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Abstract Cardiomyocytes proliferate profusely during

early development and for a brief period after birth in

mammals. Within a month after birth, this proliferative

capability is dramatically reduced in mammals unlike

lower vertebrates where it persists into adult life. The

zebrafish, for example, retains the ability to regenerate the

apex of the heart following resection by a mechanism

predominantly driven by cardiomyocyte proliferation.

Differences in proliferative capacity of cardiomyocytes in

adulthood between mammals and lower vertebrates are

closely liked to ontogenetic or phylogenetic factors. Elu-

cidation of these factors has the potential to provide

enormous benefits if they lead to the development of

therapeutic strategies that facilitate cardiomyocyte prolif-

eration. In this review, we highlight the differences

between Mammalian and Zebrafish cardiomyocytes, which

could explain at least in part the different proliferative

capacities in these two species. We discuss the advantages

of the zebrafish as a model of cardiomyocyte proliferation,

particularly at the embryonic stage. We also identify a

number of key molecular pathways with potential to reveal

key steps in switching cardiomyocytes from a quiescent to

a proliferative phenotype.

Keywords Zebrafish � Mammals � Heart � Proliferation �
Regeneration

Introduction

Ischaemic heart disease is the commonest cause of heart

failure in developed countries either as a consequence of

acute myocardial infarction or chronic ischaemic damage

[1]. In addition the impact of an ageing population with

degenerative cardiac disease associated with hypertension

or valvular heart disease also contributes to cardiomyocyte

dysfunction, loss and ultimately heart failure [2–4]. In the

face of injury and progressive loss of cardiomyocytes, the

human heart typically responds with hypertrophy combined

with hyperplasia of non-cardiomyocyte cell populations in

the heart including fibroblasts [5].

Embryonic and fetal hearts of most vertebrates, includ-

ing mammals, typically show some degree of regenerative

capacity, although studies in neonatal mice suggest it can

last for up to 7 days after birth [6]. The limited capacity of

the adult mammalian heart to restore lost cardiomyocytes

following injury contrasts starkly with the highly effective

regenerative process in adult hearts from lower vertebrates

including amphibians and fish. Recently, the underlying

mechanisms of heart regeneration in the adult zebrafish

have become clearer with evidence that mature car-

diomyocytes dedifferentiate, re-enter the cell cycle and

then proliferate to support repair and replacement of

injured myocardium [7, 8]. The zebrafish embryo has also

contributed significantly to elucidate mechanisms of car-

diac growth and development [9]. Despite being a two-
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chambered organ, the zebrafish heart exhibits many simi-

larities to the mammalian heart and cellular and molecular

studies clearly illustrate the common evolutionary origin of

these structures [10]. Since the regenerative process

appears to reactivate developmental pathways [11],

understanding zebrafish cardiac development also helps us

to understand the powerful cardiac regenerative ability in

the adult zebrafish heart. A key question is whether a better

understanding of the zebrafish cardiac regenerative process

provides important insights into the mammalian response

to injury and repair, and it remains an exciting challenge to

determine if the regenerative capacity of the mammalian

heart could be harnessed as a therapeutic strategy with

significant clinical value.

There is no doubt, however, that the zebrafish represents

an interesting model in which to study cardiomyocyte

proliferation and cardiomyocyte hyperplasia following

injury. One major advantage of utilizing zebrafish embryos

for studies of cardiogenesis is that the embryo is able to

survive for several days without a functioning cardiovas-

cular system. This permits the study of cardiac phenotypes

that would otherwise be lethal in mammalian model sys-

tems [12]. This review examines the differences and

similarities in the response of mammals and zebrafish to

cardiac injury. We also highlight several unique properties

of the zebrafish embryo as a model of cardiomyocyte

proliferation.

Cardiomyocyte proliferation: from early embryos
to adulthood

Embryonic development

The heart is the first organ to visibly form and function

during embryogenesis [13]. In Vertebrates, cardiogenesis is

a morphologically complex process that involves sequen-

tial heart primordia migration, folding, looping, septation

and maturation to form the chambered heart. The following

description of heart development applies mainly to the

mammalian heart although many aspects also apply to the

zebrafish, and chicken heart. During embryogenesis, pro-

liferation of new cardiomyocytes is the main source for the

heart growth. Cardiomyocytes proliferate along the heart

tube walls and within the atrioventricular septum. In par-

ticular, the outer surface of the heart, also called the

compact region [14], achieves the highest proliferative rate.

