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Abstract
Mitochondria are organelles central to myriad cellular processes. To maintain mitochondrial health, various processes 
co-operate at both the molecular and organelle level. At the molecular level, mitochondria can sense imbalances in their 
homeostasis and adapt to these by signaling to the nucleus. This mito-nuclear communication leads to the expression of 
nuclear stress response genes. Upon external stimuli, mitochondria can also alter their morphology accordingly, by inducing 
fission or fusion. In an extreme situation, mitochondria are degraded by mitophagy. Adequate function and regulation of these 
mitochondrial quality control pathways are crucial for cellular homeostasis. As we discuss, alterations in these processes 
have been linked to several pathologies including neurodegenerative diseases and cancer.

Keywords  Mitochondrial dysfunction · UPRmt · ISR · Mitochondrial fission · Mitochondrial fusion · Mitophagy · PINK1 · 
Parkin · Mitochondrial diseases

Introduction

Mitochondria are implicated in an expanding array of bio-
logical processes including redox balance, calcium homeo-
stasis, energy production, metabolism and cell death [1, 2]. 
To maintain function, cells have evolved various processes 
that sense and respond to defective mitochondrial activity. 
These mechanisms react differently depending on the nature 
or intensity of the stress that mitochondria face. For instance, 
mitochondria can sense internal stresses such as misfolded 
proteins, mitochondrial DNA (mtDNA) mutations, meta-
bolic or oxidative stress [3]. Mitochondria can adapt to 
these by retrograde signaling to the nucleus leading to the 
transcriptional upregulation of stress response proteins [4, 
5]. Besides these stresses, mitochondria also face external 
ones such as mechanical stress, infection and environmental 
stress (e.g., hypoxia) [3]. Hence, when cells are challenged, 

mitochondria can maintain function through a second line 
of defense, by altering their mitochondrial dynamics. How-
ever, in the face of persistent damage, another homeostatic 
mechanism is to remove damaged mitochondria through a 
process called mitophagy [3, 6, 7].

Alterations in mitochondrial quality control responses 
have been described in several mitochondrial diseases such 
as neurodegenerative diseases (Parkinson’s, Alzheimer’s 
and Huntington’s disease) [8–11], cardiomyopathies [12], 
ocular diseases [13, 14] and cancer [15–17], highlighting 
the importance of an adequate balance of these pathways for 
maintaining homeostasis.

In this review, we will discuss key mechanisms of mito-
chondrial quality control pathways. Due to the complexity 
and diversity of these pathways we have divided them into 
two broad areas: regulation at the molecular level (focusing 
on mitochondrial-to-nuclear communication) and regulation 
at the organelle level (including mitochondrial dynamics and 
mitophagy). Our discussion is not intended to be exhaustive, 
for instance, for in-depth discussion of the cellular response 
to ROS, NAD + (nicotinamide adenine dinucleotide) and 
calcium signaling, the reader is referred to recent, compre-
hensive reviews [18–20].
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Regulation of mitochondrial quality control 
at the molecular level

Mitochondria are organelles of bacterial ancestry. Thus, 
mitochondria have their own genome (mtDNA) in the 
matrix, which is surrounded by the inner (IMM) and outer 
mitochondrial membrane (OMM). While mitochondria have 
their own genome, the vast majority of mitochondrial pro-
teins are encoded in the nucleus [21] and therefore require 
import to maintain mitochondrial function [22]. Addition-
ally, mitochondria also need to cope with oxidative stress. 
Therefore, to ensure homeostasis, mitochondria have devel-
oped several mechanisms to sense and respond to stress 
via nuclear communication. This mito-nuclear communi-
cation—also termed mitochondrial retrograde signaling or 
mitohormesis—is an evolutionary conserved process. It can 
be triggered by several stressors such as misfolded proteins, 
inhibition of the ETC, mitochondrial depolarization, nutri-
ent deprivation and/or redox imbalances [23–27]. Hence, 
different pathways are involved in regulating mito-nuclear 
communication (Fig. 1).

