
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2022) 79:569 
https://doi.org/10.1007/s00018-022-04568-9

REVIEW

Distinctive aspects of the placental epigenome and theories 
as to how they arise

William A. Pastor1,2  · Sin Young Kwon1

Received: 5 March 2022 / Revised: 18 August 2022 / Accepted: 21 September 2022 / Published online: 26 October 2022 
© The Author(s) 2022

Abstract
The placenta has a methylome dramatically unlike that of any somatic cell type. Among other distinctions, it features low 
global DNA methylation, extensive “partially methylated domains” packed in dense heterochromatin and methylation of 
hundreds of CpG islands important in somatic development. These features attract interest in part because a substantial 
fraction of human cancers feature the exact same phenomena, suggesting parallels between epigenome formation in pla-
centation and cancer. Placenta also features an expanded set of imprinted genes, some of which come about by distinctive 
developmental pathways. Recent discoveries, some from far outside the placental field, shed new light on how the unusual 
placental epigenetic state may arise. Nonetheless, key questions remain unresolved.
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Introduction

In a wide range of organisms, including all vertebrate ani-
mals, the 5-carbon of cytosine can be methylated to form 
5-methylcytosine (5mC) (Fig. 1A) [1, 2]. 5mC and its oxi-
dized derivatives are the only epigenetic modifications of the 
DNA molecule known to exist in animals [3]. The methyl 
group is exposed on the outward-facing major groove of 
the DNA double helix and thus affects what proteins can 
bind to DNA [4]. As such, 5mC can influence chromatin 
state and modulate transcription [5, 6]. A cell’s genome-
wide methylation pattern, or “methylome”, helps shape cel-
lular identity[7]. Correspondingly, different cell types can 
be identified and distinguished purely on the basis of their 
“methylomes” [8, 9].

The placenta methylome has attracted interest, both 
because of its distinctiveness among healthy tissues and 
because many cancers that arise in somatic tissue reca-
pitulate aspects of the placental methylome [10, 11]. We 
will first review what is known mechanistically about DNA 

methylation’s function and how it shapes and is shaped by 
the chromatin landscape. We will then consider how the pla-
cental methylome is distinctive and what is known or can be 
theorized about how it takes on its unusual aspects. Finally, 
we will consider what is known about the function of DNA 
methylation in placental development.

DNA methylation and chromatin

This topic is reviewed in more depth in other publications[6, 
12], but essential details are included below.

DNA methylation in development

Cytosine is methylated by DNA methyltransferase (DNMT) 
enzymes. DNMT3A and 3B can impart methylation at previ-
ously unmethylated sites[13, 14], a process called “de novo” 
methylation (Fig. 1B). DNMT3A and 3B can complex with 
the catalytically inactive DNMT3L, which allosterically 
increases their enzymatic activity[15]. This methylation typ-
ically occurs at cytosines followed by guanine. These sites 
are termed “CpG sites”, where the p denotes the phosphate 
that links the two bases [16]. DNMT1 in turn maintains 
existing patterns of DNA methylation through cycles of cell 
replication (Fig. 1C), a process called “maintenance” meth-
ylation [17]. Maintenance methylation depends on a protein 
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called UHRF1 which recognizes “hemimethylation sites”, a 
methylated CpG complementary to a newly synthesized and 
unmethylated CpG, and recruits DNMT1 [18].

The phenomenon of maintenance methylation makes 
DNA methylation an unusually stable epigenetic mark, but 
DNA methylation can nonetheless be lost. If DNMT1 fails to 
act with perfect efficiency, 5mC will be diluted out through 
cycles of cell division [5]. Tet enzymes in turn can oxidize 
5mC to 5-hydroxymethylcytosine (5hmC) [19], which is less 
efficiently recognized by DNMT1 [20, 21]. TET enzymes 
can further oxidize 5mC to 5-formylcytosine and 5-carboxy-
cytosine, which are excised by the glycosylase TDG and 
replaced by cytosine in the course of base excision repair 
[22, 23]. Replication-dependent and -independent 5mC loss 
are called “passive” and “active” demethylation, respectively 
[5].

A mass reprogramming of DNA methylation occurs dur-
ing the first few days of mammalian embryonic develop-
ment. A few hours after fertilization, before the pronuclei 
from the sperm and egg have fused, the paternally inherited 
DNA undergoes near total demethylation (Fig. 2A) [24]. It 
is at present unclear whether this is a TET-mediated pro-
cess [25–27]. DNA methylation is then lost passively from 
the maternally inherited DNA, and by the blastocyst stage, 
global DNA methylation levels are low [28–30]. Subse-
quently, DNMT3A and 3B are upregulated and genome-
wide de novo DNA methylation occurs [28]. By this point, 
the epiblast, trophoblast and primitive endoderm lineages 
have already been specified, and they acquire disparate pat-
terns of DNA methylation [31–33].

