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Abstract
The acute heart rate response to exercise, i.e., heart rate increase during and heart rate recovery after exercise, has often been 
associated with all-cause and cardiovascular mortality. The long-term response of heart rate to exercise results in favour-
able changes in chronotropic function, including decreased resting and submaximal heart rate as well as increased heart rate 
recovery. Both the acute and long-term heart rate response to exercise have been shown to be heritable. Advances in genetic 
analysis enable researchers to investigate this hereditary component to gain insights in possible molecular mechanisms 
underlying interindividual differences in the heart rate response to exercise. In this review, we comprehensively searched 
candidate gene, linkage, and genome-wide association studies that investigated the heart rate response to exercise. A total of 
ten genes were associated with the acute heart rate response to exercise in candidate gene studies. Only one gene (CHRM2), 
related to heart rate recovery, was replicated in recent genome-wide association studies (GWASs). Additional 17 candidate 
causal genes were identified for heart rate increase and 26 for heart rate recovery in these GWASs. Nine of these genes were 
associated with both acute increase and recovery of the heart rate during exercise. These genes can be broadly categorized into 
four categories: (1) development of the nervous system (CCDC141, PAX2, SOX5, and CAV2); (2) prolongation of neuronal 
life span (SYT10); (3) cardiac development (RNF220 and MCTP2); (4) cardiac rhythm (SCN10A and RGS6). Additional 
10 genes were linked to long-term modification of the heart rate response to exercise, nine with heart rate increase and one 
with heart rate recovery. Follow-up will be essential to get functional insights in how candidate causal genes affect the heart 
rate response to exercise. Future work will be required to translate these findings to preventive and therapeutic applications.
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Introduction

The regulation of resting heart rate is complex; autonomic 
tone, central and peripheral reflexes, hormonal influences, 
and factors intrinsic to the heart are all important determi-
nants [1, 2]. Despite recent developments in the understand-
ing of the complex interplay of the plethora of biological 
mechanisms influencing resting heart rate [3], our under-
standing is still incomplete.

The acute heart rate response to exercise, heart rate 
increase during and heart rate recovery after exercise, offers 
unique insights into cardiac physiology compared to heart 
rate in rest and can therefore be exploited to obtain addi-
tional information on cardiac function [4]. Impaired increase 
of heart rate during exercise (chronotropic incompetence) 
and an attenuated heart rate recovery have been associated 
with all-cause mortality and sudden cardiac death in healthy 
individuals [5–7] and in those with cardiac disease, includ-
ing individuals with heart failure [8] and coronary artery 
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disease [9]. Regular endurance exercise training has been 
proven to shift the cardiac autonomic balance towards vagal 
dominance [10]. The long-term response of heart rate to 
exercise results in favourable changes in chronotropic func-
tion, including decreased resting and submaximal heart rate 
as well as increased heart rate recovery [11].

Both the acute and long-term responses of heart rate to 
exercise have been shown to have a large heritable com-
ponent [12–17]. Development in the understanding of the 
human genome and genetic analysis enables researchers to 
investigate the possible molecular mechanisms underlying 
interindividual differences in the acute and long-term heart 
rate response to exercise [18]. In this review, we summarize 
the current knowledge of the acute and long-term heart rate 
response to exercise, with a focus on the genetic contribu-
tion. In addition, we identify gaps in our knowledge and 
discuss possible future directions that might be of interest 
to enhance the understanding of the heart rate response to 
exercise and consider its potential clinical applications.

Acute response

Heart rate increase

In general, the regulation of the circulatory system during 
exercise involves several adaptations. These adaptations 
include dilatation of resistance vessels in the active mus-
cles, a decrease in vagal outflow to the heart, followed by 
an increase of sympathetic outflow. If exercise is intense, 

the cholinergic fibers to the adrenal medulla are also acti-
vated, resulting in release of epinephrine into the circulation 
[19]. Under normal physiological conditions, this results in 
increased venous return, contractility, and heart rate [20]. In 
turn, ejection fraction increases due to a greater ejection of 
blood at the end of systole and increased diastolic filling of 
the ventricles as the duration of the systole decreases with 
increased heart rate [20].

The increase of heart rate during exercise is for a major 
part attributable to the decrease in vagal tone followed by 
an increase in sympathetic outflow and an increase in levels 
of circulating catecholamines [19]. It has been shown that 
a substantial component of interindividual differences in 
the heart rate increase during exercise is genetically deter-
mined, with heritability estimates ranging from 0.17 to 0.32 
(Table 1) [12, 14, 15]. This suggests that genetic analyses 
may identify novel biological mechanisms involved in the 
regulation of heart rate response to exercise.

Several studies have focussed on identifying genetic 
determinants that explain interindividual differences in 
heart rate increase during exercise. Genes investigated in 
these studies are summarized in Table 2, shown in Fig. 1, 
and are further discussed here. The ACE gene was one of 
the first candidate genes thoroughly investigated for its pos-
sible relationship with the heart rate response to exercise 
[21]. Genetic association studies focusing on the effect 
of the ACE gene on heart rate increase during exercise 
reported many conflicting results [12, 22–25]. Some stud-
ies tested genes for their indirect effect on the sympathetic 
nervous system. One study observed that the NOS3 gene, 

Table 1  Heritability estimates for the acute and long-term effect of exercise on heart rate response

Heritability estimates for the acute and long-term effect of exercise on heart rate response
a Heart rate recovery measured after 180 s
b Heart rate recovery measured after, respectively, 60 and 180 s
c Heart rate recovery measured after 60 s
d 20 weeks during endurance training program at submaximal (50W) levels

Heritability type Heritability Type of exercise Population N Author, year

Acute response: heart rate increase
 Family 0.32 Submaximal treadmill test General population 2053 Ingelsson et al. (2007) [12]
 SNP-based 0.22 Submaximal bicycle General population 58,818 Verweij et al. (2018) [14]
 SNP-based 0.17 Submaximal bicycle General population 66,800 Ramirez J et al. (2018) [15]

Acute response: heart rate recovery
 Familya 0.34 Submaximal treadmill test General population 2053 Ingelsson et al. (2007) [12]
 Twins and  siblingb 0.60 and 0.65 Maximal bicycle General population 491 Nederend et al. (2016) [13]
 SNP-basedc 0.22 Submaximal bicycle General population 58,818 Verweij et al. (2018) [14]
 SNP-basedc 0.12 Submaximal bicycle General population 66,665 Ramirez et al. (2018) [15]

Trainings response: heart rate increase
 Familyd 0.34 Submaximal bicycle General population 481 An et al. (2003) [17]
 Familyd 0.36 Submaximal bicycle Participants with high 

blood pressure
529 Rice et al. (2002) [16]
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Table 2  Summary of genes involved in acute heart rate increase

Gene Variant Chromosome/
position

Minor/
major allele/
MAF

Type of 
study

Increase/
decrease

P value Type of 
exercise test

Population Author; year

ACEa Del intron 
16

17:63488529 Deletion/
insertion 

Candidate – > 5.00 × 10−2 Maximal 
and sub-
maximal 
bicycle

General Rankinen 
et al. (2000) 
[25]

ADRA1A rs544215 8:26712028 C/T/0.46 Candidate ↓ 5.00 × 10−3 Standard 
Bruce

General Ingelsson 
et al. (2007) 
[12]

ADRA1D rs3787441 20:4205059 G/A/0.27 Candidate ↓ 7.00 × 10−3 Standard 
Bruce

General Ingelsson 
et al. (2007) 
[12]

ADRB1 rs1801253 10:114045297 C/G/0.28 Candidate ↓ < 5.00 × 10−2 Maximal Patients in 
cardiac 
rehab

Defoor et al. 
(2005) [29]

ADRB1 rs1801252 10:114044277 G/A/0.21 Candidate ↓ < 5.00 × 10−2 Maximal Patients in 
cardiac 
rehab

Defoor et al. 
(2005) [29]

ADRB2 rs1042713 5:148826877 A/G/- Candidate ↓ < 5.00 × 10−2 Hand grip 
test

General Eisenach 
et al.(2003)
[30]

CAV2 rs28495552 7:116113744 C/G/0.50 GWAS ↓ 2.80 × 10−11 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

CCDC141 rs10497529 2:179839888 A/G/0.04 GWAS ↑ 2.50 × 10−9 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

GNAS1b rs7121 20:58903752 C/T/0.37 Candidate ↑ <5.00 × 10−2 Ergometer Referred for 
exercise 
test

Nieminen 
et al. (2006) 
[28]

HMGA2 rs1480470 12:66412130 A/G/0.37 GWAS  ↑ 3.40 × 10−08 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

MCTP2 rs12906962 15:95312071 C/T/0.32 GWAS  ↓ 3.50 × 10−13 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

MCTP2 rs12906962 15:95312071 C/T/0.33 GWAS  ↓ 2.70 × 10−14 Sub-
maximal 
bicycle

General Verweij et al. 
(2018) [14]

NOLAc,d rs6847149 4:111157701 – GWAS  – 2.74 × 10−06 Standard 
Bruce

General Vasan et al. 
(2007) [34]

NOS3e rs1799983 7:150999023 T/G/0.26 Candidate ↓ 4.00  × 10−2 Naughton 
protocol

Post-men-
opausal 
women

Hand et al. 
(2006) [26]

PAX2 rs11190709 10:102552663 G/A/0.12 GWAS  ↑ 1.30 × 10−11 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

POP4 rs12986417 19:30109533 A/G/0.35 GWAS  ↓ 1.00 × 10−9 Sub-
maximal 
bicycle

General Verweij et al. 
(2018) [14]

POP4 rs7255293 19:30104198 G/A/0.42 GWAS  ↓ 3.20 × 10−9 Sub-
maximal 
bicycle

General Ramirez et al.
(2018)[15]

PPIL1 rs236352 6:36817113 A/G/0.34 GWAS  ↑ 6.40 × 10−10 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]
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which produces nitric oxide, was associated with heart 
rate increase during exercise [26]. Although nitric oxide is 
mostly known for its vasodilatory effects, it is also thought 
to have a modulating effect on the parasympathetic and 
sympathetic nervous system [27]. GNAS1 was found to 
be associated with heart rate increase during exercise as 
well [28]. This gene encodes the G protein α-subunit that 
influences the sympathetic nervous system as it enables 
the coupling between adenylyl cyclase and β1-adrenergic 
receptors. On the other hand, many studies brought forward 
genes based on their direct involvement in the sympathetic 

nervous system, and associations were found with the 
ADRB1 [29] and ADRB2 [30] genes, which both encode 
for β-adrenergic receptors. Interestingly, many previous 
findings could not be replicated in the Framingham Off-
spring study, which investigated multiple genes instead of 
focusing on a single gene. In this study, associations were 
found with the ADRA1A and ADRA1D [12]. These genes 
encode for α-adrenergic receptors that are mainly involved 
in smooth muscle cell contraction during sympathetic stim-
ulation [12]. However, associations with the ADRB1 and 
ADRB2 genes could not be re-established [12]. 