Mitochondrial retrograde response

One of the first descriptions of mitochondrial retrograde 
signaling was made in the yeast Saccromyces cerevisiae, 

where the genes RTG1 and RTG2 were found to regulate 
the expression of the nuclear gene citrate synthase (CIT2) 
in response to alteration of mitochondrial function [28]. 
Stemming from this finding, Jia et al. described that the 
transcription factor involved in the regulation of CIT2 
expression in yeast is a heterodimeric complex of Rtg1p 
and Rtg3p proteins (Retrograde regulation protein 1 and 3) 
[29]. Recently, it has been shown that inhibition of protein 
import into mitochondria and consequently cytoplasmic 
accumulation of misfolded mitochondrial proteins caused 
global changes at the transcriptome and proteome levels 
[30]. This led to an increased expression of proteasome 
subunit and cytosolic chaperones and a decrease in oxida-
tive phosphorylation (OXPHOS) proteins. However, these 
changes were regulated by different transcription factors; 
Hsf1 and Rpn4 were involved in the upregulation of the 
proteasome and chaperones proteins; whilst the inactivation 
of the HAP complex led to a downregulation of OXPHOS 
proteins [30]. This study shows that there are multiple path-
ways that regulate mito-nuclear communication. Indeed, 
several mitochondrial signaling pathways that respond to 
inhibition of protein import have been recently described 
in yeast such as the unfolded protein response activated by 
mistargeting of proteins (UPRam) [31], mitochondrial precur-
sor over-accumulation stress (mPOS) [32], mitochondrial 
compromised protein import response (MitoCPR) [33] and 

Fig. 1   Mitochondrial retrograde 
signaling. The mitochondrial 
integrated stress response 
(ISRmt) is regulated by phos-
phorylation of the elongation 
transcription factor eIF2α, 
which enhances the translation 
of ATF4. The kinases HRI and 
GCN2 phosphorylate eIF2α 
(P-eIF2α) following a mitochon-
drial stress. In addition, the ISR 
is also part of the mitochondrial 
unfolded protein response 
(UPRmt), activated by mis-
folded mitochondrial proteins. 
Moreover, other mechanisms 
of mito-nuclear communication 
(mTORC, SIRT1, GPS2) are 
activated following changes in 
mitochondrial ROS, NAD, ATP/
ADP ratio, calcium (Ca2+) or 
membrane potential (Δψ). Once 
the transcription factors ATF4, 
ATF5, ATF2 and/or GPS2 are 
in the nucleus, they regulate the 
expression of nuclear stress-
response genes
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mitochondrial protein translocation-associated degradation 
(mitoTAD) [34], reviewed in [35].

Mitochondrial retrograde signaling has also been 
described in the nematode Caenorhabditis elegans, where 
mitochondria can sense and respond to unfolded proteins 
by activating the mitochondrial unfolded protein response 
(UPRmt), and thereby regulating the expression of mitochon-
drial chaperone genes, amongst others [36]. Mechanistically, 
Haynes and colleagues found that upon a proteotoxic stress, 
the mitochondrial matrix protease CLPP and the homeo-
domain-containing transcription factor DVE-1 in complex 
with the small ubiquitin-like protein UBL-5, are required for 
UPRmt [37]. Additionally, they found that both CLPP and the 
mitochondrial peptide transporter, HAF-1, are required for 
activation of the transcription factor ZC376.7, which binds 
to and activates the expression of nuclear genes involved in 
the UPRmt [38]. The transcription factor ZC376.7 (mam-
malian homolog of ATF5), was later re-named as ATFS-1 
(Activating Transcription Factor associated with Stress-1). 
Thus, Nargund et al. showed that in C. elegans, ATFS-1 
is imported into mitochondria and degraded under basal 
conditions, but following a mitochondrial stress, ATFS-1 
accumulates in the cytosol, promoting its nuclear transport 
[39]. In the nucleus, ATFS-1 regulates the expression of 
several nuclear genes involved in immunity, mitochondrial 
chaperones and metabolism, amongst others [40, 41].

Besides these, other complementary mitochondrial retro-
grade signaling pathways have been observed in worms in 
response to mitochondrial dysfunction and oxidative stress 
(ROS). For instance, the translation initiator factor eIF2α 
(Eukaryotic Translation Initiation Factor 2A) is phosphoryl-
ated by the kinase CGN2 (general control non-derepressi-
ble-2) and modulates cytosolic protein synthesis [42]. On 
the other hand, the mitochondrial protein monooxygenase 
CLK-1 can translocate to the nucleus where it regulates 
ROS metabolism and proteostasis, by suppressing a subset 
of UPRmt genes [43]. Additionally, Herholz et al. found that 
Krüppel-like factor 1 (KLF-1) is the key transcription factor 
that regulates the expression of genes involved in xenobi-
otic detoxification processes [44]. This argues that distinct 
mechanisms are also involved in mito-nuclear communica-
tion in nematodes.

