reducing the pro-
gression of lung cancer and enhancing sensitivity to cis-
platin [169]. Reducing the expression level of oncogenic 
circRNAs is beneficial in impairing tumorigenesis. Upregu-
lation of circ-0001681 results in Twist1 overexpression to 
enhance thyroid cancer metastasis. Silencing circ-0001681 
impairs tumor invasion via EMT inhibition. Mechanisti-
cally, circ-0001681 increases Twist1 expression via miR-
942-5p sponging to induce EMT and cancer invasion 
[170]. The interesting point is that the expression level of 
circRNAs can be increased by Twist during cancer. Circ-
10,720 overexpression can lead to EMT induction in hepa-
tocellular carcinoma. Twist1 increases the expression level 
of circ-10,720 to upregulate vimentin, trigger EMT, and 
enhance cancer invasion [171]. These studies highlight the 
fact that EMT-TFs are regulated by circRNAs in cancer, and 

Fig. 5  CircRNA/EMT axis in drug resistance and radio-resistance. The 
upregulation of ZEB2 by circ-0007534 can induce EMT to mediate 
paclitaxel resistance. Moreover, circ-0003998 increases EIF5A2 levels 

to mediate EMT-induced drug resistance. The circ-0007022 inhibits 
miR-338-3p to mediate EMT-induced radioresistance. The sponging 
of miR-22a by circ-CRIM1 can induce docetaxel resistance
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show little response to chemotherapy and radiotherapy 
and manifest a metastatic nature. The malignancy of 
gastric cancer cells can be enhanced by circRNAs. An 
experiment has shown that upregulation of circ-101,882 
is beneficial in promoting malignancy and the progres-
sion of gastric tumor cells. Circ-101,882 prevents apop-
tosis and enhances invasion of cancer cells. For this 
purpose, circ-101,882 promotes vimentin, N-cadherin, 
and Snail levels while decreasing E-cadherin expression 
to stimulate EMT [182]. One of the changes in the tu-
mor microenvironment that can increase gastric cancer 
progression is hypoxia, which promotes CD36 expres-
sion to mediate peritoneal invasion [183]. The expres-
sion level of non-coding RNAs changes under hypoxia 
in gastric cancer [184, 185]. Hypoxia induces EMT in 
gastric cancer and promotes the progression of tumor 
cells. Circ-0081143 enhances the expression level of 
EGFR via miR-497-5p inhibition. Since miR-497-5p 
suppresses EMT, it reduces gastric cancer progression. 
Conversely, down-regulation of circ-0081143 can lead 
to EMT induction [186].

	● The malignancy of the colon or rectum is known as 
colorectal cancer, which has high mortality rates [187–
189]. The prognosis of colorectal cancer patients is poor 
despite advances in treatment [190, 191]. miR-338-5p 

tumor cells. Circ-0030018 is an oncogenic factor in esopha-
geal cancer and sponges miR-599 to increase the expression 
of ENAH. The positive association of circ-0030018 with 
ENAH expression is vital for inducing EMT and increas-
ing tumor cell invasion and metastasis [175]. Like glioma, 
EMT induction poses a treatment challenge in glioblastoma. 
MICAL2 promotes glioblastoma progression by inducing 
EMT mechanisms via TGF-β upregulation [176]. GRP78 
stabilization by UBE2T can lead to EMT induction, thereby 
increasing the invasion of glioblastoma cells [177]. Anti-
cancer agents such as Eriodictyol have been used to reduce 
ZEB1 expression to suppress EMT in glioblastoma [178]. 
EMT is commonly induced in glioblastoma. Circ-0001801 
stimulates EMT to increase glioblastoma progression. Circ-
0001801 enhances the expression level of HMGB3 via 
miR-628-5p sponging to induce EMT in favor of glioblas-
toma malignancy [179]. Circ-0067934 also induces EMT in 
glioblastoma metastasis by inducing PI3K/Akt signaling to 
mediate EMT and enhance tumor invasion [180].