Genes found to be associated with heart rate increase during exercise are shown in alphabetical order and are then ordered on the year published. 
Variation stands for either an SNP or deletion/insertion mutation. MAF stands for Minor Allele Frequency. Effects of a variant (in- or decrease) 
on heart rate increase during exercise are shown for the Minor Allele. Candidate stands for candidate gene study. GWAS stands for genome-wide 
association study. A hyphen is shown in case information which was not reported
a Results from only one candidate gene study on ACE are shown; largest study was chosen; G allele in case of deletion; in case of insertion ATA 
CAG TCA CTT TTT TTT TTT TTT TGA GAC GGA GTC TCG CTC TGT CGC CC
b Statistics from gene time of exercise interaction are showed
c Standard Bruce protocol is a maximal exercise treadmill test
d Statistics from the generalized estimating equations (GEE) tests are shown; Alleles were not mentioned in this article. None reached genome-
wide significance; however, these were the most suggestive results
e Naughton protocol is a maximal exercise treadmill test

Table 2  (continued)

Gene Variant Chromosome/
position

Minor/
major allele/
MAF

Type of 
study

Increase/
decrease

P value Type of 
exercise test

Population Author; year

RGS6 rs17180489 14:72885471 C/G/0.14 GWAS ↑ 2.50 × 10−11 Sub-
maximal 
bicycle

General Verweij et al. 
(2018) [14]

RNF220 rs272564 1:45012273 C/A/0.28 GWAS ↓ 7.40 × 10−12 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

RP1L1 rs58065122 8:10526186 A/G/0.42 GWAS ↑ 3.90 × 10−10 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

RYR2c,d rs2819770 1:234237045 – GWAS – 3.53 × 10−6 Standard 
Bruce

General Vasan et al. 
(2007) [34]

SCN10A rs7433723 3:38784957 G/A/0.42 GWAS ↓ 4.50 × 10−8 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

SNCAIP rs4836027 5:121866990 C/T/0.32 GWAS ↓ 1.70 × 10−15 Sub-
maximal 
bicycle

General Verweij et al. 
(2018) [14]

SNCA1P rs4836027 5:121866990 C/T/0.31 GWAS ↓ 9.90 × 10−21 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

SOX5 rs4246224 12:24784139 A/G/0.15 GWAS ↑ 1.80 × 10−14 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

SYT10 rs1343676 12:33537387 T/C/0.51 GWAS ↓ 1.50 × 10−11 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]

TCF4 rs1125313 18:52859261 C/A/0.50 GWAS ↑ 3.90 × 10−9 Sub-
maximal 
bicycle

General Ramirez et al. 
(2018) [15]
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Although these studies were important for laying the 
foundation of our knowledge on the genetic determinants 
of heart rate increase during exercise, they failed to yield 
a comprehensive view by focusing on one or only a few 
genes. The Framingham Offspring study was the first to 
address these issues by conducting an early genetic linkage 
analysis on heart rate increase and recovery. However, not 
one genetic signal reached the appropriate significance level, 
which can possibly be attributed to the relatively low sample 
size of this study (n  = 2982) [12]. In addition, linkage analy-
ses have been shown to be less successful when applied to 
polygenic traits such as heart rate response to exercise [31], 
in part because of their limited power to detect the effect of 
common alleles with modest effects on disease [32].

More recently, genome-wide association studies 
(GWASs) were introduced. GWASs do have the potential 
to detect common alleles with modest effects on disease, 
since this method allows an unbiased and comprehensive 

search across the genome for single nucleotide polymor-
phisms (SNPs) [33]. The first GWAS on heart rate increase 
during exercise found GAR1 and RYR2 genes to be associ-
ated [34]. GAR1 is required for ribosome biogenesis and 
telomere maintenance. However, its specific function and 
how it possibly interacts with heart rate increase during 
exercise is unknown. RYR2 encodes a calcium channel that 
mediates calcium release from the sarcoplasmic reticulum 
into the cytoplasm and is therefore essential in triggering 
cardiac muscle contraction (Table 2, Fig. 1). RYR2 muta-
tions in humans are associated with arrhythmogenic right-
ventricular dysplasia and catecholaminergic polymorphic 
ventricular tachycardia. Interestingly, although caused by 
a different mutation in the RYR2 gene, both diseases are 
known to cause exercise-induced tachycardia [35–37]. 
However, these associations did not reach genome-wide 
significance, which might be due to the low sample size 
(n = 1238) [34].

Fig. 1  Graphical representation of genes (shown in italic) involved in 
acute heart rate increase during exercise grouped by working mecha-
nism (shown in bold). The left and left upper part of the figure shows 
the nervous system. The middle upper part zooms in on a peripheral 
sympathetic neuron and its synapse. The heart is displayed on the 

right; the upper right of the figure shows the aorta with next to it a 
pacemaker cell in the cardiac sinus node. In the middle of the figure, 
below, we zoom in on cardiac tissue and receptors. Adrenergic recep-
tors are shown in red. Sodium, potassium, and calcium channels are 
shown in red, pink, and green, respectively
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Increasing the sample size for GWASs has been simpli-
fied by the development of inexpensive SNP arrays. Two 
GWASs were recently conducted on the acute heart rate 
response to exercise in the same cohort of the UK Biobank 
[14, 15]. The discussion of methodological differences 
between these studies has been published previously [38] 
and is beyond the scope of the current review. However, a 
summary of important differences is necessary to understand 
different genes found between the two studies. One differ-
ence is that the first study by Verweij et al. had a slightly 
lower sample size, since they used only echocardiography 
(ECG) measurements and did not include heart rate meas-
urements derived by the UK Biobank itself. Another differ-
ence is that the study of Verweij et al. applied a more strin-
gent threshold to claim a genome-wide significant level to be 
true (strategy to reduce the risk of type-1 errors) compared 
to the study published later by Ramirez et al. (p < 8.3 × 10−9 
vs p < 5.0 × 10−8, respectively).

Of special interest are three genes that were found to be 
associated with heart rate increase during exercise in both 
studies, which are SNCAIP, MCTP2, and POP4 [14, 15]. 
The exact mechanism of SCNAIP is not known so far; how-
ever, studies in mice have shown that SCNAIP plays a role 
in neuronal degeneration (Table 2, Fig. 1) [39, 40]. POP4 
is involved in the processing of precursor RNAs [41] and in 
the DNA damage response [42], thus preventing accumula-
tion of deleterious mutations and DNA lesions and therefore 
potentially preventing genomic instabilities and carcinogen-
esis and prolonging neuronal life span. The MCTP2 gene is 
more specific to cardiac tissue. A mutation in the MCTP2 
is known to cause left-ventricular outflow tract malforma-
tions in humans, which may alter the pressure within the 
ventricular outflow tract. Baroreceptors are densely located 
in this region and altered blood pressure could therefore 
lead to altered autonomic feedback on heart rate (Table 2, 
Fig. 1) [43]. Several other candidate genes found in these 
studies already provide a biological hypothesis to account 
for the associations with heart rate response to exercise. 
These genes can be broadly categorized into four categories, 
that is: (1) development of the nervous system, including 
the CCDC141 [44, 45], TCF4 [46, 47], PAX2 [48], SOX5 
[49, 50], and CAV2 [51] genes; (2) prolongation of neu-
ronal life span, including the SYT10 [52] gene; (3) cardiac 
development and disease, including RNF220 [53, 54] gene; 
and, finally, (4) genes involved in cardiac rhythm, includ-
ing SCN10A [55] and RGS6 [56, 57]. Of these, CCDC141, 
CAV2, SYT10, RNF220, and SCN10A were more strongly 
associated with heart rate recovery after exercise (Tables 2, 
3) and will be therefore discussed later. TCF4 is involved in 
the initiation of neuronal differentiation. Clinically, a muta-
tion in TCF4 is known to cause Pitt-Hopkins syndrome, a 
severe congenital encephalopathy characterized by intellec-
tual disability, developmental problems, seizures, breathing 

problems, and typical facial features [46, 47]. PAX2 encodes 
paired box gene 2 and is important in the early embryonic 
development as well. It is mostly known for its involvement 
in development of the kidney and urinary tract, since it is 
linked to papillorenal syndrome [58] and focal segmen-
tal glomerulosclerosis [59]. However, downstream target 
effectors of PAX2 have been hypothesized to be involved 
in neuronal development because of their supposed effect 
on the CHARGE syndrome [48]. SOX5 is involved in the 
regulation of chondrogenesis and the development of the 
nervous system [50]. In mice, it was found that loss of SOX5 
resulted in decreased neuronal differentiation and secondary 
migrational abnormalities [49]. Mutations of the SOX5 gene 
in humans are known to cause the Lamb–Shaffer syndrome, 
which is characterized by speech delay, behavioural prob-
lems, and nonspecific dysmorphic features [50]. RGS6 is part 
of the regulation mechanism of the parasympathetic nervous 
system in the heart [56, 57]. It decreases muscarinic type 2 
receptor (M2R) signalling in the sinoatrial node by rapidly 
terminating Gβγ signalling [56, 57]. In mice, it was shown 
that RGS6 knockdown removes the negative regulation of 
Gβγ leading to enhanced G protein-coupled inwardly rectify-
ing potassium channel (GIRK)-induced sinoatrial and atrio-
ventricular node hyperpolarization [56, 57]. It was therefore 
concluded that normal function of RGS6 is important for 
preventing parasympathetic override and severe bradycardia 
[56]. Its involvement in the parasympathetic nervous system 
was recently established in another GWAS in which it was 
found to be associated with heart rate variability [60], which 
is known to reflect parasympathetic activity [61]. Concern-
ing heart rate increase during exercise, normal function of 
RGS6 probably facilitates parasympathetic withdrawal lead-
ing to the possibility to increase heart rate (Fig. 1).

Interestingly, none of the genes investigated in candidate 
gene studies were found to be associated with heart rate 
increase in any of the three GWASs. This is in line with 
the previous work in which early candidate gene studies 
were difficult to replicate [62, 63]. Two genes, HMGA2 and 
PPIL1, shown in Table 2 have not been discussed so far. 
PPIL1 is a gene that was recently found to be associated with 
heart rate variability as well [60]. However, to our knowl-
edge, there is no current biological hypothesis to explain 
the association between PPIL1 or HMGA2 and heart rate 
increase during exercise.

Heart rate recovery

Heart rate recovery is characterized by increased parasym-
pathetic tone followed by sympathetic withdrawal, which 
follows an inversed gradient pattern compared to heart rate 
increase [19]. It was elegantly shown in a dual-blockade 
study that especially parasympathetic reactivation is essen-
tial for interindividual differences in heart rate recovery 
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[64]. However, the exact mechanisms underlying these dif-
ferences remain to be determined. Twin, family, and GWA 
studies estimated the genetic component to interindividual 
differences of heart rate recovery after one minute to range 
between 0.12 and 0.60 (Table 1). Therefore, genetic stud-
ies may yield novel insights into heart rate recovery. All 
genetic determinants investigated for their potential causal 
role in interindividual differences in heart rate recovery are 
summarized in Table 3 and are discussed below. An illustra-
tion of possible causal genes and how they are supposed to 
influence acute heart rate recovery after exercise is shown 
in Fig. 2.