Furthermore, mitochondrial retrograde signaling has also 
been described in the fruit fly Drosophila melanogaster [45, 
46] and in mammals. In mammals, there is evidence that 
treatments that alter mitochondria health, such as loss of 
membrane potential, unfolded proteins, inhibition of protein 
translation or mutations in mitochondrial DNA, signal to 
the nucleus in order to regulate the expression of nuclear 
genes and adapt towards adverse conditions [23–27]. Thus, 
indicating—as a generalized process—retrograde signaling 
is evolutionary conserved.

One of the mitochondrial retrograde signaling pathways 
in mammals is the UPRmt, which, as in other species, is 
activated upon the accumulation of misfolded mitochon-
drial proteins. A similar mechanism has been previously 
documented in other mammalian organelles, notably the 
endoplasmic reticulum (ER), where three different path-
ways (ATF6, PERK, IRE1α) are known to regulate the 
endoplasmic reticulum unfolded protein response (UPRer) 
[47]. Upon the discovery of UPRmt in other organisms, there 
has been intensive research trying to identify transcription 
factors involved in the mammalian UPRmt. One possibility 
is the protein ATF5 (Activated Transcription Factor 5), that 
appears to be activated similarly to ATFS-1 [48], meanwhile 
others have reported ATF4 (Activated Transcription Factor 
4) as the transcription factor activated upon mitochondrial 
stress [5]. In addition, there is also evidence in both nema-
todes and mammalian cells, that NAD + can activate the 
UPRmt through activation of the Sirtuin pathway (specifi-
cally SIRT1) [49].

Another mechanism involved in the mitochondrial ret-
rograde signaling is the integrated stress response (ISR). 
This pathway is activated upon several stresses such as pro-
teostasis defects, nutrient deprivation, redox imbalances 
and viral infection, amongst others. However, all of them 
converge in the phosphorylation of the translation initiator 
factor eIF2α [50]. Various kinases that phosphorylate eIF2α 
have been identified: the double-stranded RNA-activated 
protein kinase (PKR) [51, 52], the general control non-dere-
pressible-2 (GCN2) [53], the endoplasmic reticulum (ER) 
resident kinase (PERK) [54] and heme-regulated inhibitor 
(HRI) [55]. Upon phosphorylation of eIF2α (P-eIF2α), the 
activity of eIF2B (eIF2′s guanine nucleotide exchange fac-
tor) is blocked, therefore inhibiting protein synthesis [56]. 
Nevertheless, P-eIF2α can enhance the translation of the 
transcription factor ATF4 [57]. ATF4 was first described as a 
transcription factor involved in the UPRer upon activation by 
PERK [57]. Nevertheless, different studies have shown that 
eIF2α and ATF4 can be activated not only upon ER stress 
but also upon mitochondrial stress engaged by other signal-
ing pathways [5, 42]. Two recent papers have described a 
mechanism of activation of ATF4 following a mitochondrial 
stress [58, 59]. Employing a genome-wide CRISPR screen, 
they found that OMA1 (a mitochondrial stress protease 
located on the inner mitochondrial membrane) is activated 
upon mitochondrial stress and cleaves DELE1 (another inner 
mitochondrial membrane protein). Cleavage of DELE1 leads 
to its accumulation in the cytosol and therefore activation of 
HRI, one of the kinases that phosphorylates eIF2α [58, 59].

Interestingly, the expression of not only ATF4 but also 
ATF5 is enhanced by eIF2α [60], thereby indicating that 
activation of the ISR is required for activation of UPRmt 
in mammals. In addition, in muscle, mTORC1 has been 
shown to regulate the one carbon metabolism and metabolic 
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cytokines (FGF21) via ATF4 signaling [61], indicating a 
role for mTORC1 also in the ISR. Furthermore, Cardamone 
and colleagues described that the protein GPS2, involved in 
inflammation and lipid homeostasis, regulate the transcrip-
tion of several ISR regulated genes [62]. They found that this 
protein resides in the mitochondria and, upon mitochondrial 
depolarization induced by FCCP treatment (a mitochondrial 
uncoupler of oxidative phosphorylation that disrupts ATP 
synthesis); GPS2 translocates to the nucleus, upregulating 
the expression of nuclear genes involved in the tricarboxylic 
acid (TCA) cycle, the electron transport chain (ETC), lipid 
synthesis and interleukin signaling pathways [62].

Although less well-described, apart from these, other 
mechanisms of mitochondrial retrograde signaling have 
also been reported in mammals. For instance, in myocytes, 
different mitochondrial stressors (decrease in mitochondrial 
membrane potential, inhibition of electron transport chain, 
reduced mtDNA or increased intracellular calcium levels) 
caused alterations in the expression of nuclear genes. These 
nuclear genes were regulated by the transcription factors 
NFAT (cytosolic counterpart of activated T-cell-specific 
nuclear factor) and ATF2 (Activated transcription factor 2) 
[27].