The epicardium, the thin layer of cells enveloping the

heart, provides a source of mitogenic signaling that stim-

ulate proliferation of cardiomyocytes within the compact

zone [15]. A key epicardial-derived regulator of cardiac

growth includes retinoic acid and its related receptors [16].

Newly formed cardiomyocytes thicken the ventricular wall

and organize fingerlike projections along the inner ventri-

cle surface giving rise to trabeculae, structures that increase

force of contraction and improve oxygen and nutrient

exchange for the heart itself. The endocardium, the spe-

cialized single-cell inner layer of the heart, also provides

fundamental growth signals for embryonic cardiomy-

ocytes, including peptides of the neuregulin family and

their related tyrosine kinase receptors [17]. These growth

factors also play an important role in promoting the normal

‘‘ballooning’’ of the outer curvature of the ventricle [18].

The intense cardiomyocyte proliferative activity observed

during embryonic heart growth is accompanied by

increasing intra-cavity shear forces that contribute to the

shaping of the early heart [19].

Fetal to adulthood transition

While cardiomyocytes divide extensively and rapidly dur-

ing fetal life, in mammals they lose their proliferative

capacity shortly after birth. The proliferative activity of

murine cardiomyocytes starts to decrease around E10–12

[20]. One key molecular player at this stage is Jumonji

(jarid2) that acts to inhibit cardiomyocyte proliferation

through repression of cyclin D1 expression. Jumonji

appears to repress cyclin D1 transcription by recruiting

histone H3–K9 methyltransferases, G9a and GLP, to the

cyclin D1 promoter [21]. Indeed, jarid2 mutant mice

demonstrate increased proliferation and overexpression of

cyclin D1 in cardiomyocytes at E10 [22] [20].

In humans, cardiomyocyte proliferative capacity is lost

by a few months after birth when cardiomyocytes withdraw

from the cell cycle and remain in G0 stage, apparently

indefinitely [23–26], a process called terminal differentia-

tion. Downregulation of several fetal genes and

upregulation of genes responsible for the adult phenotype

play important roles in this process. Cyclin-dependent

kinases (CDKs) play a core functional role in the cell cycle

machinery. Sequential activation of different CDKs,

forming complexes with their specific cyclins, allows

progression of the cell cycle. In mammals, CDK4/6–cyclin

D is activated in phase G1, CDK2–cyclin E in phase G1/S,

CDK2/1–cyclin A in phase S/G2 and CDK1–cyclin B in

phase M. Diminished CDK activity leads to attenuation or

cessation of the cell cycle. The expression and activity of

many cyclins and CDKs change synchronously during

embryonic and postnatal developmental stages [27], sug-

gesting a highly orchestrated series of cellular mechanisms

controlling their role in proliferation. CDKs are regulated

by CDK inhibitors (CKIs) including the INK4 family (p15,

p16, p18 and p19) and Cip/Kip family (p21, p27 and p57)

[27]. CKIs participate in termination of postnatal mam-

malian cardiomyocyte cell cycle as demonstrated in p21

and p27 knockout mice, where cardiomyocytes exit the cell
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cycle at G1-phase [28]. Meis1 is a transcriptional factor

that is known to activate p21 and regulate cardiac cell cycle

exit [29]. In fact, cardiomyocyte proliferative activity is

prolonged after birth in Meis1 KO mice.

The cardiomyocyte cell cycle appears closely coupled to

the accumulation of cell mass during development which

acts to maintain consistent cell size [30]. In most species,

this transition from hyperplastic-to-hypertrophic activity is

characterized by changes in degree of ploidy and number

of nuclei as cardiomyocytes undergo additional DNA

replication followed by cytokinesis and/or karyokinesis

[31, 32] (Fig. 1). The higher number of mononucleated and

diploid cardiomyocytes in species capable of cardiac

regeneration, such as newt [33], zebrafish [34] and rodent

fetal and neonates [6, 35–37], suggest a higher proliferation

capacity in such cells.

Indeed, Bersell et al. [38] demonstrated that only

mononucleated cardiomyocytes that respond to the acti-

vation of the neuregulin 1/ErbB4 pathway after cardiac

injury in mice initiate cardiomyocyte proliferation. Adult

human cardiomyocytes are mostly mononucleated and

tetraploid (4n), and adult mice cardiomyocytes are mainly

binucleated and diploid (2n) [39] (Fig. 1). Indeed, several

reports have shown a gradual decrease in the incorporation

of radiolabeled thymidine soon after birth, coinciding with

the formation of binucleated cardiomyocytes in mice

[35, 40]. This process is associated with an increase in

myofibril density and the formation of mature intercalated

discs [41].