Gastrointestinal cancers

	● Gastric cancer is a life-threatening disease and is the 
third leading cause of death [181]. Gastric tumor cells 

Fig. 6  CircRNA/miRNA/EMT axis in human cancers. The circRNAs 
mainly function as ceRNA to sponge miRNAs in the control of carci-
nogenesis. The circ-008732 sponges miR-661 to upregulate RAB3D 
in EMT induction. Moreover, circ-ABCB10 sponges miR-128-3p 

to stimulate EMT via ZEB1 overexpression. The circ-0000267 sup-
presses miR-503-5p to increase HMGA2 levels in EMT. Finally, circ-
0003998 stimulates EMT through miR-143-3p inhibition
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expression increases the progression of colorectal cancer 
and induces EMT. The expression level of circ-0137008 
decreases in colorectal cancer samples, which leads to 
significant increases in the progression of tumor cells. 
Circ-0137008 suppresses EMT mechanisms in colorec-
tal cancer via miR-338-5p down-regulation [192]. Si-
lencing circ-0026416 can be considered an impediment 
to the progression of colorectal cancer. Circ-0026416 
increases the progression of colorectal cancer via EMT 
induction. Circ-0026416 reduces miR-545-3p expres-
sion, which subsequently leads to an increased expres-
sion level of MYO6 to promote tumor metastasis [193].

Gynecological cancers

Cervical cancer is a gynecological malignant tumor with 
high incidence and death rates [194, 195]. The number of 
cervical cancer cases in developing countries is higher and 
comprises up to 85% of the global burden [196]. CircRNAs 
are considered key players in the progression of cervical 
cancer and the development of therapy resistance [197, 
198]. Both proliferation and invasion of cervical tumor 
cells are enhanced by circ-MYBL2. However, the func-
tion of circ-MYBL2 in increasing cervical cancer metasta-
sis is based on regulating EMT mechanisms. Circ-MYBL2 
reduces miR-361-3p expression via sponging to enhance 
lymph node metastasis in cervical tumors [199]. On the 
other hand, miR-449a overexpression in cervical cancer can 
impair the progression of tumor cells. Notably, circ-CDK6 
is an onco-suppressor factor, and by reducing miR-449a 
expression, it suppresses EMT in cervical tumors [200]. 
Due to the aggressive behavior of ovarian cancer cells and 
the unfavorable prognosis of patients, patients manifest 
higher death rates compared to cervical and endometrial 
cancers [201]. Similar to cervical cancer, the function of 
circRNAs in regulating the progression of ovarian cancer 
has been well-documented as they affect various molecular 
pathways [202–204]. A recent experiment has revealed the 
role of circ-0001756 in regulating ovarian cancer metastasis 
via affecting EMT mechanisms. Circ-0001756 promotes the 
expression level of RAB5A by inducing IGF2BP2 expres-
sion. Then, RAB5A stimulates the EGFR/MAPK axis to 
mediate EMT and increasing the progression and metas-
tasis of ovarian tumor cells [205]. Similar to other tumor 
types, circRNAs regulate miRNA expression by affecting 
the progression of ovarian cancer. miR-361-5p is an inhibi-
tor of ovarian cancer progression and reduces the expres-
sion levels of c-Met to inhibit the Akt/mTOR axis [206]. 
Circ-0061140 enhances the progression of ovarian cancer 
and induces EMT mechanisms. Circ-0061140 decreases 
miR-361-5p expression to promote RAB1A, which in turn 
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cells, and its depletion is key in reducing tumor malignancy. 
Circ-BIRC6 increases the expression level of XBP1 by 
inhibiting miR-495-3p to enhance the metastasis of blad-
der cancer cells via EMT induction. As a result, silencing 
circ-BIRC6 is advantageous in reversing EMT in bladder 
tumors [224]. In fact, the malignant behavior of bladder 
cancer cells is mediated via EMT induction. Circ-0006948 
contributes to the progression of bladder tumor cells by 
reducing E-cadherin and increasing N-cadherin, vimentin, 
and β-catenin levels to stimulate EMT [224]. One of the 
key inducers of the EMT mechanism in cancer is HMGA2. 
HMGA2 stimulates Wnt/β-catenin signaling is activated by 
HMGA2 to mediate EMT and promote the progression of 
gastric tumor cells [225]. In bladder cancer, upregulation 
of HMGA2 leads to EMT induction, which enhances the 
progression of tumor cells. Notably, circ-0000658 promotes 
the expression level of HMGA2 via miR-498 inhibition to 
facilitate tumorigenesis in bladder cancer [226]. Therefore, 
the circRNA/EMT axis is a promising target in bladder can-
cer therapy (Table 5) [227, 228].