In vivo studies have confirmed the existence of several 
mitochondrial stress pathways in mammals [63–65]. Thus, 
Gomes et al. showed that when nicotinamide mononucleo-
tide adenylyltransferase (NMNAT1) was decreased in the 
nucleus, it caused a decrease in expression of mitochon-
drial OXPHOS genes, mtDNA and ATP levels, by activat-
ing SIRT1 [65]. Moreover, mice that lack the expression 
of the mitochondrial aspartyl-tRNA synthetase, DARS2 
(DARS2-deficient mice) display deregulated mitochondrial 
protein synthesis and thereby activation of the UPRmt [64]. 
However, although these mice demonstrated alterations 
in the respiratory chain, activation of the mitochondrial 
stress response was independent of the respiratory defects 
observed [64]. Nevertheless, deletion of CLPP in DARS2-
deficient mice decreased the observed respiratory defects 
but did not rescue the UPRmt signaling, indicating a role of 
CLPP in OXPHOS regulation [63]. In addition, unlike in the 
nematode C. elegans where CLPP has a central role in regu-
lating UPRmt [37], this study showed no role for CLPP in 
UPRmt regulation in mammals [63]. Hence, these data argue 
against different mitochondrial stress pathways involved in 
mito-nuclear communication in vivo that act cooperatively 
to maintain homeostasis.

Mitochondrial retrograde signaling in health and disease

Since the decline of mitochondria function is a hallmark of 
aging, neurogenerative disease and cancer [66], understand-
ing how those pathways work is important for human health. 
In fact, several studies have demonstrated the importance of 

the UPRmt for development and longevity [42, 67]. Thus, 
mutations or deletions in genes involved in the ETC [68] 
and increased levels of NAD + [49], activated the UPRmt 
and extended lifespan. How mito-communication regulates 
lifespan remains unclear. Gomes et al. demonstrated that 
SIRT1/HIF1α pathway contributes to aging-associated 
mitochondrial dysfunction in mice and that this phenotype 
could be reversed by increasing NAD + levels [65]. This 
indicates that increasing the levels of NAD + could be ben-
eficial and a possible treatment option for patients with mito-
chondrial diseases. Similarly, another strategy for treating 
these patients may be using PARP-1 inhibitors as PARP-1 
(poly(ADP-ribose) polymerase-1) is a NAD + consuming 
enzyme. Indeed, treatment with PARP-1 inhibitors has been 
demonstrated to restore mitochondrial function [69]. On the 
other hand, others have suggested that activation of UPRmt 
extends longevity due to the induction of changes in chroma-
tin structure through histone modifications [70]. In addition, 
a role for ROS in longevity has also been proposed [43, 46, 
71], although others have shown that in mice, accumulation 
of mtDNA mutations that are associated with an aging phe-
notype and reduced lifespan, did not affect ROS levels [72]. 
Recently, a study has found that KLF-1 regulates longevity 
independently of the UPRmt but dependently on redox sign-
aling [44]. Importantly, that extended longevity was due to 
the expression of xenobiotic detoxification genes such as 
cytochrome P450 oxidases (CYPs) [44], proposing CYPs as 
the key effectors of lifespan extension. However, whether or 
not the association between mitochondrial dysfunction and 
longevity is due to ROS, epigenetics or any other mecha-
nisms remains unclear.

Alteration of mitochondrial stress-signaling pathways has 
also been dysregulated in cancer. For instance, in gastric 
cancer, cisplatin resistance was found to be due to upregu-
lation of the cystine/glutamate antiporter (xCT) via ROS/
GCN2-eIF2α-ATF4 pathway [73]. In addition, other studies 
have shown that tumours upregulate the ISR as a means of 
chemoresistance. BRAF-mutated melanoma cells, acquire 
resistance to vemurafenib by GCN2/ATF4 activation [74] 
and overexpression of ATF5 conferred radioresistance in 
lung cancer cells [75] and in malignant glioma cells, ATF5 
promoted survival through transcription of anti-apoptotic 
MCL-1 [76]. Although the involvement of mitochondria 
was not shown directly in these studies, they offer proof 
of principle that ISR can induce drug resistance. Recently, 
ATF4 has also been shown to be oncogenic; in Drosophila, 
activation of ATF4 induced a Warburg-like phenotype and 
consequently tumorigenic growth [77] and in MYC-driven 
tumours, deletion of ATF4 prolonged survival [17], indi-
cating that ATF4 is necessary for tumorigenesis. Collec-
tively, although several advances have been made over 
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the recent years in understanding the mitochondrial retro-
grade response in several organisms, much remains to be 
elucidated.