Initially, the same candidate genes were proposed for 
heart rate recovery as for heart rate increase. For example, 
the ACE gene was found to be related to heart rate recov-
ery in one candidate gene study as well [22]. Another study 
found ADRA1B and ADRA2B to be associated with heart rate 
recovery (Table 3) [12]. The association between ADRA2B 

gene and heart rate recovery was also found in another 
candidate gene study [65]. Other studies focused primar-
ily on the parasympathetic nervous system represented by 
the CHRM2 gene. The minor alleles of the rs324640 and 
rs8191992 SNPs found in CHRM2 region were found to be 
associated with a lower heart rate recovery in the general 
population [66] and in patients with a history of myocardial 
infarction [67]. In addition, these minor alleles increased 
chances of death to coronary artery disease in the latter 
group [67].

The problem of biased selection of candidate genes has 
been solved by conducting GWASs as previously stated. 
The first GWAS on the acute heart rate response to exercise 
found heart rate recovery measured 3 min post-exercise to 
be associated with PRKAG2, though this association did not 
reach genome-wide significance. PRKAG2 is involved in the 
regulation of ATP restoration after periods of ATP depletion 

Fig. 2  Graphical representation of genes (shown in italic) involved in 
acute heart rate recovery after exercise grouped by working mecha-
nism (shown in bold). The left and left upper part of the figure shows 
the nervous system. The middle upper part zooms in on a parasym-
pathetic neuron of the vagus nerve (twice) and its synapse. Note that 
although we zoom in on the brain stem (which is the main location of 
parasympathetic nuclei that innervate the vagus nerve), we actually 

show a peripheral parasympathetic neuron of the vagus nerve. The 
heart is displayed on the right; the upper right of the figure shows the 
aorta with next to it a pacemaker cell in the cardiac sinus node. In the 
middle of the figure, below, we zoom in on cardiac tissue and recep-
tors. Cholinergic receptors and enzymes are shown in light blue and 
glutamate receptors in yellow. Sodium and potassium channels are 
shown in red and pink, respectively
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and therefore might influence the return of heart rate to its 
initial state (Table 3, Fig. 2).

As previously mentioned, sample size was drastically 
increased in the two recent studies in the UK Biobank [14, 
15]. Some differences between both studies have been dis-
cussed earlier (i.e., sample size and genome-wide significant 
threshold). Concerning heart rate recovery, it is worth men-
tioning that the phenotype definition was not equal between 
both studies. The study of Ramirez et al. [15] determined 
heart rate recovery traditionally as the difference between 
maximum heart rate and heart rate approximately 1 min after 
cessation of exercise. The study of Verweij et al. defined 
heart rate recovery at five time points, which included the 
differences between maximum heart rate and heart rate after 
50, 40, 30, 20, and 10 s after exercise. This includes heart 
rate recovery at earlier time points (i.e., 10 s), which was 
recently established to be a superior predictor of outcome 
of all-cause mortality and death by coronary artery disease 
[6, 7].

Interestingly, both studies found the previously investi-
gated candidate gene CHRM2 to be associated with heart 
rate recovery [14, 15]. CHRM2 encodes M2R, the main 
muscarinic cholinergic receptor in the heart. This receptor 
is known for both its negative chronotropic and inotropic 
effects after binding with acetylcholine released by post-
ganglionic parasympathetic nerves (Table 3, Fig. 2) [68]. 
The role of the parasympathetic nervous system in interindi-
vidual differences in heart rate recovery is additionally high-
lighted by the ACHE gene that was found in both studies. 
ACHE encodes for acetylcholinesterase, an enzyme which 
breaks down acetylcholine in the synaptic cleft of postgan-
glionic parasympathetic nerves [69]. An increase of acetyl-
cholinesterase would therefore cause an attenuated heart rate 
recovery by decreasing parasympathetic reactivation. Other 
genes that were found in both studies were SYT10, CNTN3, 
PAX2, CAV2, MED13L, RNF220, and NDUFA11 (Table 3, 
Fig. 2). SYT10 encodes a  Ca2+ sensor synaptotagmin 10 that 
triggers IGF-1 exocytosis, which, in turn, protects neurons 
from degeneration. SYT10 might play an important role in 
the regulation of heart rate, as it was found to be associated 
with resting heart rate [3, 23], heart rate increase [15], and 
heart rate variability [60] as well. CNTN3 belongs to a group 
of glycosylphosphatidyl-anchored cell adhesion molecules 
that are mostly found in neurons [70, 71]. Because of its 
similarity with TAG -1, it is thought to have an important 
function in neuronal outgrowth and wiring of the nervous 
system [70–72]. In the study of Ramirez et al. it was found 
that the allele of one SNP decreased heart rate recovery and 
increased CNTN3 expression levels in the nucleus accum-
bens [15]. Since heart rate recovery is mainly influenced 
by the parasympathetic nervous system [64], it was hypoth-
esized that CNTN3 may also be relevant to cardiac para-
sympathetic modulation [15]. However, it is more likely to 

be associated with cardiac sympathetic modulation, since 
morphology of the nucleus accumbens has been shown to 
be correlated with cardiac sympathetic index [73]. PAX2 is 
known to be the first gene to be expressed in the mid- and 
hindbrain during embryonal developments in mice [74] and 
can be found in the hindbrain in the early stages of embryo 
development in humans as well [48]. The hindbrain includes 
the nucleus tractus solitarius, nucleus ambiguous, and dorsal 
nucleus of the vagus, which are known to mainly influence 
cardiac parasympathetic innervation of the heart through 
vagus nerve stimulation [75]. Less is known about CAV2, 
which was found to be associated with heart rate response to 
exercise as well. However, one study pointed out that CAV2 
is necessary for differentiation of dorsal root ganglion cells 
during the early differentiating programs [51]. The func-
tion of MED13L is unclear as well, but knockdown in 
zebrafish caused abnormal neural-crest cell migration [76]. 
This is supported by clinical characteristics in humans with 
MED13L mutations, which can be characterized by intel-
lectual disabilities, developmental delay, and craniofacial 
anomalies [77]. RNF220 functions as an E3 ubiquitin ligase, 
which determines protein target specificity during posttrans-
lational ubiquitination [53]. A possible link with heart rate 
recovery originates from the involvement of RNF220 in the 
canonical WNT signalling cascade. In a knockdown study, 
RNF220 was shown to stabilize β-catenin by interacting 
with ubiquitin-specific peptidase Usp7 [54]. This stabiliz-
ing function is important, because the WNT/β-catenin sig-
nalling pathway is involved in embryonic cardiac develop-
ment [78], the development of cardiac disease [79–81], and 
in cardiac repair [80]. NDUFA11 is an accessory subunit 
of the mitochondrial membrane respiratory chain NADH 
dehydrogenase complex I. In humans, a splice‐site muta-
tion in this gene is known to cause mitochondrial complex I 
deficiency. This can cause a wide range of disorders, includ-
ing encephalocardiomyopathy [82]. Recently, it was shown 
that downregulation of NDUFA11 by small interfering RNA 
reduced ATP production and increased mitochondria reac-
tive oxygen species production in cardiac mitochondria of 
mice [83]. NDUFA11 was found to be associated with heart 
rate variability as well, suggesting that it is an important 
factor in causing differences between individuals’ heart rate 
response [60].

Other candidate genes found in one of the GWASs pro-
vide a biological hypothesis for their possible causal role 
in interindividual differences in heart rate recovery as 
well. These genes include CCDC141, BCL11A, KCNH8, 
ALG10B, GNG11, GRIK2, and NEGR1. CCDC141 is a 
gene that plays a central role in neuronal development 
[44, 45]. In fact, in utero knockdown of CCDC141 in mice 
resulted in impaired radial migration in [44]. The same 
applies to BCL11A, which encodes a C2H2-type zinc-
finger protein that is involved in neuronal development. 
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Studies in mice have shown that slowed migration of 
neurons upon knockdown resulted in microcephaly with 
decreased brain volume [84], particularly affecting the 
limbic system [85]. Within the human brain, it is most 
highly expressed in the caudate nucleus followed by hip-
pocampus [86]. In humans, different de novo heterozy-
gous mutations have been found to cause developmen-
tal disorder with persistence of fetal haemoglobin [85]. 
KCNH8 encodes a voltage-gated potassium channel. It 
is mainly expressed in the central nervous system and is 
involved in the regulation of neuronal excitation (Table 3, 
Fig. 2) [87–89]. ALG10B is involved in potassium regu-
lation, as well, since it is a potassium channel regulator 
that couples to KCNH2. However, it is more involved in 
cardiac tissue than neuronal tissue and is known for its 
influence on heart rhythm. Upon binding with KCNH2, it 
reduces sensitivity to classic proarrhythmic drug block-
ade [90]. GNG11 encodes the γ11 subunit of the hetero-
trimeric G protein complex Gαβγ [91]. GNG11 is just as 
RGS6 thought to be involved in GIRK activation and was 
found to be associated with heart rate variability [60] as 
well. In this study, it was hypothesized that variations in 
this gene lower the availability of the γ11 subunit, thereby 
reducing Gαβγ component-induced GIRK activation 
[60]. This would lead to decreased heart rate variability 
through attenuated response to changes in cardiac vagal 
activity [60]. If true, the same would apply for heart rate 
recovery; decreased response to cardiac vagal reactivation 
after exercise would translate to blunted heart rate recov-
ery. In addition, another mutation in the RGS6 gene in 
humans was shown to decrease susceptibility to the long 
QT syndrome [92]. GRIK2 encodes a glutamate receptor 
that is mostly expressed in the human cerebral and cer-
ebellar cortices [93]. Here, it is involved in neuronal exci-
tation and plays an important role in a variety of normal 
neurophysiologic processes. Neuronal Growth Regulator 
1 (NEGR1) is essential for neuronal morphology and, just 
as CNTN3, has been shown to regulate neurite outgrowth 
(Table 3, Fig. 2) [94]. Perhaps because of this essential 
function, NEGR1 has been associated with many polygen-
etic traits, including body mass index, years of education, 
and physical activity.

Heart rate increase and recovery share a high genetic 
correlation and it is therefore likely that there is overlap 
in genes that were found for both aspects of the heart 
rate response to exercise [14]. SNCAIP, SOX5, RGS6, 
and MCTP2 genes were already discussed for heart rate 
increase during exercise because of their stronger associa-
tion with this phenotype.

BCAT1, CLPB, PRDM6, SKAP, and SERINC2 are also 
shown in Table 3, but have not been discussed yet. To our 
knowledge, these genes could not be linked to heart rate 
recovery after exercise on a biological basis so far.