Not all DNA methylation is lost during pre-implantation 
reprogramming; the blastocyst never reaches zero methyla-
tion in mice or in humans [29, 30]. Notably, a handful of 
imprinting control regions (ICRs) retain methylation inher-
ited from the parental gametes. These ICRs are methylated 
in the sperm or oocyte but not both, and retain selective 
methylation in the paternally or maternally inherited copy 
throughout pre-implantation reprogramming and during sub-
sequent embryonic development. Accordingly, they impart 
selective expression of paternal or maternal alleles of nearby 
genes (discussed below and reviewed in [34, 35]). However, 
the vast majority of the genome is effectively reset and re-
established in early embryogenesis. Subsequent methylation 
changes in placental and somatic development are relatively 
modest by comparison [36], although germ cells undergo a 
second global demethylation/remethylation event (Fig. 2B) 
[37].

How DNA methylation shapes chromatin

DNA methylation typically antagonizes transcriptional ini-
tiation and thus silences gene expression [38, 39]. It does so 
via several mechanisms. A number of widely expressed tran-
scription factors have recognition motifs that contain CpG 
sites and have reduced binding to 5mC [40–42]. Several pro-
teins, including proteins that mediate H3K4 methylation, 
H3K36 demethylation and Mediator recruitment, contain 
CXXC domains that specifically bind to unmethylated CpG 
[43]. Finally, there exist proteins (MBD1, MBD2, MBD4, 
MeCP2 and Kaiso) that specifically recognize 5mC and 
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recruit histone deacetylases and H3K9 methyltransferases 
[44–47]. 5mC thus promotes a heterochromatic state of dea-
cetylated, H3K9-methylated chromatin. It should be noted 
that some of these silencing mechanisms show strong “den-
sity dependence”: a single 5mC will not have a major effect, 
but a cluster of 5mC in a small stretch of genome can induce 
heterochromatinization [39, 45].

How chromatin shapes DNA methylation

The de novo DNA methyltransferases lack strong sequence 
preference, but their activity is affected by underlying chro-
matin modifications (Fig. 3). All DNMT3 proteins have an 
ADD domain which binds to the N-terminus of histone 3 
tail, [48] and methylation of lysine 4 strongly inhibits ADD 
domain binding [49–52]. Since H3K4 methylation is typi-
cally found at promoters and enhancers, this “protects” these 
sites from DNA methylation during the period of de novo 
DNA methylation. DNMT3A and 3B also have PWWP 
domains that target them to H3K36 methylation sites, which 
are found in gene bodies (downstream of the promoter) of 
transcribed genes and some intergenic regions [52–55]. 
Finally, DNMT3A isoform 1 contains a ubiquitin binding 
region which recognizes the modification H2AK119ub, a 
histone mark imparted by Polycomb Repressor Complex 1 
(PRC1) [56].

A critical implication of these targeting mechanisms is 
that cells with different underlying transcriptional patterns, 
such as early embryonic lineages, will acquire DNA meth-
ylation differently.

The phenomenon of CpG islands

Because 5mC is prone to undergo C to T transition muta-
tions, heavily methylated genomes mutate CpG to TpG over 
evolutionary time [57]. As a result, the vast majority of the 
genome has a far lower density of CpG sites than would be 
mathematically expected from the abundance of C and G 
bases [58]. However, there exist thousands of “CpG islands” 
which have both an elevated GC content and a CpG content 
close to what is mathematically expected [58, 59]. Most 
CpG islands are never methylated, explaining how they can 
retain CpG across evolutionary time.

These CpG islands are of critical importance for mam-
malian gene regulation. As discussed above, a variety of 
transcription factors and CXXC domain containing proteins 
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bind CpG sequences. CpG islands are thus hubs of transcrip-
tion: more than half of all mammalian promoters are CpG 
islands, including virtually all constitutively expressed genes 
[58]. When CpG islands do undergo methylation, the 5mC 
density is very high and heterochromatinization and silenc-
ing are correspondingly effective [45].

Features and acquisition of the placental 
methylome

Somatic cells in mammals have a methylome with the fol-
lowing properties: (1) low methylation at active promoters, 
(2) low methylation at most CpG island promoters (including 
those inactive in the cell type in question), (3) intermediate 
methylation at enhancer elements and (4) high methylation 
elsewhere in the genome. In other words, 5mC is essentially 
universal except at regulatory elements a few hundred to a 
few thousand bases wide (Fig. 4).