Fetal to adulthood temporal transition represents the

divide between cardiac regenerating and non-regenerating

species and it is, therefore, a key stage in which to study

differences in cell cycle exit between species.

Adulthood

During the twentieth century, it was believed that the heart

is a post-mitotic organ and cardiac growth in the adult was

attributed exclusively to cardiomyocyte hypertrophy

[42–45]. However, since the 1990s, evidence of car-

diomyocyte proliferation in adult human hearts has been

gradually accepted [46–48]. Quaini and co-workers

demonstrated the presence of proliferating cell nuclear

antigen, a marker of the G1–S cell cycle phases, in adult

human hearts with ischemic and dilated cardiomyopathy.

Evidence of metaphasic chromosomes together with

cytokinesis was demonstrated in normal myocardium and

in ischemic and dilated cardiomyopathy and in myocardial

infarction [46, 47]. Considerable disagreement remains on

the frequency of these cellular events in adult normal and

diseased adult myocardium [49]; however, there appears to

be a clear cardiac cellular response to disease and injury

[39, 50]. The measured rate of cell division is influenced by

the methods used to detect DNA synthesis and count car-

diomyocytes [35, 50]. Radiocarbon birth dating has shown

Fig. 1 Cardiomyocyte cellular structure across species. Zebrafish and

newt are mostly mononucleated and diploid [59, 154]; an organization

that seems to favour a higher proliferative response to injury. Rodents

show either mono- or bi-nucleated diploid cardiomyocytes [38].

Following stress or injury, mostly, these cardiomyocytes respond with

hypertrophy; however, only those mononucleated cells appear to

initiate proliferation. Human cardiomyocytes are mostly mononucle-

ated and tetraploids. Limited data in young humans up to 20 years

old, suggest that cardiomyocytes have some proliferative capacity

[51, 52]. However, in later life, hypertrophy is the predominant

response to injury in human
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that cardiomyocyte turnover is approximately 1% over

20–40-year-old hearts [51]. A more recent study using new

confocal imaging and optical dissector method suggested

that cardiomyocyte division contributes to heart growth in

young humans up to 20 years of age, with a cardiomyocyte

turnover of approximately 1.9% [52]. Some reports have

shown that adult rat cardiomyocytes can proliferate in

culture after treatment with FGF1 concomitant with

p38MAP kinase inhibition [25]. Indeed, normal adult car-

diomyocytes rarely appear to re-enter the cell cycle and

proliferate [41], and terminally differentiated mammalian

cardiomyocytes show a predominantly hypertrophic

response to mitogenic stimuli [53, 54]. One significant

difference between embryonic and adult heart is the

expression of cell cycle promoters, such as CDKs, cyclins,

and proto-oncogenes, markedly expressed in embryonic

hearts, corresponding to high cardiomyocyte cell cycle

activity, while their expression is lower in the adult heart.

In general, negative cell cycle regulatory genes, such as

CDK inhibitors, are upregulated in adult hearts, where

cardiomyocyte cell cycle activity is extremely low [41].

There is now a well-recognized link between mam-

malian cardiomyocyte hypertrophy and proliferation which

involves a complex series of interconnected signaling

pathways, including JAK, PLC, JNK, ERK, calcineurin,

STAT, RAS, and MEF2 [5]. In addition to an increase in

cellular RNA and protein, hypertrophy results in tran-

scriptional reprogramming that closely resembles the fetal

gene program that is known to drive hyperplasia in the

developing fetus [55, 56]. It is hypothesized that car-

diomyocyte hypertrophy, without hyperplasia, in mammals

might be the result of a fundamental block in karyokinesis

and cytokinesis by which the adult cardiomyocyte is unable

to disassemble sarcomeres, uncouple from neighbouring

cells and divide [57].

Mammals and zebrafish

Compared to mammals, cardiomyocytes from lower ver-

tebrates, including teleost fish and salamander, show high

proliferative capacity in adulthood [58]. The molecular

mechanisms underlying this trait are not well understood.