Regulation of mitochondrial quality control 
at the organelle level

As dynamic organelles, mitochondria can also alter their 
morphology by undergoing mitochondrial fission or fusion 
and thereby adapt toward stresses and fulfill the cellular 
needs. However, if the stress is severe or prolonged, cells can 
eliminate mitochondria through a process called mitophagy. 
Both mitochondrial dynamics and mitophagy, have demon-
strated their importance for homeostasis as alterations in 
genes involved in these processes have been found in several 
diseases [10, 13, 14, 78].

Mitochondrial dynamics

Mitochondria are dynamic organelles that adapt their net-
work according to cellular requirements. These changes are 
determined by rates of fission and fusion, the regulation 
of which varies with regards to the severity of the stresses 
that they face. Upon a high or prolonged stress, mitochon-
dria undergo fission, meanwhile, upon a mild or low stress, 
mitochondria favour fusion [79]. Furthermore, studies have 
shown that mitochondria can also alter their morphology 

depending on the nature of stress; starvation induces fusion, 
meanwhile, low glucose and ETC inhibition can induce fis-
sion [80–83] (Fig. 2).

An appropriate balance in mitochondrial dynamics is 
important for mitochondrial health as each of them is impli-
cated in different processes. Fusion is involved in the main-
tenance of mtDNA integrity, mitochondrial respiration, 
mitochondrial membrane potential, apoptosis and calcium 
signalling [84–89]. Fission has been shown to be important 
for preventing oxidative damage and to enable degradation 
of damaged mitochondria [6, 87, 90]. Additionally, mito-
chondrial dynamics have also been implicated in life span 
regulation [91].

Mitochondrial fusion  Mitochondrial fusion is regulated 
at both mitochondrial membranes; the outer membrane 
(OMM) and the inner membrane (IMM). Mitofusin 1 
(MFN1) and Mitofusin 2 (MFN2) are GTPases required to 
allow fusion of the OM [92, 93] by forming homodimers 
or heterodimers [94]. This process is essential for devel-
opment because combined knockout of MFN1 and MFN2 
leads to embryonic lethality. Single knockouts of MFN1 
or MFN2 are viable, however, deletion of each one alone 
promotes mitochondrial fragmentation, demonstrating their 
role in mitochondrial fusion [94]. In addition, mutations 
in MFN2 have been found in axonal Charcot-Marie-Tooth 
disease type 2A [9] and mice with the mutation R95Q in 
MFN2 developed this pathology [78]. MFN2 deficient mice 
showed cerebellar defects; dysfunctional ETC and loss of 
mtDNA nucleoids in Purkinje cells due to dysfunctional 
mitochondria (fusion-deficient cells) [95]. In another study, 
MFN2 mutant mice demonstrated a decrease in locomotive 
activity and a lack of MFN2 in dopaminergic neurons dis-
played fragmented mitochondria and decreased mitochon-
drial motility [96]. These data emphasise the importance 
of this protein and mitochondrial fusion for neurological 
development.

The protein optic atrophy 1 (OPA1) mediates fusion 
of the mitochondrial inner membrane [97, 98]. OPA1 has 
multiple isoforms due to splicing or variants generated via 
proteolytic cleavage. The long form of OPA1 (L-OPA1) is 
anchored in the inner membrane and it promotes mitochon-
drial fusion, whereas the short form of OPA1 (S-OPA1) 
is soluble. Mitochondrial fusion depends on the presence 
of both isoforms [99], by forming oligomeric complexes 
that maintain the cristae structure [100, 101]. Cleavage of 
L-OPA1 into S-OPA1 is mediated by the AAA-proteases 
OMA1 [102, 103] and YME1L [99, 104, 105]. Stresses that 
activate OMA1 or YME1L, for instance loss of mitochon-
drial potential or OXPHOS activity, lead to the proteolytic 
process of L-OPA1 into S-OPA1, liberating this protein 
from the IMM and therefore promoting fission [99, 103, 
106, 107]. Thus, regulation of OPA1 proteolysis is a key 

Fig. 2   Mitochondrial dynamics. Mitochondria are dynamic orga-
nelles that adapt their network according to cellular requirements. 
For instance, a decrease of respiration leads to mitochondrial fission 
and starvation induces fusion. Both processes are regulated by differ-
ent proteins; dynamin-related protein 1 (DRP1) is involved in fission, 
meanwhile Mitofusin 1 and Mitofusin 2 (MFN1/2) and optic atrophy 
1 (OPA1) allows fusion. OXPHOS = oxidative phosphorylation
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process for mitochondrial network maintenance and func-
tion. Accordingly, mutations in this gene cause dominant 
optic atrophy (ADOA) [13, 14] and heterozygous mutations 
have been also associated with Behr syndrome [108].