The placental methylome differs from its somatic coun-
terpart in several dramatic ways (Fig. 4). It has a much 
lower global level of 5mC. Low 5mC is a common feature 
of eutherian placentas and is also observed in the extraem-
bryonic membrane of marsupials [60]. The placenta is also 
unusual in containing large regions of genome with interme-
diate levels of DNA methylation. In some species, includ-
ing humans, the placental epigenome contains “partially 
methylated domains” (PMDs), regions of hundreds of thou-
sands or millions of bases with intermediate levels of DNA 
methylation, interspersed with “highly methylated domains” 
(HMDs) where methylation is high except at promoters and 
enhancers [11]. In other species, such as mouse, the dis-
tinction between PMDs and HMDs is more subtle, but the 
feature of widespread intermediate methylation is retained 
[60, 61]. The placental methylome is also distinct insofar as 
there are hundreds of CpG islands, including promoters of 
many genes important for somatic development, which are 
specifically methylated in placenta [11, 33, 62, 63] (Fig. 4). 

Fig. 4  Pattern of DNA meth-
ylation in human soma and 
placenta. A 500 kb region of 
chromosome 12 is shown to 
illustrate DNA methylation 
patterns in soma and placenta. 
DNA methylation is gener-
ally high in soma with dips at 
regulatory elements, such as 
gene promoters, CpG islands 
and enhancers. In placenta by 
contrast a large partially methyl-
ated domain (PMD) spanning 
hundreds of thousands of bases 
is present, and is shaded in 
light blue. Shown in inset is an 
example of CpG island which 
is unmethylated in soma but 
has substantial methylation 
in placenta. The CpG island 
in question is the promoter of 
the gene TMEM233, which is 
expressed in certain somatic 
lineages but not placenta. Data 
are from ENCODE libraries 
generated by the Bradley Bern-
stein lab (ENCSR739XWV, 
ENCSR699ETV) [147, 148]
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Finally, the placental methylome contains an expanded set 
of imprinted loci, some of which come about via unique 
mechanisms [35]. Each of these phenomena will be consid-
ered in turn.

Low global DNA methylation and the start 
of partially methylated domains

During the wave of DNA methylation that occurs during the 
peri-implantation period, the epiblast undergoes far more 
extensive DNA methylation than the trophoblast [31, 33, 
64]. Notably, whereas virtually all the genome except regula-
tory elements is heavily methylated in epiblast, large regions 
of partial methylation remain in the trophoblast (Fig. 5). 
PMDs form initially simply because some regions are never 
highly methylated in trophoblast.

Here it should be noted the general pattern in all genome-
wide de novo DNA methylation events is that transcribed 
gene bodies and nearby regions are methylated first, with 
transcriptionally inert regions showing slower DNA meth-
ylation [31, 32, 52]. In epiblast and male germline, eventu-
ally almost the entire genome is methylated. In trophoblast, 
primitive endoderm and oocyte, large regions of the genome 
remain incompletely methylated. The reason for this differ-
ence is unclear: it may be that epiblast and male germline 
have such high levels of DNMT3 activity that methylation 
activity eventually “saturates”, while this does not occur in 
the other cell types [32]. Alternatively, differences in under-
lying chromatin distribution may be critical. It is noteworthy 

that divergent patterns of H3K36 methylation  are predic-
tive of the differences in DNA methylation patterning in 
male and female germline [12, 65, 66]. Regardless, partially 
methylated domains arise in placenta because methylation of 
transcriptionally inert regions is incomplete (Fig. 5).

Perpetuation and further methylation loss 
over partially methylated domains

After the peri-implantation wave, DNA methylation in the 
trophoblast is not completely static. Intriguingly, while DNA 
methylation as whole increases between the second and third 
trimester, DNA methylation in PMDs drops further, solidify-
ing the distinction between HMDs and PMDs [67] (Fig. 6A). 
A similar trend is observed in the short course of mouse ges-
tation [61]. Cultured human trophoblast stem cells (hTSCs) 
derived from first trimester cytotrophoblasts show this phe-
nomenon to an extreme degree, exhibiting near-complete 
loss of 5mC over PMDs [68]. To understand this 5mC ero-
sion, studies conducted in other tissues are highly relevant.

In addition to placenta, PMDs have been frequently 
detected in cancers and cultured cells and exist in a more 
subtle form in healthy tissues [69, 70]. The strong general 
trend is that AT-rich, CpG-poor, transcriptionally inactive 
regions are prone to become PMDs. Note that while base 
composition does not vary between cell types, transcrip-
tional activity does, and as such there is only partial overlap 
of PMDs between different cell types [70]. Erosion of 5mC 
over PMDs is observed over the normal course of human 
aging and is accelerated in fast-dividing cancers [71]. Within 
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Fig. 5  Methylation dynamics during mouse development. DNA 
methylation in E6.5 mouse epiblast, E6.5 mouse trophoblast and E18 
mouse placenta. A rolling average of %CpG methylation over the 
region is indicated. Note that by E6.5, DNA methylation is generally 
high in epiblast but much lower in trophoblast. In E6.5 trophoblast, 

high DNA methylation is apparent over transcribed gene bodies and 
low elsewhere. By E18, this pattern is less striking, but a region with 
several expressed genes now forms a broader HMD, while the region 
without expressed genes is a PMD (shaded in light blue). Data are 
from published sources [61, 64]
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PMDs, isolated CpGs lose DNA methylation faster than 
clusters of CpGs [69].