Better understanding could potentially provide important

therapeutic targets for a range of cardiac disorders where

cardiomyocyte loss plays a major role. A relevant differ-

ence between mammalians and zebrafish is that, in the

latter, cardiomyocytes do not undergo cytokinetic mitosis.

In fact, the majority of cardiomyocytes in adult zebrafish

continue to have a single nucleus and a diploid genome

(2n), similar to that observed in fetal mammalian hearts

(vide supra) and associated with significant proliferative

ability [59]. There is a common set of genes that drive

growth and development of the embryonic heart in

mammals [60] and fish [61]. A similar gene program is

activated in the adult mammalian heart following injury or

haemodynamic stress [5, 62, 63]. Many of these genes also

appear to be activated in response to resection of the

ventricle apex in the zebrafish [8, 64]. While this process

has been studied in a variety of mammalian animal models,

less is known about the related processes in the adult

human heart.

Becker and colleagues [65] created and analysed a

transgenic zebrafish embryo carrying a mutation in the

troponin (tnnt2) gene associated with hypertrophic car-

diomyopathy (HCM) in humans. An important finding in

this model was that although the mutant gene resulted in

abnormal sarcomeric organization, similar to that observed

in humans and mouse models with HCM, the zebrafish

exhibited a hyperplastic rather than a hypertrophic pheno-

type. Thus, the response of the zebrafish to stress or injury

appears to be, primarily, a hyperplastic response, in con-

trast to mammals where the response is almost exclusively

one of hypertrophy.

The heart’s response to injury: hypertrophy
versus hyperplasia

In mammals

A variety of mechanisms are present in all organisms for

dealing with tissue damage resulting from injury or disease.

Mammals can regenerate liver, pancreas and skin, and can

partially repair injury of peripheral nerves or skeletal

muscle, but retain poor regenerative ability of other organs

[66].

While the adult mammalian heart is considered a ter-

minally differentiated organ, the fetal heart retains a

remarkable proliferative capacity, capable of regenerating

cardiomyocytes following injury [67, 68]. Porrello and

colleagues [6] have shown that neonatal mouse car-

diomyocytes can regenerate following surgical resection of

the apex of the left ventricle. However, by day 7, the

regenerative capacity is lost and replaced by a more clas-

sical fibrotic response resulting in scar tissue and impaired

cardiac function. This finding has re-energized the search

for mechanisms that underpin cell cycle arrest in the

mammalian heart, with the intention of pursuing key

molecular targets that might induce mature mammalian

cardiomyocytes to re-enter the cell cycle.

Following transmural myocardial infarction (MI) in

adult rats and human, the typical response to injury is

inflammation and ventricular remodeling with a fibrotic

scar forming at the site of MI [69, 70] (see Table 1).

Reparative fibrosis appearing within and around the MI

region is essential to safeguard the structural integrity of
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infarcted tissue, although interstitial fibrosis in non-in-

farcted myocardium alters tissue stiffness and can lead to

ventricular dysfunction [71]. Following such injury,

mammalian myocardium typically responds with car-

diomyocyte hypertrophy combined with hyperplasia of

non-cardiomyocyte cell populations in the heart including

fibroblasts [5]. Cardiac hypertrophy, characterized by an

increased cardiomyocyte size, enhanced protein synthesis

and re-organization of the sarcomere [72], is acknowledged

as an adaptive response intended to preserve cardiac

function in the face of increasing haemodynamic stress.

This physiological response normalizes wall tension and is

necessary in the short term to allow the animal to adapt to

the initial myocardial loss or haemodynamic load [5].

However, more prolonged stress converts this to a patho-

logical process where a prolonged stimulus to cardiac

hypertrophy leads to abnormal cellular responses within

the myocardium typified by interstitial fibrosis, a switch to

less-efficient myosin types and abnormal calcium handling

[73]. These features result in so-called adverse remodeling

of the ventricle and, in addition to contractile dysfunction,

can lead to congestive cardiac failure and its fatal sequelae

of progressive pump failure or sudden arrhythmic death.

Apoptosis is also a feature of cardiac hypertrophy partic-

ularly when associated with congestive heart failure [74].

However, evidence has emerged that the adult mammalian

heart does contain a small population of progenitor cells

capable of differentiating into cardiomyocytes [75]. These

cells might play a role in the replacement of lost car-

diomyocytes [76–78], although they do not appear to be

activated as part of a replacement process [59].