Long‑term modification of the heart rate 
response to exercise

Heart rate increase

Regular endurance exercise training is known to shift the 
cardiac autonomic balance towards vagal dominance [10] 
and, as a consequence, diminish submaximal heart rate 
when an individual cycles at the same intensity [11]. Large 
interindividual differences were observed for submaximal 
heart rate training response [95] and heritability analysis 
estimated a genetic component ranging between 0.34 and 
0.36 (Table 1) [16, 17]. Therefore, several studies were 
conducted to gain insights in the causes of these interin-
dividual differences. The first study in the HERITAGE 
family cohort found a heritability of 0.34 for exercise heart 
rate changes to regular training, with the strongest linkage 
on chromosome 2q33.3-q34 [17]. Next, this region was 
fine-mapped and it was found that the CREB1 gene locus 
was strongly associated with submaximal exercise heart 
rate training response [96]. Nonetheless, it only explained 
5.45% of the 34% heritability [96].

To gain further insights in the genes causing the remain-
ing fraction of its heritability, a GWAS was performed in the 
HERITAGE family cohort. In this study, nine SNPs were 
identified and accounted for the total of 34% heritability of 
exercise-induced changes to heart rate increase [97]. The 
most significantly associated SNP was linked to the YWHAQ 
gene (Table 4). YWHAQ is mostly expressed in the brain, 
heart, and pancreas [98], and its main function is apoptosis 
and cell proliferation. It was shown that the cardiac-specific 
mutated YWHAQ gene leads to increased pathological ven-
tricular remodelling with increased cardiomyocyte apop-
tosis after experimental myocardial infarction [99]. It can 
be hypothesized that mutations in the YWHAQ gene lead 
to similar pathological cardiac remodelling after exercise 
training, causing diminished exercise-induced changes to 
heart rate increase. However, a neurological causal path-
way cannot be ruled out, since the same mechanism could 
apply to neuronal remodelling needed to attenuate heart rate 
increase after regular exercise training [11].The CREB1 gene 
(Table 4) was significantly associated with submaximal heart 
rate response to exercise training as well [97]. In this study, 
it was hypothesized that CREB1 altered the exercise-induced 
changes in heart rate increase due to its effect on either car-
diac [100] or neuronal memory [101]. Cardiac memory is a 
phenomenon in which an altered T wave on electrocardio-
gram can be seen when sinus rhythm restarts after a period 
of abnormal rhythm, for example, after ventricular pacing 
or arrhythmia [100]. The other hypothesis involving neu-
ronal memory fits in our current understanding that neuron 
biology is of great importance in the heart rate response 
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to exercise. Neuronal memory or long-term potentiation 
is a form of synaptic plasticity in which there is a long-
lasting increase of synaptic strength in case the synapse is 
highly active. It could be hypothesized that regular exercise 
causes an increase of synaptic strength of parasympathetic 
neurons, thus altering the heart rate increase during exer-
cise. However, CREB1 encodes a transcription factor that 

regulates many mechanisms in the body and its association 
with memory does not imply causality. A recent editorial 
rightfully addressed the fact that the same allele in another 
study was found to increase the rise of temperature [102] 
and, therefore, might decrease subjective liking of exercise 
training, potentially diminishing motivation [103].

Table 4  Summary of genes involved in the long-term heart response to exercise

Genes found to be associated with changes in training-induced changes to heart rate increase and recovery are shown in alphabetical order. Vari-
ant stands for either a SNP or deletion/insertion mutation. Candidate stands for candidate gene study. GWAS stands for genome-wide association 
study
a Allele frequencies and betas are not mentioned in this study and direction (in- or decrease of response to training) can, therefore, not be deter-
mined
b Minor alleles of rs324640 and rs8191992 (respectively, A and C) decreased heart rate recovery

Gene Variant Chromosome/
position

P value Type of study Training schedule Type of exercise 
test

Population Author; year

Heart rate increase
 CREB1a rs2253206 2:208100223 1.6 × 10−5  GWAS 20 weeks, 3 

times a day, 
30–50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen et al. 
(2012) [97]

 GCH1a rs2057368 14:54373759 5.6 × 10−5  GWAS 20 weeks, 3 
times a day, 
30–50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen et al. 
(2012) [97]

 GPRIN3a rs1560488 4:90444858 3.3 × 10−5  GWAS 20 weeks, 3 
times a day, 
30–50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen 
et al. (2012) [97]

 RBPMSa rs2979481 8:30382328 3.8 × 10−6  GWAS 20 weeks, 3 
times a day, 
30–50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen et 
al. (2012) [97]

 MYLIPa rs909562 6:16238312 3.2 × 10−5  GWAS 20 weeks, 3 
times a day, 
30–50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen et al. 
(2012) [97]

 OR6N2a rs857838 1:157017174 7.6 × 10−5  GWAS 20 weeks, 3 
times a day, 
30–50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen et al. 
(2012) [97]

 PIWIL1a rs4759659 12:129403241 5.7 × 10−5  GWAS 20 weeks, 3 
times a day, 
30–50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen et al. 
(2012) [97]

 TFECa rs10248479 7:115395591 3.4 × 10−5  GWAS 20 weeks, 3 
times a day, 
30- 50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen et al. 
(2012) [97]

 YWHAQa rs6432018 2:9639347 8.1 × 10−7  GWAS 20 weeks, 3 
times a day, 
30–50 min at 
submaximal HR

Submaximal 
bicycle

Healthy, but 
sedentary

Rankinen et al. 
(2012) [97]

Heart rate recovery
 CHRM2b  rs324640 7:136146251  0.008 Candidate 2 weeks, 5 times a 

week, 40 min at 
submaximal HR

Maximal bicycle Healthy, but 
sedentary

Hautala (2006) 
[66]

 CHRM2b  rs8191992  7:136158563  0.005 Candidate 2 weeks, 5 times a 
week, 40 min at 
submaximal HR

Maximal bicycle Healthy, but 
sedentary

Hautala (2006) 
[66]
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Heart rate recovery

On the other hand, heart rate recovery increases when 
the cardiac autonomic balance shifts towards vagal domi-
nance after regular endurance training [10]. Little research 
has been performed on the genetics of training-induced 
changes to heart rate recovery, although a heritable compo-
nent has been suggested [66]. To our knowledge, only one 
study has been conducted on this subject. In this candidate 
gene study, it was found that the CHRM2 gene (Table 4) is 
linked to long-term modification of heart rate recovery to 
exercise training as well [66]. Participants who had a the 
minor alleles of the rs324640 and rs8191992 SNPs were 
not only found to have a lower acute heart rate recovery, but 
also showed less increase in heart rate recovery after regu-
lar endurance training. As previously mentioned, CHRM2 
encodes the muscarinic acetylcholine receptor M2R and, 
upon activation, causes a negative chronotropic and ino-
tropic response. It therefore seems that genetic variation in 
CHRM2 not only causes interindividual differences in acute 
heart rate recovery [68], but also in long-term modifications. 
A full overview of the genes discussed for the long-term 
heart rate response to exercise can be found in Table 4.

Association of heart rate response 
to exercise‑related genes with other traits

We assessed the association of described genes with other 
traits in publicly available GWASs using the GWAS cata-
logue (Online Resource 1). In short, the candidate causal 
genes that were associated with both heart rate increase 
and recovery were also associated with resting heart rate 
(CCDC141, RGS6, RNF220, SCN10A, and SYT10), heart 
rate variability (CCDC141, RGS6, RNF220, and SYT10), 
blood pressure (CCDC141 and PAX2), atrial fibrillation 
(CAV2 and SCN10A), coronary artery disease (CAV2 and 
SCN10A), and ECG traits including the PR interval (CAV2 
and SCN10A), QRS duration, and the Brugada syndrome 
(both SN10A).

Some genes that were only associated with heart rate 
increase during exercise were found to be associated with 
resting heart rate and heart rate variability (PPIL1), blood 
pressure (ADRB1, ACE, NOS3, and HMGA2), atrial fibril-
lation (MCTP2 and NOS3), exercise treadmill test and 
lung function (both RYR2). Similarly, some of the heart 
rate recovery genes were also associated with resting heart 
rate (ACHE and GNG11), heart rate variability (GNG11 
and NDUFA11), blood pressure (PRDM6, PRKAG2, and 
CHRM2), QRS duration, (PRDM6), atrial fibrillation and 
coronary artery disease (BCL11A, PRDM6), and obesity and 
vigorous physical activity levels (both NEGR1).

Future directions

Improvement of prevention and treatment of disease in the 
human health sector is the ultimate application of novel 
knowledge found by genetic studies and future research 
should be performed to achieve this goal (Fig. 3) [104]. 
Functional follow-up of findings obtained by GWAS will be 
necessary to gain insights in how likely causal genes affect 
the heart rate response to exercise [104]. Most genes that 
were prioritized so far have a plausible biological mecha-
nism in which they influence the heart rate response to 
exercise. However, the exact effect of all genes on exercise-
induced heart rate changes could be validated in an experi-
mental setting (Fig. 3). One possible method is to perform 
functional experiments in cardiomyocytes obtained from 
embryonic stem cells [105]. In cardiomyocytes, human dis-
eases and risk factors with their underlying genetic contribu-
tion can be created in vitro [105]. Since cardiomyocyte cell 
cultures can beat spontaneously [105], simulating the effect 
of this genetic contribution allows for investigation of the 
acute heart rate response to pacing from resting to exercise 
heart rate levels in small cell cultures. In addition, by simu-
lating the effect of this genetic contribution, drugs can be 
screened against an individual’s full genetic backgrounds to 
discover information on cardiotoxicity for each individual. 
This could potentially give insights in the development of 
personalized medicine strategies for heart rate modifica-
tion [106], which is an essential strategy in the treatment 
of coronary artery disease [107] and heart failure (Fig. 3) 
[108, 109]. Genes known to affect cardiac de- and repo-
larisation (RYR2, ALG10B, and SCN10A) or GIRK channels 
in the cardiac sinus node (RGS6 and GNG11) could be of 
interest to study in this setting. Recent development in the 
generation of spinal human cord neural cells could provide 
the same opportunity for investigating neuronal cell lon-
gevity including genes such as SCNAIP, POP4, and SYT10 
[110]. Complex neurological mechanisms at the interplay of 
the sympathetic and parasympathetic nervous system (i.e., 
KCNH8 and GRIK2) or neuronal development (i.e., SOX5, 
PAX2, and BCL11A) are more difficult to investigate using 
this method. This can be solved by investigating these genes 
using in vivo models of animals that share a high percent-
age of their genomic pattern with humans, including mice 
[111, 112], fruit flies [113], and zebrafish [114] (Fig. 3). 
For example, knockdown of RGS6 [56, 57], MED13L [76], 
and BCL11A [85] has already provided insights in biological 
consequences of mutations in these genes.

