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Abstract
Mitochondria supply cellular energy through oxidative phosphorylation and fulfill numerous additional functions that are 
fundamental to cellular homeostasis and stress responses. Mitochondrial malfunction, arising from inherent defects of the 
organelle itself, aging, or acute or chronic stress, can cause substantial damage to organismal health. For instance, mitochon-
drial malfunction contributes to inflammation, neurodegeneration, tumorigenesis and cardiovascular diseases. Therefore, 
various quality control mechanisms exist that support a functional mitochondrial organelle compartment. The CMLS Forum 
Reviews introduced here present a collection of articles covering select topics on basic mechanisms and pathophysiological 
contexts of mitochondrial damage control.
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Introduction

Multiple cellular processes are tasked with the maintenance 
of a healthy mitochondrial population. Degradative qual-
ity control mechanisms at the sub-organelle level include 
activities of mitochondrial proteases that locally survey 
the mitochondrial proteome [1]. In addition, compromised 
mitochondrial components can be delivered to lysosomes 
via mitochondrial-derived vesicles (MDVs) for degradation 
[2, 3]. Developmental cues or high degrees of mitochon-
drial damage can trigger whole organelle degradation via 
mitophagy [4, 5]. Conversely, the mitochondrial compart-
ment can be replenished and expanded via mitochondrial 
biogenesis [6], and mitochondria can actively trigger nuclear 
expression of genes that alleviate dysfunction of the mito-
chondrial compartment in a process referred to as the mito-
chondrial retrograde response [7]. Drs. Alba Roca-Portoles 
and Stephen Tait present an up-to-date, broad overview of 

current knowledge in the field of mitochondrial quality con-
trol, covering aspects in molecular detail as well as at the 
organelle level.

Aside from their essential functions for cellular survival, 
mitochondria are important mediators of apoptosis [8]. 
Apoptosis is a form of regulated cell death with roles rang-
ing from embryonic development, tissue homeostasis and 
immunity, to disease pathogenesis and therapeutic interven-
tions [9–11]. Central to the transformation of mitochondria 
into cell death promoting organelles is the process of BAX/
BAK-mediated mitochondrial outer membrane permeabili-
zation (MOMP) [12]. Upon MOMP, pro-apoptotic factors 
that were confined within the mitochondrial intermembrane 
space are released to the cytosol and there contribute to 
the activation of proteolytic caspases which dismantle the 
cell. Anti-apoptotic BCL-2 protein family members safe-
guard against, while pro-apoptotic BCL-2 proteins promote 
MOMP. Dr. Ana García-Sáez and colleagues focus in on 
the current mechanistic and regulatory understanding of 
MOMP, and offer a detailed, comparative overview on avail-
able techniques for studying MOMP at the single-molecule 
level.

During mitophagy, mitochondria are specifically tar-
geted and enclosed by autophagosomes, and degraded in 
their entirety upon autophagosomal fusion with lysosomes 
[4, 5]. Best characterized is the pathway of Parkin-mediated 
mitophagy, wherein Parkin ubiquitinates outer mitochondrial 
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membrane (OMM) proteins that are then recognized and 
bound by autophagy receptors. These autophagy recep-
tors link mitochondria to autophagososmal membranes by 
binding to LC3 proteins. Alternatively, mitophagy can be 
mediated by certain lipids and a growing number of OMM-
localized mitophagy receptors. Dr. Kay Macleod and col-
league contribute an in-depth summary of currently known 
mitophagy mechanisms and upstream signaling pathways 
and discuss the complex roles of mitophagy in tumorigenesis 
and metastasis.

Accumulating evidence indicates that inter-organelle 
contacts between mitochondria and various other organelle 
types is fundamental to mitochondrial function [13, 14]. 
For instance, membrane contact sites (MCS) between mito-
chondria and the endoplasmic reticulum (ER) support  Ca2+ 
and lipid exchange, and regulate mitochondrial dynamics 
and apoptosis signaling [15–17]. Also, in addition to their 
autophagy- and MDVs-mediated connections with the 
endolysosomal system, mitochondria directly interact with 
endolysosomal vesicles [18]. Furthermore, recent work has 
revealed that MCS between mitochondria and the nucleus 
facilitate the mitochondrial retrograde response [19]. In this 
context, Dr. Michelangelo Campanella and colleagues pos-
tulate an integrated view on mitochondria-to-nuclear sign-
aling, mitochondrial positioning and mitophagy in cancer 
cells.

The mitochondrial organelle compartment can exhibit 
a spectrum of morphologies, ranging from small spherical 
entities to tubular shapes of varying length and branching 
[20]. Morphological states are achieved through a balance 
of highly dynamic mitochondrial fusion and fragmenta-
tion activities. Mitochondrial morphology phenotypes and 
extent of mitochondrial interconnectivity are determined in 
a cell type and tissue-dependent manner, are impacted by 
the cellular metabolic state and external insults, and influ-
ence autophagic targeting and apoptosis signaling [20–22]. 
Similarly heterogeneous between cell types is the degree of 
mitochondrial movement throughout the cell, along micro-
tubules [23]. Together, these characteristics are referred to 
as mitochondrial dynamics. Owing to the reciprocal nature 
of the relationship between mitochondrial dynamics and cel-
lular homeostasis, its deregulation is implicated in numer-
ous diseases [24]. Here, Dr. David Kashatus and colleague 
review basic mechanisms of mitochondrial dynamics, their 
interconnections with oncogenic signaling, and relevance for 
cancer stem cell biology and therapeutic resistance.

Mitochondrial damage control is particularly relevant 
also in the long-lived cells of the heart. Cardiac muscle 
cells are highly energy dependent, with kilogram amounts 
of ATP produced and utilized in the adult heart each day 
[25]. ATP production in this cell type can be attributed in 
its majority to the thousands of densely packed mitochon-
dria that account for approximately 35% of the cytosol [26] 

and present as predominantly singular spherical-shaped, yet 
physically and electrically interconnected units [27]. Mito-
chondrial malfunction is linked to various cardiovascular 
diseases and tremendous efforts are underway to expand and 
translate current mechanistic understanding for clinical ben-
efit [28, 29]. Dr. Roberta Gottlieb and colleagues provide an 
updated discussion of mitochondrial quality control mecha-
nisms, and their clinical relevance, in the heart, ranging from 
mitochondrial dynamics to mitophagy, and safekeeping of 
the mitochondrial genome and proteome.
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