Mitochondrial fission  The main proteins involved in mito-
chondrial fission are DRP1 (dynamin-related protein 1) 
[109], mitochondrial fission factor (MFF) [110] and mito-
chondrial fission protein 1 (FIS1) [111], amongst others 
[112]. DRP1 is a GTPase that resides in the cytosol. Upon 
specific stimulus DRP1 is recruited onto the OMM by recep-
tors such as MFF and FIS1 [110]. However, there are differ-
ences between the yeast FIS1 and the human Fis1 (hFis1) in 
their activity. A recent study has shown that hFis1 induces 
fission independently of DRP1, instead, hFis1 negatively 
regulates fusion by binding to OPA1, MFN1 and MFN2 and 
blocking its activity [113]. Nevertheless, once DRP1 gets 
onto the OMM it multimerizes and forms rings on the mito-
chondrial outer membrane [109]. Once there, by hydrolys-
ing GTP, the complex changes conformation and allows the 
constriction of the membrane inducing its division [114]. 
DRP1 activity is not only regulated by its translocation, but 
also by post-translational modifications including phospho-
rylation, ubiquitylation, and SUMOylation. Phosphorylation 
of S616 allows DRP1 activity [115], meanwhile, phospho-
rylation of S637 and S656 inhibits it [116, 117]. However, 
several kinases have been involved in the phosphorylation 
of its residues. For instance, ERK1/2 [15, 118] and mitotic 
kinase cyclin B-CDK1 (cyclin-dependent kinase 1 [115] 
have been described to phosphorylate DRP1 in S616 [119]. 
On the other hand, S656 is phosphorylated by cyclic AMP‐
dependent protein kinase, PKA, and dephosphorylated by 
calcineurin [117].

DRP1 is essential for development; whole-body deletion 
of DRP1 is embryonic lethal [120, 121], showing the rel-
evance of this protein for mitochondrial homeostasis. How-
ever, unlike MFN1/2 or OPA1, no autosomal diseases have 
been linked to mutations in DRP1, although alterations in 
mitochondrial fission have been related to neurodegenera-
tive diseases [8]. Moreover, in different tumour models, such 
as pancreas [16], melanoma [118], lung cancer [122] and 
ovarian cancer [123], DRP1 and mitochondrial fission have 
shown to be important for tumour growth [15]. In addition, 
tissues from Alzheimer’s disease (AD) [124] and Hunting-
ton’s disease (HD) [125] patients demonstrated increased 
expression of DRP1 and FIS1, and decreased expression of 
MFN1, MFN2 and OPA1, indicating that an impairment on 
mitochondrial dynamics are associated with AD and HD. 
Thus, an adequate function of mitochondrial fusion and fis-
sion is important for homeostasis and alterations in these 
processes are associated with several pathologies, such as 
cancer, neurodegenerative, neuroinflammatory and autoim-
mune disease [126].

Mitophagy

Autophagy is a regulated process through which cells can 
degrade unnecessary or non-functional cytosolic com-
ponents through their engulfment in a double membrane 
vesicle, called autophagosome, and their delivery into the 
lysosomes. There are different types of autophagy such as 
macroautophagy, microautophagy, and chaperone-mediated 
autophagy (Reviewed in [127, 128]). The selective removal 
of mitochondria by autophagy, namely mitophagy, helps 
maintain adequate cellular homeostasis through the elimi-
nation of damaged mitochondria [7, 129] (Fig. 3). How was 
mitophagy discovered? Dysfunctional mitochondria were 
first observed inside vacuoles in yeast [130]. Later, the term 
mitophagy was coined by Lemaster’s group after finding 
mitochondria inside of lysosomes in rat hepatocytes upon 
nutrient deprivation [131]. These observations raised several 
questions—how do cells sense damaged mitochondria and 
how is mitophagy regulated? There are many mechanisms 
of mitophagy described [132–136]. For instance, the protein 
NIX has been shown to be involved in the removal of non-
damaged mitochondria during erythropoiesis [137, 138]. 
Here we will focus on the PINK1/Parkin pathway, as the 

Fig. 3   Mitophagy. Mitophagy allows the removal of damaged mito-
chondria by the PINK/Parkin pathway. When mitochondria are dam-
aged, PINK1 is accumulated on the outer mitochondrial membrane 
(OMM) where it gets activated and phosphorylates and therefore acti-
vates Ubiquitin (Ub) and Parkin. Parkin ubiquitinates different OMM 
proteins in a feed-forward mechanism, leading to a general mitochon-
drial ubiquitination. That ubiquitination recruits autophagy receptor 
proteins (OPTN, p62), and, in turn, autophagosomes into the mito-
chondria, leading to the induction of autophagy
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mechanism is better described and this pathway is involved 
in regulating mitochondrial stress response.