Improvement of prevention of disease is another goal 
of genetic research. While accurate risk prediction might 
be relatively straightforward for mono- and oligogenic 
disease, this is more difficult for polygenic diseases such 
as coronary artery disease and heart failure. However, the 



2405Genetics and the heart rate response to exercise  

1 3

knowledge on genetic variants obtained by GWAS can be 
used to construct genetic risk cores by summing the number 
of risk alleles weighted by the corresponding beta coeffi-
cients. Recently, it was shown that the polygenic risk score 
of coronary artery disease had the ability to identify 8.0% 
of the population at greater than threefold risk for coronary 
artery disease [115]. These individuals can subsequently be 
selected for encouragement of behavioural lifestyle changes 
as relative effects of poor lifestyle were shown to be com-
parable between genetic risk groups [116]. Similar to the 
traditional risk score models in which several traditional 
risk phenotypes are used to predict risk events, this could 
ultimately be performed for genetic risk score models as 
well. As previously stated, there is a large body of obser-
vational studies that links heart rate response to exercise 
to all-cause mortality and cardiovascular disease in healthy 
individuals and those with a history of cardiac disease [5–9]. 
In this light, it would be interesting to see whether adding 
the polygenetic risk scores for the acute heart rate response 
to exercise into a genetic risk score model that includes the 
polygenetic risk score for the cardiovascular disease itself 

could improve detection of individuals at high risk of dis-
ease. However, it should be noted that both recent GWAS on 
the acute heart rate response to exercise did not find support 
for a genetic association with cardiovascular mortality [14, 
15]. The lack of an association in both studies might origi-
nate from the fact that a small replication cohort consisting 
of a relatively young and healthy population was used. The 
study of Verweij et al. [14] did find a significant association 
between heart rate response to exercise and parental age as 
proxy for all-cause mortality. However, first, it is required 
to investigate whether there is a genetic association with 
cardiovascular disease and all-cause mortality, preferably 
in a larger independent cohort [117].

The evidence on long-term modification of the heart rate 
response to exercise is limited so far [97]. If the genetics of 
the acute heart rate response to exercise can be used to predict 
cardiovascular mortality, the combination with information on 
the genetics of the long-term modification of the heart rate 
response to exercise could one day inform the choice of pre-
vention strategy. For example, a high genetic risk score for a 
diminished acute response to exercise combined with a genetic 

Fig. 3  Possible follow-up of GWAS on heart rate response to exer-
cise. Cell models based on pluripotent stem cells provide a potential 
functional model to study GWAS findings using experimental manip-
ulations that cannot be performed in  vivo. Complex mechanisms of 
genetic interplay could be studied in animals that share a high per-
centage of their genomic sequence with humans, including mice, 

fruit flies, and zebrafishes. Tools such as gene knockdowns can be 
used to manipulate the genomes of these animal models. The ultimate 
application of knowledge initiated by GWAS findings in heart rate 
response to exercise lies in the improvement of primary and second-
ary prevention and personalized medicine to improve human health
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risk score that indicates high training-induced changes to heart 
rate response could be an indicator of early primary or second-
ary prevention strategies (Fig. 3). On the other hand, a high 
genetic risk score for a diminished acute response to exercise 
combined with a genetic risk score that indicates little training-
induced changes could be an indication of early intervention 
through medication (Fig. 3).

Conclusion

In the current review, we found a total of 10 genes associ-
ated with the acute heart rate response to exercise in candi-
date gene studies. Only one gene (CHRM2), related to heart 
rate recovery, was replicated in recent GWASs. Additional 17 
candidate causal genes were identified for heart rate increase 
and 26 for heart rate recovery in these GWASs. Nine of these 
genes were associated with both acute heart rate increase and 
recovery during exercise. These genes can be broadly catego-
rized into four categories: (1) development of the nervous sys-
tem (CCDC141, PAX2, SOX5, and CAV2); (2) prolongation of 
neuronal life span (SYT10); (3) cardiac development (RNF220 
and MCTP2), and (4) cardiac rhythm (SCN10A and RGS6). Of 
the total of 43 genes, nine showed overlap with resting heart 
rate and heart rate variability, six with atrial fibrillation and 
coronary artery disease, two with ECG traits, and nine with 
blood pressure. The current findings support the idea that the 
autonomic nervous system is a major player in the regulation 
of the acute heart rate response to exercise. Heart rate recovery 
is especially influenced by parasympathetic nervous system 
genes (ACHE and CHRM2), in line with the previous research 
[64]. Regarding the long-term response to exercise, heart rate 
increase during exercise was found to be mainly associated 
with genes involved in either cardiac or neuronal remodel-
ling. Little evidence has been found for the long-term response 
of heart rate recovery to exercise, except for parasympathetic 
involvement. Future work will be required to translate these 
findings to preventive and therapeutic applications.

Funding N. Verweij is supported by “Nederlandse Organisatie voor 
Wetenschappelijk Onderzoek” VENI grant (016.186.125) in support 
of research into ECG changes in response to exercise.

Compliance with ethical standards 

Conflict of interest The authors declare that they have no conflict of 
interest. Author N. Verweij is an employee of Genomics plc.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

 1. Hammond HK, Froelicher VF (1985) Normal and abnormal heart 
rate responses to exercise. Prog Cardiovasc Dis 27:271–296

 2. Bahrainy S, Levy WC, Busey JM et al (2016) Exercise train-
ing bradycardia is largely explained by reduced intrinsic heart 
rate. Int J Cardiol 222:213–216. https ://doi.org/10.1016/j.ijcar 
d.2016.07.203

 3. Eppinga RN, Hagemeijer Y, Burgess S et al (2016) Identifi-
cation of genomic loci associated with resting heart rate and 
shared genetic predictors with all-cause mortality. Nat Genet 
48:1557–1563. https ://doi.org/10.1038/ng.3708

 4. Fletcher GF, Balady GJ, Amsterdam EA et al (2001) Exercise 
standards for testing and training: a statement for healthcare 
professionals from the American Heart Association. Circula-
tion 104:1694–1740

 5. Jouven X, Empana J-P, Schwartz PJ et al (2005) Heart-rate 
profile during exercise as a predictor of sudden death. N Engl 
J Med 352:1951–1958. https ://doi.org/10.1056/NEJMo a0430 
12

 6. McCrory C, Berkman LF, Nolan H et al (2016) Speed of heart 
rate recovery in response to orthostatic challenge novelty and 
significance. Circ Res 119:666–675. https ://doi.org/10.1161/
CIRCR ESAHA .116.30857 7

 7. van de Vegte YJ, van der Harst P, Verweij N (2018) Heart 
rate recovery 10 seconds after cessation of exercise predicts 
death. J Am Heart Assoc 7:e008341. https ://doi.org/10.1161/
JAHA.117.00834 1

 8. Arena R, Myers J, Abella J et al (2010) The prognostic value of 
the heart rate response during exercise and recovery in patients 
with heart failure: influence of beta-blockade. Int J Cardiol 
138:166–173. https ://doi.org/10.1016/j.ijcar d.2008.08.010

 9. Dresing TJ, Blackstone EH, Pashkow FJ et al (2000) Usefulness 
of impaired chronotropic response to exercise as a predictor of 
mortality, independent of the severity of coronary artery dis-
ease. Am J Cardiol 86:602–609. https ://doi.org/10.1016/S0002 
-9149(00)01036 -5

 10. Hautala AJ, Mäkikallio TH, Kiviniemi A et al (2004) Heart rate 
dynamics after controlled training followed by a home-based 
exercise program. Eur J Appl Physiol 92:289–297. https ://doi.
org/10.1007/s0042 1-004-1077-6

 11. Brubaker PH, Kitzman DW (2011) Chronotropic incompe-
tence: causes, consequences, and management. Circulation 
123(9):1010–1020. https ://doi.org/10.1161/CIRCU LATIO 
NAHA.110.94057 7

 12. Ingelsson E, Larson MG, Vasan RS et al (2007) Heritability, link-
age, and genetic associations of exercise treadmill test responses. 
Circulation 115:2917–2924. https ://doi.org/10.1161/CIRCU 
LATIO NAHA.106.68382 1

 13. Nederend I, Schutte NM, Bartels M et al (2016) Heritability 
of heart rate recovery and vagal rebound after exercise. Eur J 
Appl Physiol 116:2167–2176. https ://doi.org/10.1007/s0042 
1-016-3459-y

 14. Verweij N, van de Vegte YJ, van der Harst P (2018) Genetic 
study links components of the autonomous nervous system to 
heart-rate profile during exercise. Nat Commun 9:898. https ://
doi.org/10.1038/s4146 7-018-03395 -6

 15. Ramírez J, van Duijvenboden S, Ntalla I et al (2018) Thirty loci 
identified for heart rate response to exercise and recovery impli-
cate autonomic nervous system. Nat Commun 9:1947. https ://
doi.org/10.1038/s4146 7-018-04148 -1

 16. Rice T, An P, Gagnon J et al (2002) Heritability of HR and BP 
response to exercise training in the HERITAGE Family Study. 
Med Sci Sports Exerc 34:972–979

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ijcard.2016.07.203
https://doi.org/10.1016/j.ijcard.2016.07.203
https://doi.org/10.1038/ng.3708
https://doi.org/10.1056/NEJMoa043012
https://doi.org/10.1056/NEJMoa043012
https://doi.org/10.1161/CIRCRESAHA.116.308577
https://doi.org/10.1161/CIRCRESAHA.116.308577
https://doi.org/10.1161/JAHA.117.008341
https://doi.org/10.1161/JAHA.117.008341
https://doi.org/10.1016/j.ijcard.2008.08.010
https://doi.org/10.1016/S0002-9149(00)01036-5
https://doi.org/10.1016/S0002-9149(00)01036-5
https://doi.org/10.1007/s00421-004-1077-6
https://doi.org/10.1007/s00421-004-1077-6
https://doi.org/10.1161/CIRCULATIONAHA.110.940577
https://doi.org/10.1161/CIRCULATIONAHA.110.940577
https://doi.org/10.1161/CIRCULATIONAHA.106.683821
https://doi.org/10.1161/CIRCULATIONAHA.106.683821
https://doi.org/10.1007/s00421-016-3459-y
https://doi.org/10.1007/s00421-016-3459-y
https://doi.org/10.1038/s41467-018-03395-6
https://doi.org/10.1038/s41467-018-03395-6
https://doi.org/10.1038/s41467-018-04148-1
https://doi.org/10.1038/s41467-018-04148-1


2407Genetics and the heart rate response to exercise  

1 3

 17. An P, Pérusse L, Rankinen T et al (2003) Familial aggregation 
of exercise heart rate and blood pressure in response to 20 weeks 
of endurance training: the HERITAGE family study. Int J Sports 
Med 24:57–62. https ://doi.org/10.1055/s-2003-37200 

 18. Visscher PM, Wray NR, Zhang Q et al (2017) 10 years of GWAS 
discovery: biology, function, and translation. Am J Hum Genet 
101:5–22. https ://doi.org/10.1016/j.ajhg.2017.06.005

 19. Coote JH (2010) Recovery of heart rate following intense 
dynamic exercise. Exp Physiol 95:431–440. https ://doi.
org/10.1113/expph ysiol .2009.04754 8

 20. Saghiv M, Sagiv M (2017) Response of left ventricular volumes 
and ejection fraction during different modes of exercise in health 
and CAD patients. Int J Clin Cardiol Res 1:51–56

 21. Montgomery HE, Marshall R, Hemingway H et al (1998) Human 
gene for physical performance. Nature 393:221–222. https ://doi.
org/10.1038/30374 

 22. Voroshin IN, Astratenkova IV (2008) Dependence of endur-
ance performance on ACE gene polymorphism in athletes. Hum 
Physiol 34:117–119. https ://doi.org/10.1007/s1074 7-008-1018-6