Zhou and colleagues demonstrate a plausible model to 
explain all these findings. The central idea is that somatic/
cancer PMDs can arise by incomplete DNA methylation 
maintenance across cell replication cycles [69]. Transcrip-
tionally inert regions are late replicating [72], so there is less 
time for DNMT1 to act before mitosis and a higher chance 
of a CpG being “missed” [73]. Furthermore, isolated CpGs 
are especially prone to lose methylation. DNMT1’s activity 
can best be understood as zonal rather than precise: in a 
region with methylated CpGs it will impart more methyl-
ated CpGs after replication, but not necessarily at the exact 
same CpGs [74, 75]. As such, a cluster of methylated CpGs 
in close proximity can resist demethylation: even if DNMT1 
misses one CpG in a given replication cycle, DNMT1 will 
still bind the region and potentially remethylate the CpG in 
later cycles (Fig. 6B). If an isolated CpG loses methylation 
by contrast, 5mC is lost forever because DNMT1 will no 
longer bind nearby (Fig. 6C). Hence, AT-rich, CpG-poor 
regions lose 5mC slowly over the course of normal human 
aging, with accelerated loss in rapidly dividing cancers and 
cultured cells [69].

The Zhou model can be adapted to explain PMD for-
mation in placenta. The placenta starts out with less DNA 
methylation over large swathes of the genome than somatic 
tissue, particularly over less transcribed DNA. The isolated 

methylated CpGs that do exist in PMDs are especially prone 
to loss in subsequent replication cycles because there is less 
5mC around them. This results in further 5mC erosion in 
PMDs over the course of pregnancy and dramatic 5mC ero-
sion for rapidly-dividing hTSCs in culture.

The chromatin state of PMDs

Placental PMDs show striking enrichment of H3K9me3, 
and some enrichment for H3K27me3 is also observed [67]. 
This finding may appear incongruous, because regions of 
dense DNA methylation are known to attract H3K9me3 
as described above. However, it is well established that 
H3K9me3 establishment can occur independently of 5mC. 
Indeed, H3K9me3 is present in organisms that lack 5mC 
(e.g. yeast, nematodes, drosophila) and mechanisms for 
5mC-independent H3K9me3 establishment are known in 
mammals, such as the KAP1 complex [76] and HUSH com-
plex [77].

Likewise, there is extensive precedent in cancer for 
H3K9me3 and H3K27me3 enrichment over PMDs [78]. 
These heterochromatin marks are sometimes found together, 
though H3K9me3 is more enriched in larger PMDs, while 
H3K27me3 is more enriched at smaller PMDs or near the 
edges of large PMDs [70, 78, 79]. H3K36me3, associated 
with active transcription, is enriched immediately outside 
the PMDs, essentially forming the HMD/PMD boundaries 

Fig. 6  Erosion of DNA meth-
ylation over PMDs. A DNA 
methylation over a ten million 
base region of chromosome 
2. Brain and embryonic stem 
cells (ESCs) show uniformly 
high DNA methylation. Cyto-
trophoblasts (CTBs) show lower 
global methylation with distinct 
PMDs. Note that in CTBs, DNA 
methylation is gained in HMDs 
but lost in PMDs between the 
second and third trimesters. 
B, C Proposed mechanism of 
PMD erosion. In a region with 
several methylated CpGs in 
close proximity, sporadic loss 
of a single 5mC can be reversed 
by DNMT1 homing to nearby 
5mCs (B). Methylation erosion 
at an isolated 5mC, however, 
cannot be reversed (C)
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(Fig. 7A) [70]. Expressed genes are typically found on the 
HMD side of HMD/PMD boundaries in placenta as well 
[60].