Nevertheless, the presence of active DNA synthesis

[35], even if low, and the presence of putative progenitor

cells within the hearts of adult mammals, gives rise to the

possibility that proliferation of adult cardiomyocytes could

be stimulated therapeutically as part of a process that could

support repair and recovery. Why existing cardiac pro-

genitor cell populations are unable to repair cardiac muscle

in response to injury and, most importantly, how to trigger

this untapped resource, are not yet clear.

Currently, many laboratories and institutions around the

world are focused on the engraftment of various types of

progenitor cells into infarcted hearts to achieve myocardial

tissue renewal [79–83]. To date, most of these studies

suggest that, while there may be small improvements in

cardiac function, there is little evidence, in both human and

mouse models, that such progenitors truly engraft and

mature into active cardiomyocytes [84, 85]. There is evi-

dence, however, that they may increase angiogenesis,

leading many to believe that progenitor cells release a

variety of growth factors that contribute to the response to

injury by stimulating growth and repair of non-cardiomy-

ocyte-derived cells [86–88].

The zebrafish

While mammals lose the ability to regenerate the heart

within a few weeks after birth, lower vertebrates, such as

amphibians and fish, retain this ability to regenerate the

heart, and, indeed, most of their organs, following signifi-

cant injury or loss of tissue well into adulthood (see table).

In the zebrafish, resection of up to 20% of the ventricle

apex results in complete regeneration and repair of the

ventricle within 60 days [89]. Zebrafish heart regeneration

proceeds through injury-induced proliferation of car-

diomyocytes which retain their capacity to divide and

proliferate postnatally [33, 89–91]. BrdU labelling studies

have shown BrdU-positive cardiomyocytes along the

leading edge of the regenerating heart. Lepilina and co-

workers [92] suggested that regenerating myocardium

arises and matures from undifferentiated cardiomyocyte

progenitor cells of epicardial origin. In contrast, two more

recent genetic fate-mapping studies [7, 11] unambiguously

demonstrated that pre-existing committed cardiomyocytes

are, in fact, the main source of the cells contributing to

cardiac regeneration in the zebrafish.

Thus, although cellular mechanisms involved in cardiac

regeneration have recently been unraveled, the molecular

pathways that might be involved in initiating and main-

taining the cardiomyocyte response to injury remain

uncertain. Further studies are required to clarify these

mechanisms that induce a hyperplastic, and not a hyper-

trophic, response in this setting. Genetic similarity between

humans and zebrafish [93, 94] support the notion that

cardiac regenerative pathways can be dissected in the fish

model.

Table 1 Comparative scheme outlining the cardiac response to injury in mammals versus zebrafish

Human Mice Zebrafish

Response to injury Fibrosis followed by cardiomyocyte hypertrophy Cardiomyocyte proliferation

Cardiac injury end-point Heart failure/contractile dysfunction Normal functionality re-established

Regenerative potential Unknown Up to 7 days after birth in mice Lifelong
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Zebrafish embryo as a model of cardiomyocyte
proliferation

The zebrafish heart is emerging as an increasingly flexible

model to study many developmental, genetic and acquired

cardiac disorders [95]. Zebrafish heart development is well

characterized [9, 96–98] adding to numerous early publi-

cations on this topic [99, 100]. Despite having only two

chambers, the fish heart retains many of the structural and

developmental components of the mammalian heart [101],

including a three-layer ventricular wall (epicardium,

myocardium and endocardium) from three days post fer-

tilization [102, 103]. The early mammalian heart is derived

from first and second heart fields [102, 103], although there

is evidence that a population of lateral mesoderm-derived

haemangioblasts represent an evolutionary antecedent of

the second heart field in zebrafish [104].

The zebrafish embryonic heart is particularly suited to

studying aspects of cardiomyocyte proliferation for a

number of important reasons. First, the embryonic heart in

the early stages is composed of only a few hundred car-

diomyocytes [105, 106], and this allows accurate and

reproducible approaches to count total cardiomyocyte

number in either chamber or both. In addition, transgenic

technology using fluorescent proteins [107, 108] can be

targeted to developing cardiomyocytes, which allows the

ready visualization of in vivo development and function of

these cells [109].

The small size of the zebrafish embryo permits exchange

of gases by passive diffusion, allowing their survival and

relatively normal development for several days even in the

absence of a functioning heart and circulation [110]. This

permits the phenotypic analysis of embryos with severe or

lethal cardiovascular mutations and defects [111, 112]

which would otherwise be extremely difficult to assess in

higher vertebrates where they would be highly likely to die

in utero [13].