 23. Roltsch MH, Brown MD, Hand BD et al (2005) No associa-
tion between ACE I/D polymorphism and cardiovascular hemo-
dynamics during exercise in young women. Int J Sports Med 
26:638–644. https ://doi.org/10.1055/s-2004-83043 6

 24. McCole SD, Brown MD, Moore GE et al (2002) Angiotensino-
gen M235T polymorphism associates with exercise hemodynam-
ics in postmenopausal women. Physiol Genomics 10:63–69. https 
://doi.org/10.1152/physi olgen omics .00106 .2001

 25. Rankinen T, Pérusse L, Gagnon J et al (2000) Angiotensin-con-
verting enzyme ID polymorphism and fitness phenotype in the 
HERITAGE Family Study. J Appl Physiol 88:1029–1035. https 
://doi.org/10.1152/jappl .2000.88.3.1029

 26. Hand BD, McCole SD, Brown MD et al (2006) NOS3 gene 
polymorphisms and exercise hemodynamics in postmeno-
pausal women. Int J Sports Med 27:951–958. https ://doi.
org/10.1055/s-2006-92390 1

 27. Zanzinger J (1999) Role of nitric oxide in the neural control of 
cardiovascular function. Cardiovasc Res 43:639–649. https ://doi.
org/10.1016/s0008 -6363(99)00085 -1

 28. Nieminen T, Lehtimäki T, Laiho J et al (2006) Effects of poly-
morphisms in beta1-adrenoceptor and alpha-subunit of G protein 
on heart rate and blood pressure during exercise test. The Finnish 
Cardiovascular Study. J Appl Physiol 100:507–511. https ://doi.
org/10.1152/jappl physi ol.00899 .2005

 29. Defoor J, Martens K, Zielińska D et al (2006) The CAREGENE 
study: polymorphisms of the β1-adrenoceptor gene and aerobic 
power in coronary artery disease. Eur Heart J 27:808–816. https 
://doi.org/10.1093/eurhe artj/ehi73 7

 30. Eisenach JH, McGuire AM, Schwingler RM et al (2004) The 
Arg16/Gly β 2 -adrenergic receptor polymorphism is associ-
ated with altered cardiovascular responses to isometric exercise. 
Physiol Genomics 16:323–328. https ://doi.org/10.1152/physi 
olgen omics .00152 .2003

 31. Altmüller J, Palmer LJ, Fischer G et al (2001) Genomewide scans 
of complex human diseases: true linkage is hard to find. Am J 
Hum Genet 69:936–950. https ://doi.org/10.1086/32406 9

 32. Hirschhorn JN, Daly MJ (2005) Genome-wide association studies 
for common diseases and complex traits. Nat Rev Genet 6:95–
108. https ://doi.org/10.1038/nrg15 21

 33. Hirschhorn JN (2005) Genetic approaches to studying common 
diseases and complex traits. Pediatr Res 57:74R–77R. https ://doi.
org/10.1203/01.PDR.00001 59574 .98964 .87

 34. Vasan RS, Larson MG, Aragam J et al (2007) Genome-wide 
association of echocardiographic dimensions, brachial artery 
endothelial function and treadmill exercise responses in the 
Framingham Heart Study. BMC Med Genet 8:S2. https ://doi.
org/10.1186/1471-2350-8-S1-S2

 35. Tiso N, Stephan DA, Nava A et al (2001) Identification of muta-
tions in the cardiac ryanodine receptor gene in families affected 
with arrhythmogenic right ventricular cardiomyopathy type 2 
(ARVD2). Hum Mol Genet 10:189–194

 36. Tsio N, Salamon M, Bagattin A et al (2002) The binding of 
the RyR2 calcium channel to its gating protein FKBP12.6 is 
oppositely affected by ARVD2 and VTSIP mutations. Biochem 
Biophys Res Commun 299:594–598. https ://doi.org/10.1016/
S0006 -291X(02)02689 -X

 37. Priori SG, Napolitano C, Memmi M et al (2002) Clinical and 
molecular characterization of patients with catecholaminergic 
polymorphic ventricular tachycardia. Circulation 106:69–74

 38. Huffman JE (2018) Examining the current standards for genetic 
discovery and replication in the era of mega-biobanks. Nat 
Commun 9:5054. https ://doi.org/10.1038/s4146 7-018-07348 -x

 39. Nuber S, Franck T, Wolburg H et al (2010) Transgenic overex-
pression of the alpha-synuclein interacting protein synphilin-1 
leads to behavioral and neuropathological alterations in mice. 
Neurogenetics 11:107–120. https ://doi.org/10.1007/s1004 
8-009-0212-2

 40. Smith WW, Liu Z, Liang Y et al (2010) Synphilin-1 attenu-
ates neuronal degeneration in the A53T -synuclein transgenic 
mouse model. Hum Mol Genet 19:2087–2098. https ://doi.
org/10.1093/hmg/ddq08 6

 41. Jarrous N, Eder PS, Wesolowski D, Altman S (1999) Rpp14 
and Rpp29, two protein subunits of human ribonuclease P. 
RNA 5:153–157

 42. Abu-Zhayia ER, Khoury-Haddad H, Guttmann-Raviv N et al 
(2017) A role of human RNase P subunits, Rpp29 and Rpp21, 
in homology directed-repair of double-strand breaks. Sci Rep 
7:1002. https ://doi.org/10.1038/s4159 8-017-01185 -6

 43. Raven PB, Chapleau MW (2014) Blood pressure regulation XI: 
overview and future research directions. Eur J Appl Physiol 
114:579–586. https ://doi.org/10.1007/s0042 1-014-2823-z

 44. Fukuda T, Sugita S, Inatome R, Yanagi S (2010) CAMDI, a 
novel disrupted in schizophrenia 1 (DISC1)-binding protein, is 
required for radial migration. J Biol Chem 285:40554–40561. 
https ://doi.org/10.1074/jbc.M110.17948 1

 45. Brandon NJ, Sawa A (2011) Linking neurodevelopmental and 
synaptic theories of mental illness through DISC1. Nat Rev 
Neurosci 12:707–722. https ://doi.org/10.1038/nrn31 20

 46. De Pontual L, Mathieu Y, Golzio C et al (2009) Mutational, 
functional, and expression studies of the TCF4 gene in pitt-
hopkins syndrome. Hum Mutat 30:669–676. https ://doi.
org/10.1002/humu.20935 

 47. Sepp M, Pruunsild P, Timmusk T (2012) Pitt-Hopkins 
syndrome-associated mutations in TCF4 lead to variable 
impairment of the transcription factor function ranging from 
hypomorphic to dominant-negative effects. Hum Mol Genet 
21:2873–2888. https ://doi.org/10.1093/hmg/dds11 2

 48. Tellier A-L, Amiel J, Delezoide A-L et al (2000) Expression 
of thePAX2 gene in human embryos and exclusion in the 
CHARGE syndrome. Am J Med Genet 93:85–88. https ://doi.
org/10.1002/1096-8628(20000 717)93:2%3c85:AID-AJMG1 
%3e3.0.CO;2-B

 49. Lai T, Jabaudon D, Molyneaux BJ et al (2008) SOX5 controls 
the sequential generation of distinct corticofugal neuron sub-
types. Neuron 57:232–247. https ://doi.org/10.1016/J.NEURO 
N.2007.12.023

 50. Lamb AN, Rosenfeld JA, Neill NJ et al (2012) Haploinsuf-
ficiency of SOX5 at 12p12.1 is associated with developmental 
delays with prominent language delay, behavior problems, and 
mild dysmorphic features. Hum Mutat 33:728–740. https ://doi.
org/10.1002/humu.22037 

 51. Galbiati F, Volonte D, Gil O et al (1998) Expression of cave-
olin-1 and -2 in differentiating PC12 cells and dorsal root 

https://doi.org/10.1055/s-2003-37200
https://doi.org/10.1016/j.ajhg.2017.06.005
https://doi.org/10.1113/expphysiol.2009.047548
https://doi.org/10.1113/expphysiol.2009.047548
https://doi.org/10.1038/30374
https://doi.org/10.1038/30374
https://doi.org/10.1007/s10747-008-1018-6
https://doi.org/10.1055/s-2004-830436
https://doi.org/10.1152/physiolgenomics.00106.2001
https://doi.org/10.1152/physiolgenomics.00106.2001
https://doi.org/10.1152/jappl.2000.88.3.1029
https://doi.org/10.1152/jappl.2000.88.3.1029
https://doi.org/10.1055/s-2006-923901
https://doi.org/10.1055/s-2006-923901
https://doi.org/10.1016/s0008-6363(99)00085-1
https://doi.org/10.1016/s0008-6363(99)00085-1
https://doi.org/10.1152/japplphysiol.00899.2005
https://doi.org/10.1152/japplphysiol.00899.2005
https://doi.org/10.1093/eurheartj/ehi737
https://doi.org/10.1093/eurheartj/ehi737
https://doi.org/10.1152/physiolgenomics.00152.2003
https://doi.org/10.1152/physiolgenomics.00152.2003
https://doi.org/10.1086/324069
https://doi.org/10.1038/nrg1521
https://doi.org/10.1203/01.PDR.0000159574.98964.87
https://doi.org/10.1203/01.PDR.0000159574.98964.87
https://doi.org/10.1186/1471-2350-8-S1-S2
https://doi.org/10.1186/1471-2350-8-S1-S2
https://doi.org/10.1016/S0006-291X(02)02689-X
https://doi.org/10.1016/S0006-291X(02)02689-X
https://doi.org/10.1038/s41467-018-07348-x
https://doi.org/10.1007/s10048-009-0212-2
https://doi.org/10.1007/s10048-009-0212-2
https://doi.org/10.1093/hmg/ddq086
https://doi.org/10.1093/hmg/ddq086
https://doi.org/10.1038/s41598-017-01185-6
https://doi.org/10.1007/s00421-014-2823-z
https://doi.org/10.1074/jbc.M110.179481
https://doi.org/10.1038/nrn3120
https://doi.org/10.1002/humu.20935
https://doi.org/10.1002/humu.20935
https://doi.org/10.1093/hmg/dds112
https://doi.org/10.1002/1096-8628(20000717)93:2%3c85:AID-AJMG1%3e3.0.CO;2-B
https://doi.org/10.1002/1096-8628(20000717)93:2%3c85:AID-AJMG1%3e3.0.CO;2-B
https://doi.org/10.1002/1096-8628(20000717)93:2%3c85:AID-AJMG1%3e3.0.CO;2-B
https://doi.org/10.1016/J.NEURON.2007.12.023
https://doi.org/10.1016/J.NEURON.2007.12.023
https://doi.org/10.1002/humu.22037
https://doi.org/10.1002/humu.22037


2408 Y. J. van de Vegte et al.

1 3

ganglion neurons: caveolin-2 is up-regulated in response to 
cell injury. Proc Natl Acad Sci USA 95:10257–10262

 52. Woitecki AMH, Müller JA, van Loo KMJ et  al (2016) 
Identification of synaptotagmin 10 as effector of NPAS4-
mediated protection from excitotoxic neurodegeneration. 
J Neurosci 36:2561–2570. https ://doi.org/10.1523/JNEUR 
OSCI.2027-15.2016