How could this chromatin state form and how could 
it give rise to PMDs? The formation of large blocks of 
heterochromatin during development is a widespread 
phenomenon. While embryonic stem cells show hetero-
chromatin at discrete foci, differentiated cells show large 
regions of H3K9me2, H3K9me3 and H3K27me3 [80–82]. 
This developmental transition likely reflects the inher-
ent propensity of heterochromatin to spread [83]. The 

SUV39 H3K9 methyltransferases themselves recognize 
H3K9 methylation and can thus bind H3K9me3 on one 
nucleosome and trimethylate H3K9 on the next (Fig. 7B). 
Likewise, the PRC2 component EED recognizes and is 
stimulated by H3K27me3 [84, 85]. While it is somewhat 
unclear the extent to which these marks are spread by two- 
vs. three-dimensional diffusion, they have a clear capabil-
ity to spread until they hit a barrier. Active transcription 
can function as such a barrier, and can block the spread 
of heterochromatin in several ways. Nucleosome turnover 
associated with transcription has the effect of blocking 

Fig. 7  Spread and containment 
of heterochromatin in PMDs. 
A Pattern of heterochromatin 
marks in PMDs, based on lit-
erature in cancer. H3K9me3 is 
enriched at the heart of PMDs, 
H3K27me3 is enriched closer 
to PMD/HMD boundaries and 
H3K36me3 is absent from 
PMDs but enriched at the HMD 
side of the boundary, reflecting 
transcription’s role as a barrier 
to heterochromatin spread. B 
Because some H3K9 meth-
yltransferases can recognize 
H3K9me3, either directly or 
via interactor proteins, H3K9 
MTases can bind H3K9me3 at 
one nucleosome and methyl-
ate H3K9me3 on adjacent 
nucleosomes, thus spreading 
heterochromatin. C Regions 
of nucleosome-free DNA can 
block the spread of heterochro-
matin. D Rapid turnover over 
nucleosomes over transcribed 
gene bodies can block the 
spread of heterochromatin. E 
H3K36me3 blocks binding of 
EED and spread of H3K27me3. 
F An example of how TRIM28 
complex-mediated H3K9 meth-
ylation could potentially seed 
the formation of a large region 
of heterochromatin

HMD HMDPMD

H3K36me3

H3K27me3

H3K9me3

Eed
Suz12

Ezh2
K27

Eed
Suz12

Ezh2

K27

K27

Eed
Suz12

Ezh2

K9

H3K9
Mtase

H3K9
Mtase

B

C

D

E

H3K9
Mtase

A

TSS

Expressed gene body

LTRExpressed Gene Expressed Gene

TRIM28 complex

LTRExpressed Gene Expressed Gene

H3K9me3

LTRExpressed Gene Expressed Gene

LTRExpressed Gene Expressed Gene

H3K9me3

1.

2.

3.

4.

F

=H3K9me3 =H3K27me3 =H3K36me3

H3K36me3 H3K36me3

Nucleosome turnover

H3K9me3



 W. A. Pastor, S. Y. Kwon 

1 3

569 Page 8 of 16

the spread of heterochromatin, as do the nucleosome-free 
regions found at active gene transcription start sites [86] 
(Fig. 7C, D). Finally, H3K36 methylation directly inhibits 
PRC2 [87, 88] (Fig. 7E).

A combined model of placental PMD formation runs as 
follows. Any one of a number of silencing pathways seeds 
heterochromatin formation at a given place in the genome. 
For example, the TRIM28 complex acts very early in 
embryonic development, creating patches of H3K9me3 
before and during specification of trophoblast [89]. To 
cite another known example, the transcript Airn recruits 
PRC2 and the H3K9 methyltransferase G9a, creating an 
10 Mb block of heterochromatin [90]. Heterochromatin 
spreads from the seeding site until it reaches an insula-
tor or actively transcribed gene (Fig. 7F). This produces 
the pattern observed at PMDs in which H3K9me3 and/or 
H3K27me3 are enriched right up to a patch of H3K36me3 
(Fig. 7A) corresponding to transcribed genes. Because 
their mechanism of formation precludes inclusion of 
active genes, on average these heterochromatin blocks 
will contain fewer CpG islands and exons (which are also 
CpG rich) and thus be generally CpG poor. Being het-
erochromatin, they replicate late in cell cycle and thus 
have less efficient maintenance methylation. Thus, these 
heterochromatic blocks become the PMDs we see in pla-
centa. Bounded by H3K36me3, which attracts de novo 
DNA methylation, sharp boundaries between regions of 
high and low DNA methylation become apparent.

One factor potentially tempering the loss of DNA meth-
ylation over PMDs is the ability of the UHRF1 tandem 
Tudor  domain to bind H3K9me2/me3, thus helping recruit 
DNMT1 to heterochromatic regions [91, 92]. Interestingly, 
one report indicates reduced overall maintenance methyla-
tion efficiency upon trophoblast giant cell differentiation 
[93], and it is unclear if there are broader differences in 
maintenance methylation efficiency in trophoblast as com-
pared with other lineages.