Conclusion and remarks

Cancer metastasis involves the migration of tumors from 
their original location to different organs, where they estab-
lish new growths. This journey necessitates breaking away 
from adjacent tissue and entering the circulatory system. 
Elevated motility and aggressiveness in cancer cells corre-
spond to heightened rates of metastasis. One of the prob-
lems of metastasis is related to the diffusion of cancer cells 
into distant parts of body, challenging eradication of can-
cer cells. EMT induction is one mechanism facilitating this 
spread. As detachment of a number of cancer cells from 
other parts of colony is required for metastasis, the EMT 
can increase motility of tumor cells to facilitate this pro-
cess. This paper delves into the influence of EMT-associated 
pathways in cancer, particularly highlighting the role of epi-
genetic factors such as circRNAs in modulating EMT. The 
dysregulation of epigenetic factors in cancer is a common 
feature and the researchers have focused on understanding 
the association between epigenetic alterations and EMT in 
context of cancer progression and EMT. EMT significantly 
boosts the migratory capabilities of tumor cells, a fact sup-
ported by studies across various types of cancers such as 
those affecting the brain, gastrointestinal tract, reproductive 
system, urinary system, and blood. It should be noted that 
function of EMT in cancer is versatile and it is beyond regu-
lation of metastasis and can affect cancer therapy resistance 
and mediate immunosuppression. Most crucially, circRNAs 
serve as powerful modulators of EMT pathways in these 
diverse cancer types. Targeting EMT directly or adjusting 

triggers EMT-mediated ovarian cancer invasion [207]. 
Based on these studies, circRNAs are important regulators 
of EMT in gynecological cancers.

Urological cancers

The lives of men are commonly threatened by a malignant 
disease known as prostate cancer, which causes 300,000 
deaths annually [188]. Many deaths in prostate cancer 
patients result from metastasis [208]. Patients with metas-
tasis have an overall survival of 42 months [209], whereas 
patients with progressive metastatic prostate cancer have a 
survival of 27 months [210]. New technologies have been 
developed for the treatment of prostate cancer patients, 
such as nanoplatforms, but prostate cancer is still an incur-
able disease. CircRNAs are potential regulators of prostate 
cancer progression, affecting various molecular pathways 
[71, 210, 211]. Furthermore, accumulating data emphasizes 
the role of EMT as an inducer of prostate cancer invasion 
[212]. The function of circ-0004296 significantly reduces 
the metastasis of prostate cancer cells. Since EMT is an 
inducer of prostate cancer invasion, it is regulated by circ-
0004296. EIF4A3 interacts with circ-0004296 to suppress 
nuclear translocation of ETS1, leading to impairment of 
prostate cancer invasion via EMT suppression [213]. Over-
expression of circ-0030586 in prostate cancer can lead to 
induction of EMT, which enhances the invasion of tumor 
cells [214]. On the other hand, induction of Akt signaling 
can result in an increase in the progression of prostate can-
cer [215, 216]. Circ-0030586 stimulates PI3K/Akt signaling 
to induce EMT and enhance the invasion and metastasis of 
prostate tumor cells. This is mediated by E-cadherin down-
regulation and Twist upregulation [214]. Therefore, the cir-
cRNA/EMT axis is a regulator of prostate cancer invasion. 
The delineation of molecular pathways that can be targeted 
for treatment of this malignant disease warrants further 
research [217, 218].