PINK1/Parkin pathway  The importance of PINK1 (PTEN-
induced putative kinase 1) and Parkin for mitochondrial 
homeostasis is supported by the accumulation of dysfunc-
tional mitochondria in Parkinson’s disease (PD) models 
and patients [10, 139]. In fact, both of these proteins have 
been found mutated in this disease; PINK1 mutation causes 
Hereditary Early-Onset Parkinson [10] meanwhile muta-
tions in Parkin occurs in Autosomal recessive juvenile Par-
kinsonism (AR-JP) [11]. In Drosophila, studies have shown 
that this pathway is needed for maintaining adequate mito-
chondria function in muscle and neurons, and loss of func-
tion mutations of both proteins mimic the characteristic of 
PD [140]. Furthermore, in mice, deletion of Parkin leads to 
loss of dopaminergic neurons (DA), which is a hallmark of 
PD [141].

Under normal conditions, PINK1 is partially imported 
into mitochondria, where it is cleaved by the IMM protease 
PARL. This cleavage enables PINK1 ubiquitination and 
proteasome-dependent degradation in the cytosol [142]. 
Therefore, in healthy mitochondria, the levels of PINK1 are 
low in cells. Upon stresses such as mitochondrial depolari-
zation [143], impairment of protein import [144], and oth-
ers [145–147], PINK1 import into mitochondria is blocked 
and as a result, it accumulates on the OMM [148]. Once 
there, it binds the mitochondrial TOM complex [149, 150] 
and it is activated by auto-phosphorylation. Its activation 
leads to a signaling cascade by recruiting and activating 
other proteins like Parkin [143, 151] and Ubiquitin (Ub) 
[152]. Parkin is an E3 ubiquitin ligase that is activated upon 
PINK1 phosphorylation in its UBL domain [153, 154] and 
binding of phospho-Ub [152, 155–158]. Once activated, Par-
kin ubiquitinates different OMM proteins in a feed-forward 
mechanism, leading to a general mitochondrial ubiquitina-
tion. Then, receptor proteins on the mitochondria recruit 
the autophagic machinery which results in the engulfment 
of mitochondria by autophagosomes. Different autophagy 
receptors have been shown to play a role in mitophagy such 
as NDP52, optineurin (OPTN) and p62 [159, 160].

In vivo, the role of PINK1 and Parkin in mitochondrial 
homeostasis (mitophagy) is unclear. On the one hand, 
using a mouse model that lacks the proofreading function 
of the mitochondrial DNA polymerase g (POLG) (called 
Mutator mice), Pickrell and colleagues demonstrated that 
Parkin protects dopaminergic neurons from mitochondrial 
dysfunction. They show that Parkin loss in Mutator mice 
led to DA neuron loss and decrease in OXPHOS activity 
[161], thereby suggesting that Parkin has a role in maintain-
ing mitochondrial homeostasis in vivo, or at least in DA 
neurons. On the other hand, mice that lack Parkin present 
normal cardiac function and their mitochondrial activity 

was unaltered. However, when those mice are challenged 
with a mitochondrial stress such as myocardial infarction 
or hypoxia, Parkin played a critical role in removing dam-
aged mitochondria [162]. In line with these findings, another 
study has corroborated that in heart, the expression of Par-
kin is dispensable for mitophagy under basal conditions 
[163]. However, it contributes to mitochondrial removal 
in cardiomyopathies that present defects in mitochondrial 
fission [163], thus indicating a role of Parkin in regulating 
stress-induced mitophagy. In fact, studies have also shown 
that mice with PINK1 loss display normal basal mitophagy 
[135] and research in Drosophila has corroborated that 
under basal mitophagy, PINK1 and Parkin are dispensable 
[164]. Therefore, these studies together will indicate that the 
PINK1/Parkin pathway may not be implicated in regulating 
mitophagy under physiological conditions and/or that there 
are other additional pathways that regulate mitophagy [135]. 
In addition, although Parkin deficient mice demonstrated 
no role of Parkin for basal mitophagy, the mitochondria of 
those mice, although functional, were smaller [162], which 
may indicate that Parkin has additional roles independently 
of mitophagy. In fact, Parkin has also been involved in regu-
lating bioenergetics [129], necroptosis [165], mitochondrial 
protein import [166], mitochondrial biogenesis [167] and 
inflammation [168].