Might PMDs in turn attract heterochromatin? There is 
evidence that 5mC antagonizes PRC2 activity [94], so meth-
ylation loss could potentially promote H3K27me3 acquisi-
tion. Indeed, metabolic changes caused by acquisition of 
drug resistance in breast cancer feature rapid hypomethyla-
tion and H3K27 methylation acquisition [95]. Analysis of 
liver shows PMDs expanding, and H3K9me3 enrichment 
increasing, in increasingly cancerous cell lines [70]. Hence, 
self-reinforcing cycle may target heterochromatin to PMDs 
and promote DNA methylation loss over heterochromatin.

Placenta‑specific CpG island methylation

The origins of placenta-specific CpG island methylation 
are at best partially understood. Deletion of the H3K27 
methyltransferase Ezh2 results in hypomethylation of these 

regions in the extraembryonic ectoderm (future placenta) 
of mice [33]. This finding in turn raises questions we do not 
at present have answers to. How does EZH2, or its resultant 
histone mark H3K27me3, promote 5mC acquisition? As dis-
cussed above, the de novo DNA methyltransferase DNMT3B 
has the ability to bind to H3K36me3 and DNMT3A can 
bind to H3K36me2, H3K36me3 and H2AK119ub [56], but 
no direct interaction of a DNMT with H3K27me3 has been 
demonstrated. There is crosstalk between the PRC2 and 
PRC1 pathways, such that loss of Ezh2 could result in per-
turbation of H2AK119ub [96]. However, ablation of Rnf2, 
the PRC1 component which catalyses H2AK119 ubiquit-
ination, does not result in hypomethylation of CpG islands 
extraembryonic ectoderm [64]. Furthermore, DNMT3B, 
which does not bind to H2AK119ub, is primarily responsi-
ble for DNA methylation in trophoblast [33]. An alternative 
possibility is that the PRC2 complex itself recruits DNMTs. 
Indeed, all four DNMTs have reported physical interactions 
with PRC2 components [97–99]. A final possibility is that 
EZH2 is required for silencing of transcription and concomi-
tant DNA methylation. As discussed above, H3K4 methyla-
tion antagonizes DNMT3 binding and activation [49, 50]. 
Hence, it is possible that EZH2 represses the target genes, 
which will have the effect of preventing H3K4 methylation 
and promoting DNA methylation. However, neither of these 
plausible mechanisms have been demonstrated to be correct. 
Equally unclear is why EZH2/H3K27me3 attracts methyla-
tion specifically in the trophoblast lineage, given that this 
protein and mark are present at the exact same loci in the 
developing epiblast [100].

It is worth noting that aberrant CpG island methylation in 
regions of H3K27me3 is an extremely common phenomenon 
in cancer, potentially important in the silencing of tumour 
suppressors [101]. The mystery of why H3K27me3 attracts 
DNA methylation in trophoblast is thus of both scientific and 
medical importance.

Imprints

Imprinted genes have the distinct characteristic that only one 
allele (paternal or maternal) is expressed. Canonical imprint-
ing entails parent-of-origin-specific methylation of an ICR 
which controls expression of a nearby gene or cluster of 
genes (Fig. 8A). In some cases, regulation of an imprinted 
gene is relatively simple: a gene’s promoter is methylated 
in the allele inherited from one parent and the other allele 
is expressed [102]. Other loci have more complex modes of 
regulation, in which methylation of an ICR directly represses 
one gene but activates other genes via indirect mechanisms, 
for example, by silencing a transcript that silences other tran-
scripts in cis [103] or by blocking binding of the insulator 
CTCF [104].
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As a mechanism of gene regulation, imprinting is evo-
lutionarily disadvantageous to the extent that it sacrifices 
the advantage of a biallelic genome: having two expressed 
alleles of a gene hedges against the danger of mutation at 
one allele. Presumably there is some compensatory evolu-
tionary advantage to imprinting. Imprinting clearly impedes 
parthenogenesis, an unfertilized oocyte giving rise to a preg-
nancy, because embryos with maternal-only imprinting 
cannot develop [105, 106]. One function of imprinting may 
therefore be to block parthenogenesis. A related theory pro-
poses that imprinting prevents oocytes from spontaneously 
giving rise to aggressive ovarian teratomas or trophoblastic 
tumours, because trophoblastic development requires male 
imprinting [107]. Perhaps the best accepted theory postu-
lates that imprinting is the product of an evolutionary “bat-
tle of the sexes”: it is in the father’s interest to maximize 
maternal energy investment in his progeny, whereas it is in 
the mother’s interest to retain energy for future pregnancies 
[108]. In support of this model, loss of maternal imprints 
typically produces overgrowth, while biallelic maternal 
imprinting produces smaller progeny [109, 110].