Another malignancy of the genitourinary tract is bladder 
cancer, with increasing morbidity and mortality around the 
world [201]. Despite using chemotherapy, radiotherapy, and 
surgery, the 5-year survival rate of bladder cancer patients is 
low and has a high economic burden [219, 220]. New thera-
peutic approaches such as nanotheranostics have been devel-
oped for bladder cancer. However, it is highly recommended 
to focus on the underlying molecular pathways involved in 
bladder cancer progression. The expression level of cir-
cRNAs changes during bladder cancer development and 
progression. Besides, the metastasis of bladder cancer cells 
is highly dependent on the activation of the EMT mecha-
nism [221–223]. The interaction of circRNAs with EMT 
in bladder cancer is important. Circ-BIRC6 is involved in 
enhancing the progression and metastasis of bladder tumor 
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be utilized as diagnostic and prognostic tools in patients. 
The changes in the circRNAs in serum or exosomal serum 
can provide a non-invasive method for the metastasis pre-
diction in patients. In addition to prognostic and diagnostic 
tool, the circRNAs regulating EMT mechanism can be con-
sidered as valuable targets in cancer therapy. However, the 
drugs have poor ability in the regulation of circRNA regula-
tion and therefore, it is suggested to apply the genetic tools 
to regulate circRNA expression in cancer therapy.
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the expression levels of circRNAs emerge as two effective 
approaches for cancer treatment, with the potential to reduce 
metastatic spread and improve both patient survival rates 
and prognoses. Since EMT is a reversible process, targeting 
related circRNAs can significantly change the progression 
of cancer cells. In exploring the relationship between cir-
cRNA and the EMT axis in cancer, two crucial dimensions 
emerge: metastasis and responsiveness to treatment. On one 
hand, circRNAs have the ability to either trigger or suppress 
EMT processes, thus influencing the invasive capabilities of 
cancer cells. On the other hand, the regulation of EMT by 
circRNAs plays a key role in determining how cancer cells 
react to therapeutic interventions. When circRNAs promote 
EMT, they essentially bolster the malignant properties of 
tumors, setting the stage for resistance to treatment. Con-
versely, suppressing EMT through circRNAs can increase a 
tumor sensitivity to both drug and radiation therapies. Yet, 
circRNAs are not confined to modulating EMT directly; they 
can also affect other signaling pathways. A primary func-
tion of circRNAs in this context is their ability to sponge 
miRNAs, thus affecting EMT processes in cancer. Conse-
quently, the circRNA/EMT axis serves as a promising target 
for therapeutic interventions. EMT-related transcription fac-
tors such as ZEB proteins, TGF-β, Twist, and Slug can also 
be influenced by circRNAs, impacting both the metastasis 
and severity of cancer. Preliminary studies suggest that cir-
cRNAs are pivotal in controlling EMT in cancer, and future 
research may well center on their potential as biomarkers 
for treatment outcomes and long-term prognosis in cancer 
patients. Although significant efforts have been made in 
understanding the function of circRNAs in regulating EMT 
in cancers, there are still some limitations to be explored in 
the future studies. A number of anti-cancer compounds have 
shown potential in the inhibition of EMT. However, the 
studies should focus on the compounds regulating circRNA/
EMT axis. Moreover, the genetic tools, specially CRISPR/
Cas9 system should be introduced for circRNA/EMT axis 
regulation in human cancer therapy. One of the most prom-
ising limitations is lack of emphasizing on nanoparticles for 
targeting circRNA/EMT axis to impair metastasis and inva-
sion of cancer cells.

The pre-clinical studies provide the valuable insights 
regarding the metastasis of tumor cells mediated by EMT and 
then, the function of circRNAs in the modulation of EMT-
associated metastasis. Based on the estimates, up to 90% of 
cancer-related deaths in patients are due to the metastasis. In 
fact, the metastasis allows the tumor cells to diffuse into var-
ious parts of body and develop new colonies that further can 
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