 53. Kong Q, Zeng W, Wu J et al (2010) RNF220, an E3 ubiqui-
tin ligase that targets Sin3B for ubiquitination. Biochem Bio-
phys Res Commun 393:708–713. https ://doi.org/10.1016/j.
bbrc.2010.02.066

 54. Ma P, Yang X, Kong Q et al (2014) The ubiquitin ligase RNF220 
enhances canonical Wnt signaling through USP7-mediated deu-
biquitination of β-catenin. Mol Cell Biol 34:4355–4366. https ://
doi.org/10.1128/MCB.00731 -14

 55. Facer P, Punjabi PP, Abrari A et  al (2011) Localisation of 
SCN10A gene product Nav1.8 and novel pain-related ion 
channels in human heart. Int Heart J 52:146–152. https ://doi.
org/10.1536/ihj.52.146

 56. Yang J, Huang J, Maity B et al (2010) RGS6, a modulator of 
parasympathetic activation in heart. Circ Res 107:1345–1349. 
https ://doi.org/10.1161/CIRCR ESAHA .110.22422 0

 57. Wydeven N, Posokhova E, Xia Z et al (2014) RGS6, but not 
RGS4, is the dominant regulator of G protein signaling (RGS) 
modulator of the parasympathetic regulation of mouse heart 
rate. J Biol Chem 289:2440–2449. https ://doi.org/10.1074/jbc.
M113.52074 2

 58. Bower M, Salomon R, Allanson J et al (2012) Update of PAX2 
mutations in renal coloboma syndrome and establishment of a 
locus-specific database. Hum Mutat 33:457–466. https ://doi.
org/10.1002/humu.22020 

 59. Barua M, Stellacci E, Stella L et al (2014) Mutations in PAX2 
associate with adult-onset FSGS. J Am Soc Nephrol 25:1942–
1953. https ://doi.org/10.1681/ASN.20130 70686 

 60. Nolte IM, Munoz ML, Tragante V et al (2017) Genetic loci asso-
ciated with heart rate variability and their effects on cardiac dis-
ease risk. Nat Commun 8:15805. https ://doi.org/10.1038/ncomm 
s1580 5

 61. Camm AJMM et al (1996) Heart rate variability: standards of 
measurement, physiological interpretation and clinical use. Task 
Force of the European Society of Cardiology and the North 
American Society of Pacing and Electrophysiology. Circulation 
93:1043–1065

 62. Ioannidis JPA, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis 
DG (2001) Replication validity of genetic association studies. 
Nat Genet 29:306–309. https ://doi.org/10.1038/ng749 

 63. Morgan TM, Krumholz HM, Lifton RP, Spertus JA (2007) Non-
validation of reported genetic risk factors for acute coronary syn-
drome in a large-scale replication study. JAMA 297:1551. https 
://doi.org/10.1001/jama.297.14.1551

 64. Imai K, Sato H, Hori M et al (1994) Vagally mediated heart rate 
recovery after exercise is accelerated in athletes but blunted in 
patients with chronic heart failure. J Am Coll Cardiol 24:1529–
1535. https ://doi.org/10.1016/0735-1097(94)90150 -3

 65. Kohli U, Diedrich A, Kannankeril PJ et al (2015) Genetic vari-
ation in alpha2-adrenoreceptors and heart rate recovery after 
exercise. Physiol Genomics 47:400–406. https ://doi.org/10.1152/
physi olgen omics .00124 .2014

 66. Hautala AJ (2006) Heart rate recovery after maximal exercise is 
associated with acetylcholine receptor M2 (CHRM2) gene poly-
morphism. AJP Hear Circ Physiol 291:H459–H466. https ://doi.
org/10.1152/ajphe art.01193 .2005

 67. Hautala AJ, Tulppo MP, Kiviniemi AM et al (2009) Acetylcho-
line receptor M2 gene variants, heart rate recovery, and risk of 
cardiac death after an acute myocardial infarction. Ann Med 
41:197–207. https ://doi.org/10.1080/07853 89080 24778 66

 68. Brodde OE, Michel MC (1999) Adrenergic and muscarinic 
receptors in the human heart. Pharmacol Rev 51:651–690

 69. Whittaker VP (1990) The contribution of drugs and toxins to 
understanding of cholinergic function. Trends Pharmacol Sci 
11:8–13. https ://doi.org/10.1016/0165-6147(90)90034 -6

 70. Nikolaienko RM, Hammel M, Dubreuil V et al (2016) Struc-
tural basis for interactions between contactin family members 
and protein-tyrosine phosphatase receptor type G in neural tis-
sues. J Biol Chem 291:21335–21349. https ://doi.org/10.1074/
jbc.M116.74216 3

 71. Walsh CA, Morrow EM, Rubenstein JLR (2008) Autism 
and brain development. Cell 135:396–400. https ://doi.
org/10.1016/J.CELL.2008.10.015

 72. Connelly MA, Grady RC, Mushinski JF, Marcu KB (1994) 
PANG, a gene encoding a neuronal glycoprotein, is ectopi-
cally activated by intracisternal A-type particle long terminal 
repeats in murine plasmacytomas. Proc Natl Acad Sci USA 
91:1337–1341

 73. Ruffle JK, Coen SJ, Giampietro V et al (2018) Morphology of 
subcortical brain nuclei is associated with autonomic function 
in healthy humans. Hum Brain Mapp 39:381–392. https ://doi.
org/10.1002/hbm.23850 

 74. Pfeffer PL, Payer B, Reim G et al (2002) The activation and 
maintenance of Pax2 expression at the mid-hindbrain boundary 
is controlled by separate enhancers. Development 129:307–318

 75. Kapa S, DeSimone CV, Asirvatham SJ (2016) Innervation 
of the heart: an invisible grid within a black box. Trends 
Cardiovasc Med 26:245–257. https ://doi.org/10.1016/j.
tcm.2015.07.001

 76. Utami KH, Winata CL, Hillmer AM et  al (2014) Impaired 
development of neural-crest cell-derived organs and intellectual 
disability caused by MED13L haploinsufficiency. Hum Mutat 
35:1311–1320. https ://doi.org/10.1002/humu.22636 

 77. Asadollahi R, Zweier M, Gogoll L et al (2017) Genotype-phe-
notype evaluation of MED13L defects in the light of a novel 
truncating and a recurrent missense mutation. Eur J Med Genet 
60:451–464. https ://doi.org/10.1016/j.ejmg.2017.06.004

 78. Piven OO, Winata CL (2017) The canonical way to make a heart: 
β-catenin and plakoglobin in heart development and remodeling. 
Exp Biol Med 242:1735–1745. https ://doi.org/10.1177/15353 
70217 73273 7

 79. Nakagawa A, Naito AT, Sumida T et al (2016) Activation of 
endothelial β-catenin signaling induces heart failure. Sci Rep 
6:25009. https ://doi.org/10.1038/srep2 5009

 80. Pahnke A, Conant G, Huyer LD et al (2016) The role of Wnt 
regulation in heart development, cardiac repair and disease: a 
tissue engineering perspective. Biochem Biophys Res Commun 
473:698–703. https ://doi.org/10.1016/j.bbrc.2015.11.060

 81. Foulquier S, Daskalopoulos EP, Lluri G et al (2018) WNT signal-
ing in cardiac and vascular disease. Pharmacol Rev 70:68–141. 
https ://doi.org/10.1124/pr.117.01389 6

 82. Berger I, Hershkovitz E, Shaag A et al (2008) Mitochondrial 
complex I deficiency caused by a deleterious NDUFA11 muta-
tion. Ann Neurol 63:405–408. https ://doi.org/10.1002/ana.21332 

 83. Jang S, Javadov S (2018) Elucidating the contribution of ETC 
complexes I and II to the respirasome formation in cardiac mito-
chondria. Sci Rep 8:17732. https ://doi.org/10.1038/s4159 8-018-
36040 -9

 84. Wiegreffe C, Simon R, Peschkes K et al (2015) Bcl11a (Ctip1) 
controls migration of cortical projection neurons through regula-
tion of Sema3c. Neuron 87:311–325. https ://doi.org/10.1016/j.
neuro n.2015.06.023

 85. Dias C, Estruch SB, Graham SA et al (2016) BCL11A haploin-
sufficiency causes an intellectual disability syndrome and dys-
regulates transcription. Am J Hum Genet 99:253–274. https ://
doi.org/10.1016/j.ajhg.2016.05.030

https://doi.org/10.1523/JNEUROSCI.2027-15.2016
https://doi.org/10.1523/JNEUROSCI.2027-15.2016
https://doi.org/10.1016/j.bbrc.2010.02.066
https://doi.org/10.1016/j.bbrc.2010.02.066
https://doi.org/10.1128/MCB.00731-14
https://doi.org/10.1128/MCB.00731-14
https://doi.org/10.1536/ihj.52.146
https://doi.org/10.1536/ihj.52.146
https://doi.org/10.1161/CIRCRESAHA.110.224220
https://doi.org/10.1074/jbc.M113.520742
https://doi.org/10.1074/jbc.M113.520742
https://doi.org/10.1002/humu.22020
https://doi.org/10.1002/humu.22020
https://doi.org/10.1681/ASN.2013070686
https://doi.org/10.1038/ncomms15805
https://doi.org/10.1038/ncomms15805
https://doi.org/10.1038/ng749
https://doi.org/10.1001/jama.297.14.1551
https://doi.org/10.1001/jama.297.14.1551
https://doi.org/10.1016/0735-1097(94)90150-3
https://doi.org/10.1152/physiolgenomics.00124.2014
https://doi.org/10.1152/physiolgenomics.00124.2014
https://doi.org/10.1152/ajpheart.01193.2005
https://doi.org/10.1152/ajpheart.01193.2005
https://doi.org/10.1080/07853890802477866
https://doi.org/10.1016/0165-6147(90)90034-6
https://doi.org/10.1074/jbc.M116.742163
https://doi.org/10.1074/jbc.M116.742163
https://doi.org/10.1016/J.CELL.2008.10.015
https://doi.org/10.1016/J.CELL.2008.10.015
https://doi.org/10.1002/hbm.23850
https://doi.org/10.1002/hbm.23850
https://doi.org/10.1016/j.tcm.2015.07.001
https://doi.org/10.1016/j.tcm.2015.07.001
https://doi.org/10.1002/humu.22636
https://doi.org/10.1016/j.ejmg.2017.06.004
https://doi.org/10.1177/1535370217732737
https://doi.org/10.1177/1535370217732737
https://doi.org/10.1038/srep25009
https://doi.org/10.1016/j.bbrc.2015.11.060
https://doi.org/10.1124/pr.117.013896
https://doi.org/10.1002/ana.21332
https://doi.org/10.1038/s41598-018-36040-9
https://doi.org/10.1038/s41598-018-36040-9
https://doi.org/10.1016/j.neuron.2015.06.023
https://doi.org/10.1016/j.neuron.2015.06.023
https://doi.org/10.1016/j.ajhg.2016.05.030
https://doi.org/10.1016/j.ajhg.2016.05.030