Regardless of telos, imprinting seems to be especially 
important in placenta. Some of the most highly expressed 
genes in the placenta are imprinted, and imprinting defects 
produce striking placental defects, including the phenom-
enon of molar pregnancy in humans (discussed further 
below). Furthermore, in both mice and humans, there are 
a substantial number of genes that are only imprinted in 
placenta; in somatic tissues these genes are either expressed 
biallelically or not at all [111–116].

Placental-specific imprinting may arise in a number 
of ways. One mechanism is reprogramming of parental 
methylation in epiblast but not trophoblast. A large num-
ber of loci are “transiently imprinted” in early develop-
ment. Because the male pronucleus is demethylated more 
rapidly and completely than the female pronucleus, from 
the 1-cell to blastocyst stage, large swathes of the genome 
selectively retain maternal methylation [30, 117, 118]. Dur-
ing the peri-implantation stage, methylation is either gained 
at the paternal allele or lost at the maternal allele, ending 
the locus’ brief period of imprinting [117]. A number of 
such loci retain selective maternal methylation in the tropho-
blast but not somatic lineage. At some such loci (e.g. ZFAT, 
C19MC), the paternal allele is methylated in somatic lineage 
(Fig. 8B). At other loci (e.g. GRID2, JMJD1C), the maternal 
copy is demethylated in somatic lineage [115]. The common 
feature is that reprogramming of the parental methylome is 
less complete in trophoblast lineage, giving rise to placenta-
specific imprinting.

Alternatively, “non-canonical” imprinting mechanisms 
can result in placenta-specific imprinting [114]. The key 
feature of non-canonical imprinting is that DNA methyla-
tion is not inherited from the parental gametes. At some 

non-canonically imprinted loci, H3K27me3 rather than 5mC 
is inherited from the mother. These imprints only acquire 
5mC upon implantation [119, 120] (Fig. 8C). Other pla-
cental imprints correspond to long terminal repeat (LTR) 
transposon sequences which serve as alternative promoters 
for protein-coding genes [121]. These LTR-based imprints 
are also marked by maternally inherited H3K27me3, but 
depend on the H3K9 methyltransferase EHMT1(G9A) in 
order to undergo DNA methylation, which likewise occurs 
upon implantation [114, 122, 123]. Two established exam-
ples of organism-wide non-canonical imprints exist in mice 
[124, 125], but the vast majority of non-canonical imprinting 
is specific to placenta [114].

A high degree of species specificity is notable in placen-
tal imprinting. While many examples of placenta-specific 
imprinting occur in both primates and mice, in primates the 
“incomplete reprogramming” mechanism predominates, 
while in mice, non-canonical imprinting is the primary 
mechanism for placental imprinting [114, 115, 126]. Fur-
thermore, while a majority of globally imprinted loci in mice 
are also imprinted in humans [127], almost no placenta-spe-
cific imprints are conserved [128]. The placenta is a rapidly 
evolving organ, existing only in eutherian mammals and 
showing dramatic morphological variation between differ-
ent mammals [129]. Divergent sets of imprints may facilitate 
this rapid evolution.

A note on primitive endoderm

Of the five cell lineages that undergo global de novo meth-
ylation (epiblast, trophoblast, primitive endoderm, sperm, 
oocyte), primitive endoderm and the tissues it forms receive 
by far the least scientific attention despite being critical for 
mammalian development. The primitive endoderm gives 
rise to the parietal and visceral endoderm, which give rise 
to the parietal and visceral yolk sac endoderm, respectively 
[130]. The visceral endoderm guides embryonic patterning 
and the yolk sacs perform critical nutrient and gas exchange 
before the placenta has developed [131, 132]. In mice, it 
also has been established that some visceral endoderm cells 
are incorporated into gut tube and thus become part of the 
embryo proper [133–135].

Interestingly, the primitive endoderm may contain a 
rather placenta-like methylome. Murine extraembryonic 
endoderm (XEN) cells derived from primitive endoderm 
have a methylome globally more similar to that of mTSCs 
than epiblast-derived stem cells [136]. During the peri-
implantation period, the primitive endoderm acquires even 
less methylation than the trophoblast and shows similar fea-
tures, such as PMDs [31, 32]. Likewise, non-canonical pla-
cental imprints show parent-of-origin expression patterns in 
murine visceral endoderm [121].
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While the trophoblast and primitive endoderm are super-
ficially similar insofar as they are both extraembryonic, in 
early development the primitive endoderm forms from the 
inner cell mass along with the epiblast, and at the transcrip-
tional level the primitive endoderm is initially far more 
similar to the epiblast than trophoblast [137]. The primitive 
endoderm may thus acquire a trophoblast-like methylome by 
a developmental trajectory very unlike that of trophoblast.