There are no well-described models of myocardial

infarction or cardiac hypertrophy in lower vertebrates akin

to those developed and exploited over many years in small

mammals [113]. To circumvent this problem, researchers

have developed more radical approaches of resecting a

piece of the ventricle. This was first reported in salaman-

ders [114] and then in the zebrafish, where approximately

20% of the ventricle apex can be resected, and regrowth

will occur within 60 days [89]. This model has now been

reproduced in many laboratories around the world and has

become a standard approach to studying the molecular and

cellular mechanisms associated with cardiomyocyte pro-

liferation leading to what has come to be known as cardiac

regeneration. However, this resection model is only feasi-

ble in a low-pressure heart such as that found in lower

vertebrate species and in the early postnatal time period in

mice. In a high-pressure haemodynamic system, typical of

adult mammalian hearts, acute bleeding from the resection

margin results in rapid death. Not only does this indicate

that the injury response to heart resection is different in

zebrafish due to the underlying physiology, but it also

poses the question of whether repair of a resected piece of

heart by cardiomyocyte proliferation is likely to convey an

evolutionary advantage for mammals since it would most

likely result in exsanguination from the heart itself.

Arguably, therefore, the best option for a mammalian

heart, working at higher physiological pressures, and faced

with a large zone of injury is to generate an area of scar

tissue as quickly as possible in order to heal the infarcted

territory and avoid the risk of myocardial rupture and

bleeding that would ensue [115]. In addition, since this

ventricle apex resection is not as physiologically or clini-

cally relevant as a model [116], others have used

cryoinjury in which liquid nitrogen is used to injure a

localised region of ventricle in a regional manner similar to

myocardial infarction [117, 118]. Following this cryoin-

jury, the adult zebrafish heart demonstrates features

consistent with regeneration including cardiomyocyte

proliferation, but in this case, there is also a more readily

observed area of scar which requires up to 3 months for

complete repair.

Mechanisms controlling organ and tissue regeneration

are conserved between larvae and adults at the cellular and

molecular levels, suggesting that the regenerative

machinery directing cell proliferation in response to injury

may exist from early developmental stages [119]. Indeed,

amputation of either the adult or embryo zebrafish fin, a

widely used model of tissue regeneration, induces prolif-

eration of progenitor cells from the amputation margin

[120]. In the same model, at molecular level, transcription

factors and components of various signaling pathways

normally upregulated during adult fin regeneration [121]

are also increased during larval regeneration [119–121].

We have recently developed and validated a model of

heart injury and recovery in the zebrafish embryo using

highly targeted laser injury [122] (supplementary movie).

The use of embryos significantly shortens the injury

response and subsequent repair time period. We have

demonstrated a striking ability of the zebrafish embryonic

heart to regenerate and recover cardiac function by 24 h

post-laser injury. Using this approach, the zebrafish embryo

can be used in a high-throughput model system to study

human disease. For example, figure S1 clearly shows a

protocol to study heart response to injury that can be

completed in an experiment over a period of only 4–5 days.

Embryos can be injected at 1–2 cell stage with one or more

compounds, such as labelled mRNA, for overexpressing

genes, or CRISPR/Cas 9 for gene knockout or morpholino
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oligonucleotides for gene knockdown (figure S1A).

Otherwise, embryos can be exposed to small molecules and

pharmacological compounds of interest by simply adding

these to the medium at the desired developmental stage

(figure S1B). Embryos can then be injured, for example

using a targeted laser at 72 hpf as described, followed by

collection of data of cardiac function, including ejection

fraction and tail blood flow (figure S1C). Using transgenic

lines expressing fluorochrome driven by cardiac markers,

such as tg(myl:gfp)y1 in figure S1D, hundreds of embryonic

hearts can be isolated in a few minutes, for immunohisto-

chemistry, gene and protein analysis (Figure S1E). The

laser injury technique also lends itself to a high-throughput

approach; it is possible to create a standardised level of

heart injury to the ventricle in approximately 50 embryos

per hour. We have also applied the laser-induced injury to

different cardiac regions and structures in the zebrafish

larva, including bulbus arteriosus and atrioventricular valve

and have demonstrated the potential of the zebrafish to be

used for various models of cardiac disease [123]. Although

the overlying tissue, the pericardium in this case, is also

partially injured, this is proportionately less compared to

existing surgical approaches (apical resection, cryoinjury)

in adults requiring damaging tissue layers covering the

heart, making our model more myocardial-specific.