Another question that remains controversial is whether 
PD is due to PINK1 or Parkin deficiency or due to a gen-
eral mitochondrial dysfunction. The aforementioned study 
demonstrates a role of Parkin and PD [161]. However, patho-
genic mutations of PD (T415N and G430D) that abolish 
the E3 activity of Parkin, altered its mitochondrial locali-
zation, whereas other pathological mutations (D280N or 
G328E) that do not alter its E3 activity did not impact Parkin 
recruitment to mitochondria [169]. In addition, mutations 
in PINK1 and Parkin are not exclusive for this pathology 
as other alterations such as mtDNA mutations [170, 171] 
and LRRK2 mutations [172, 173] have been described. 
Moreover, in some PD patients, impairment of MIRO1 
degradation, an OMM protein that anchors mitochondria to 
microtubule motors, has also been observed [174]. Finally, 
another challenge of studying mitophagy is finding a physi-
ological method of triggering it. Recently, Kovalchuke and 
colleagues have demonstrated that other more physiological 
oxidative stressors like L-DOPA, lead to Parkin degradation. 
Although the exact mechanism of how Parkin is degraded 
following L-DOPA remains unclear, they show that PINK1 
and phospho-Ub are involved in this pathway [175], demon-
strating a similar mechanism to other mitochondrial stressors 
such as CCCP (mitochondrial uncoupler) [156]. This study 
suggests that oxidative stress or phospho-Ub may contribute 
to the loss of Parkin in PD. Moreover, that finding opens a 
new strategy to treat those patients by blocking the associa-
tion of Parkin with phospho-Ub. Another possible approach 
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for PD treatment comes from the finding that PINK1 is 
cleaved by OMA1 in depolarised mitochondria. This indi-
cates that inhibition of OMA1 could be used to increase the 
levels of mitophagy in PD patients [150].

To conclude, mitochondrial damage and defects in 
mitophagy have been observed in several neurodegenerative 
diseases, such as Parkinson’s (PD) [176] Alzheimer’s (AD) 
and Huntington’s disease (HD) [177]. Moreover, mitophagy 
impairment has also been associated with myopathies, meta-
bolic disorders, inflammation and cancer [178]. Therefore, 
it is important to understand the mechanisms behind it 
and its role in the diseases, as it will help to develop new 
approaches for improved treatments.

Conclusion

Although the UPRmt is mainly caused by protein misfold-
ing [26], other stresses have also been found to activate 
the UPRmt [179]. In addition, several conditions that were 
found to activate the ISR such as alteration of mitochon-
drial membrane potential, mitochondrial respiration, block 
in mitochondrial translation or in mitochondrial protein 
import [5], also alter mitochondrial dynamics [80, 180] and/
or activated mitophagy [143, 144]. It is likely that activation 
of those pathways depends on the severity or duration of the 
stress. However, even though a threshold may exist, a con-
nection between UPRmt and mitophagy has been reported 
[144]. Similarly, studies have also demonstrated a relation 
between mitochondrial dynamics and PINK or mitophagy 
[181, 182]. Therefore, these studies, amongst others, suggest 
a connection between the mitochondrial quality pathways, 
which requires further investigation.

As discussed, imbalances in quality control path-
ways have been associated with multiple pathologies. For 
instance, aberrations in mitochondrial dynamics have been 
found in cancer patients [15, 16], neurodegenerative diseases 
[8, 9] and ocular diseases [13, 14]. In addition, mutations 
in mitophagy-related genes have also been reported in neu-
rodegenerative pathological conditions [10, 11]. All these 
patients have alterations in mitochondrial morphology and 
function. However, these patients also present mutations in 
other genes [183], thereby is still unclear whether the devel-
opment of the diseases is due to alterations in mitophagy 
itself or rather a general mitochondrial dysfunction. Altera-
tions in the expression of proteins involved in mitochon-
drial retrograde signaling (ISR) have also been linked to 
resistance and tumour growth [17, 73, 74, 77]. Hence, even 
though in the recent years new findings have given some 
clarity in understanding the mitochondrial quality control 
pathways, some mechanisms underlying mitochondrial 
homeostasis remain still unclear. Therefore, investigation of 

those pathways should provide knowledge for understanding, 
and potentially treating, mitochondrial pathologies.
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