The function of DNA methylation in placenta

At the cellular level, DNA methylation does not 
appear to be altogether essential for trophoblasts. 
Dnmt1−/− Dnmt3a−/− Dnmt3b−/− murine trophoblast 
stem cells (mTSCs) can survive in the complete absence 
of DNA methylation, though they show dysregulation 
of imprinted genes and upregulation of some differentia-
tion markers [138]. Sakaue and colleagues also conducted 
an experiment in which they transferred nuclei from 
Dnmt1−/− 3a−/− 3b−/− embryonic stem cells to enucleated 
oocytes, allowed the oocytes to develop to morula stage, 
aggregated with WT morulas and implanted. The cells from 
the Dnmt1−/− 3a−/− 3b−/− morulas were capable of contribut-
ing to the placental but not somatic lineage in the resulting 
mouse, although the degree of contribution was much lower 
than what is observed for WT morulas [138]. Human TSCs 
generated via transdifferentiation of naïve human embryonic 
stem cells have essentially no correct imprinting, but can still 
grow and differentiate normally in vitro [139].

In both mice and humans, however, DNA methylation 
is clearly essential for placental organogenesis. Female 
Dnmt3l−/− mice, which have heavily hypomethylated 
oocytes [118], give rise to progeny that fails to progress 
beyond E10.5 and shows extensive placental malforma-
tion [140], indicating that imprints are essential for normal 
placental development. Loss of maternal Dnmt3a and 3b 

likewise results in defects in trophoblast adhesion, partially 
attributable to hypomethylation and overexpression of the 
imprinted gene Scml2 [141].

In humans, “androgenetic pregnancies” can occur in 
which all DNA is of male origin [142]. Such pregnancies 
may arise if fertilization causes exclusion of maternal DNA 
or if the starting oocyte is anucleate to begin with [143]. 
Moles may form via fertilization by two sperm, or via fer-
tilization by a single sperm which undergoes endoredupli-
cation. Either way, the resulting conceptus is genetically 
normal, diploid, but with a uniformly paternal imprinting 
pattern. The conceptus becomes a “hydatidiform mole”, 
which features a lack of embryonic tissue combined with 
disorganized, hypertrophic trophoblast villi [143]. Hyda-
tidiform moles in turn are 2,000–4,000 times more likely to 
give rise to placental cancers called choriocarcinomas than 
normal pregnancies [144]. Androgenetic murine embryos do 
not give rise to moles but, by mid-embryogenesis, feature 
dramatically impaired embryonic growth but a normal of 
amount of trophoblast tissue [145].

Takehashi and colleagues derived hTSCs from hydatidi-
form moles [146]. The placentally imprinted cell cycle regu-
lator CDKN1C(p57KIP) was expressed at far lower levels in 
molar hTSCs, consistent with maternal expression during 
normal development. Molar hTSCs, or regular hTSCs in 
which CDKN1C was ablated with CRISPR, failed to show 
contact inhibition in vitro, potentially explaining why mul-
tiple layers of cytotrophoblasts are observed in hydatidiform 
mole villi and potentially explaining why moles are prone to 
give rise to choriocarcinoma.

Conclusions

Having described what is known about the pattern of the pla-
cental epigenome and the mechanisms of its formation, there 
is one major question left. How is the placenta’s distinctive 
epigenome relevant to its function?

As discussed above, biological roles have been clearly 
established for a number of placenta-specific imprints [141, 
146]. It is easy to theorize that placental CpG island methyl-
ation occurs to ensure silencing of somatic genes in placen-
tal lineage. This is uncertain though, and it is worth nothing 
that most CpG islands specifically methylated in placenta 
are only partially methylated (e.g. Figure 4) and yet show 
stable silencing.

As for the other distinctive aspects of the placental epi-
genome, low global 5mC and PMDs, their importance is 
as yet unknown. Presumably any feature conserved across 
one hundred million years of evolution must be biologically 
important, but for now, their significance remains a mystery.

Fig. 8  Mechanisms of imprinting. A Example of canonical, organ-
ism-wide imprinting. A region of the genome is methylated in sperm 
or oocyte, but not both, and this differential pattern of methylation is 
preserved through early embryonic development and in the embry-
onic and placental lineages. B Example of how placental imprinting 
can arise through incomplete reprogramming in trophoblast. The 
locus is methylated in oocyte but not sperm and retains this differen-
tial methylation pattern through pre-implantation development. In the 
epiblast lineage, either the paternal copy is methylated or the mater-
nal copy is demethylated, and the locus is not imprinted. In the troph-
oblast lineage, the locus retains parent-of-origin-specific methylation. 
C Non-canonical imprinting. Methylation is not inherited from paren-
tal gametes (or is rapidly lost after fertilization). Instead, H3K27me3 
is inherited from the oocyte and the maternal copy is methylated after 
implantation. Typically in the epiblast lineage, both copies of the 
locus are methylated

◂
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