2409Genetics and the heart rate response to exercise  

1 3

 86. Saiki Y, Yamazaki Y, Yoshida M et al (2000) Human EVI9, a 
homologue of the mouse myeloid leukemia gene, is expressed 
in the hematopoietic progenitors and down-regulated during 
myeloid differentiation of HL60 cells. Genomics 70:387–391. 
https ://doi.org/10.1006/geno.2000.6385

 87. Koskela J, Laiho J, Kähönen M et al (2008) Potassium channel 
KCNH2 K897T polymorphism and cardiac repolarization during 
exercise test: the Finnish Cardiovascular study. Scand J Clin Lab 
Invest 68:31–38. https ://doi.org/10.1080/00365 51070 14964 88

 88. Dai G, Zagotta WN (2017) Molecular mechanism of voltage-
dependent potentiation of KCNH potassium channels. Elife 
6:e26355. https ://doi.org/10.7554/eLife .26355 

 89. Li X, Martinson AS, Layden MJ et al (2015) Ether-à-go-go fam-
ily voltage-gated K+ channels evolved in an ancestral metazoan 
and functionally diversified in a cnidarian-bilaterian ancestor. J 
Exp Biol 218:526–536. https ://doi.org/10.1242/jeb.11008 0

 90. Kupershmidt S, Yang IC-H, Hayashi K et al (2003) The IKr 
drug response is modulated by KCR1 in transfected cardiac 
and noncardiac cell lines. FASEB J 17:2263–2265. https ://doi.
org/10.1096/fj.02-1057fj e

 91. Gilman AG (1987) G Proteins: transducers of receptor-generated 
signals. Annu Rev Biochem 56:615–649. https ://doi.org/10.1146/
annur ev.bi.56.07018 7.00315 1

 92. Petersen CI, McFarland TR, Stepanovic SZ et al (2004) In vivo 
identification of genes that modify ether-a-go-go-related gene 
activity in Caenorhabditis elegans may also affect human cardiac 
arrhythmia. Proc Natl Acad Sci 101:11773–11778. https ://doi.
org/10.1073/pnas.03060 05101 

 93. Contractor A, Mulle C, Swanson GT (2011) Kainate recep-
tors coming of age: milestones of two decades of research. 
Trends Neurosci 34:154–163. https ://doi.org/10.1016/J.
TINS.2010.12.002

 94. Pischedda F, Szczurkowska J, Cirnaru MD et al (2014) A cell 
surface biotinylation assay to reveal membrane-associated neu-
ronal cues: Negr1 regulates dendritic arborization. Mol Cell Pro-
teomics 13:733–748. https ://doi.org/10.1074/mcp.M113.03171 6

 95. Wilmore JH, Stanforth PR, Gagnon J et al (2001) Heart rate and 
blood pressure changes with endurance training: the HERITAGE 
family study. Med Sci Sports Exerc 33:107–116

 96. Rankinen T, Argyropoulos G, Rice T et al (2010) CREB1 is a 
strong genetic predictor of the variation in exercise heart rate 
response to regular exercise: the HERITAGE family study. Circ 
Cardiovasc Genet 3:294–299. https ://doi.org/10.1161/CIRCG 
ENETI CS.109.92564 4

 97. Rankinen T, Sung YJ, Sarzynski MA et al (2012) Heritability of 
submaximal exercise heart rate response to exercise training is 
accounted for by nine SNPs. J Appl Physiol 112:892–897. https 
://doi.org/10.1152/jappl physi ol.01287 .2011

 98. Malaspina A, Kaushik N, de Belleroche J (2000) A 14-3-3 
mRNA is up-regulated in amyotrophic lateral sclerosis spinal 
cord. J Neurochem 75:2511–2520

 99. Lau JMC, Jin X, Ren J et al (2007) The 14-3-3tau phosphoserine-
binding protein is required for cardiomyocyte survival. Mol Cell 
Biol 27:1455–1466. https ://doi.org/10.1128/MCB.01369 -06

 100. Patberg KW, Shvilkin A, Plotnikov AN et al (2005) Cardiac 
memory: mechanisms and clinical implications. Hear Rhythm 
2:1376–1382. https ://doi.org/10.1016/j.hrthm .2005.08.021

 101. Wu H, Zhou Y, Xiong Z-Q (2007) Transducer of regulated 
CREB and late phase long-term synaptic potentiation. FEBS J 
274:3218–3223. https ://doi.org/10.1111/j.1742-4658.2007.05891 
.x

 102. Pickering C, Kiely J (2017) Exercise genetics: seeking clarity 
from noise. BMJ Open Sport Exerc Med 3:e000309. https ://doi.
org/10.1136/bmjse m-2017-00030 9

 103. Karoly HC, Stevens CJ, Magnan RE et al (2012) Genetic influ-
ences on physiological and subjective responses to an aerobic 
exercise session among sedentary adults. J Cancer Epidemiol 
2012:1–12. https ://doi.org/10.1155/2012/54056 3

 104. Wangler MF, Hu Y, Shulman JM (2017) Drosophila and genome-
wide association studies: a review and resource for the functional 
dissection of human complex traits. Dis Model Mech 10:77–88. 
https ://doi.org/10.1242/dmm.02768 0

 105. Hamel V, Cheng K, Liao S et al (2017) De Novo human cardiac 
myocytes for medical research: promises and challenges. Stem 
Cells Int 2017:1–7. https ://doi.org/10.1155/2017/45289 41

 106. Chen IY, Matsa E, Wu JC (2016) Induced pluripotent stem cells: 
at the heart of cardiovascular precision medicine. Nat Rev Car-
diol 13:333–349. https ://doi.org/10.1038/nrcar dio.2016.36

 107. Smith SC, Benjamin EJ, Bonow RO et al (2011) AHA/ACCF 
secondary prevention and risk reduction therapy for patients 
with coronary and other atherosclerotic vascular disease: 2011 
update. J Am Coll Cardiol. https ://doi.org/10.1161/CIR.0b013 
e3182 35eb4 d

 108. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC 
guidelines for the diagnosis and treatment of acute and chronic 
heart failure. Eur Heart J 37:2129–2200. https ://doi.org/10.1093/
eurhe artj/ehw12 8

 109. Swedberg K, Komajda M, Böhm M et al (2010) Ivabradine 
and outcomes in chronic heart failure (SHIFT): a randomised 
placebo-controlled study. Lancet 376:875–885. https ://doi.
org/10.1016/S0140 -6736(10)61198 -1

 110. Kumamaru H, Kadoya K, Adler AF et al (2018) Generation 
and post-injury integration of human spinal cord neural stem 
cells. Nat Methods 15:723–731. https ://doi.org/10.1038/s4159 
2-018-0074-3

 111. Mouse Genome Sequencing Consortium, Waterston RH, Lind-
blad-Toh K et al (2002) Initial sequencing and comparative 
analysis of the mouse genome. Nature 420:520–562. https ://doi.
org/10.1038/natur e0126 2

 112. van der Harst P, van Setten J, Verweij N et al (2016) 52 genetic 
loci influencing myocardial mass. J Am Coll Cardiol 68:1435–
1448. https ://doi.org/10.1016/j.jacc.2016.07.729

 113. Bier E (2005) Drosophila, the golden bug, emerges as a tool for 
human genetics. Nat Rev Genet 6:9–23. https ://doi.org/10.1038/
nrg15 03

 114. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish refer-
ence genome sequence and its relationship to the human genome. 
Nature 496:498–503. https ://doi.org/10.1038/natur e1211 1

 115. Khera AV, Chaffin M, Aragam KG et al (2018) Genome-wide 
polygenic scores for common diseases identify individuals with 
risk equivalent to monogenic mutations. Nat Genet 50:1219–
1224. https ://doi.org/10.1038/s4158 8-018-0183-z

 116. Said MA, Verweij N, van der Harst P (2018) Associations of 
combined genetic and lifestyle risks with incident cardiovascular 
disease and diabetes in the UK biobank study. JAMA Cardiol 
3:693. https ://doi.org/10.1001/jamac ardio .2018.1717

 117. Kraft P, Zeggini E, Ioannidis JPA (2009) Replication in genome-
wide association studies. Stat Sci 1:1. https ://doi.org/10.1214/09-
STS29 0

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1006/geno.2000.6385
https://doi.org/10.1080/00365510701496488
https://doi.org/10.7554/eLife.26355
https://doi.org/10.1242/jeb.110080
https://doi.org/10.1096/fj.02-1057fje
https://doi.org/10.1096/fj.02-1057fje
https://doi.org/10.1146/annurev.bi.56.070187.003151
https://doi.org/10.1146/annurev.bi.56.070187.003151
https://doi.org/10.1073/pnas.0306005101
https://doi.org/10.1073/pnas.0306005101
https://doi.org/10.1016/J.TINS.2010.12.002
https://doi.org/10.1016/J.TINS.2010.12.002
https://doi.org/10.1074/mcp.M113.031716
https://doi.org/10.1161/CIRCGENETICS.109.925644
https://doi.org/10.1161/CIRCGENETICS.109.925644
https://doi.org/10.1152/japplphysiol.01287.2011
https://doi.org/10.1152/japplphysiol.01287.2011
https://doi.org/10.1128/MCB.01369-06
https://doi.org/10.1016/j.hrthm.2005.08.021
https://doi.org/10.1111/j.1742-4658.2007.05891.x
https://doi.org/10.1111/j.1742-4658.2007.05891.x
https://doi.org/10.1136/bmjsem-2017-000309
https://doi.org/10.1136/bmjsem-2017-000309
https://doi.org/10.1155/2012/540563
https://doi.org/10.1242/dmm.027680
https://doi.org/10.1155/2017/4528941
https://doi.org/10.1038/nrcardio.2016.36
https://doi.org/10.1161/CIR.0b013e318235eb4d
https://doi.org/10.1161/CIR.0b013e318235eb4d
https://doi.org/10.1093/eurheartj/ehw128
https://doi.org/10.1093/eurheartj/ehw128
https://doi.org/10.1016/S0140-6736(10)61198-1
https://doi.org/10.1016/S0140-6736(10)61198-1
https://doi.org/10.1038/s41592-018-0074-3
https://doi.org/10.1038/s41592-018-0074-3
https://doi.org/10.1038/nature01262
https://doi.org/10.1038/nature01262
https://doi.org/10.1016/j.jacc.2016.07.729
https://doi.org/10.1038/nrg1503
https://doi.org/10.1038/nrg1503
https://doi.org/10.1038/nature12111
https://doi.org/10.1038/s41588-018-0183-z
https://doi.org/10.1001/jamacardio.2018.1717
https://doi.org/10.1214/09-STS290
https://doi.org/10.1214/09-STS290

	Genetics and the heart rate response to exercise
	Abstract
	Introduction
	Acute response
	Heart rate increase
	Heart rate recovery

	Long-term modification of the heart rate response to exercise
	Heart rate increase
	Heart rate recovery

	Association of heart rate response to exercise-related genes with other traits
	Future directions
	Conclusion
	References