Using the laser-induced injury model, we have explored

a number of molecular pathways that could enhance

recovery from myocardial injury. In particular, we

explored the relationships between cyclin-dependent kinase

(CDK)9, La-related protein (LARP)7 and the positive

transcription elongation factor (P-TEF)b complex of which

they are molecular partners. CDK9 has been implicated in

mammal cardiac hypertrophy [124]. In our experiments,

we first downregulated CDK9 and or LARP7 by pharma-

cological or morpholino knockdown and found that they

had mainly opposite effects, to CDK9 strongly reducing its

action and LARP7 slightly increasing cardiomyocyte pro-

liferation [125]. In separate experiments, we found that

prior CDK9 downregulation impaired the cardiac recovery

from laser injury, whereas LARP7 knockdown did not.

Interestingly, co-injection of LARP7 and CDK9-targeted

morpholinos rescued the CDK9 phenotype, both in terms

of cardiomyocyte proliferation and cardiac function. We

concluded that LARP7 acts to maintain CDK9 in an

inactive state in the P-TEFb complex and that suppressing

LARP7 activity results in a derepression of CDK9 that

ultimately leads to a more active P-TEFb complex.

Studying the repair process following injury during car-

diogenesis and development clearly raises some questions

of relevance of these experiments to the mammalian heart.

However, compared to the adult, the zebrafish larva not

only offers the advantage to study hundreds of animals

over a short time period, but it also allows the possibility to

study severe developmental cardiac defects which would

otherwise be extremely challenging to study in mammalian

models. High-throughput drug screening programs, for

example, have been successfully used in zebrafish to

explore novel therapeutic candidates before moving for-

ward to more expensive mammalian model systems

[126–128].

Molecular pathways linked to cardiomyocyte
proliferation as targets for drug development

Several molecular pathways are under investigation for

their potential ability to inhibit or activate cardiomyocyte

growth and or proliferation and could be harnessed to

develop heart disease therapies (Fig. 2). In some cases, the

role of these pathways in cardiomyocyte proliferation has

been unraveled in zebrafish. For example, a balance

between CDK9 and its repressors, including LA-Related

Protein 7, can switch on or off cardiomyocyte proliferation

in zebrafish [125]. However, CDK9 knockdown affects

somatic growth and development of a number of key

embryonic structures including the brain, heart, eye and

blood vessels [129]. For therapeutic strategies, this raised

the question to develop tissue- or cell-specific anti-CDK9

drugs. The activity of the P-TEFb complex, a key driver for

transcription formed by CDK9 and cyclin T, is increased in

cardiac hypertrophy in mammals [124]. In addition, the

CDK9 activity is derepressed by the dissociation of 7SK

small nuclear RNA [130, 131] and HEXIM1 [132, 133],

two CDK9 inhibitors. HEXIM1 knockout mice die during

fetal development and exhibit all the genetic and physical

hallmarks of cardiac hypertrophy [134]. CDK9 has also

been shown to regulate cell cycle and is involved in

Fig. 2 Schematic representation of possible molecular pathways that

could be targeted therapeutically to promote cardiomyocyte prolifer-

ation in mammals (see text)
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cardiomyocytes differentiation from mice embryonic stem

cells [135]. Mahmoud and colleagues [29] showed that in

neonatal and adult cardiomyocytes, Meis1 deficiency

increases cardiomyocyte numbers, whereas Meis1 overex-

pression activates CDK inhibitors INK4b-ARFINK4a and

Cdkn1a genes, which leads to cell cycle arrest because of

inhibition of CDKs. miRNAs are also potential targets for

cardiomyocyte proliferation therapies (Fig. 2) [136]. As

miRNAs generally repress gene expression by promoting

mRNA degradation and/or by inhibiting translation, the

final effects on cardiomyocte proliferation are mediated by

inhibiting or activating the cell cycle [137, 138]. For

example, miR-590 and miR-17/92 clusters promote car-

diomyocyte proliferation by inhibiting the proliferation

repressors Homer protein homolog 1 (Homer1) and

Homeodomain-only protein x (Hopx), whereas miR-15

family represses cardiomyocyte proliferation by inhibiting

the proliferative activator Checkpoint kinase 1 (Check1).

Furthermore, the muscle-specific microRNA-1 (miR-1),

which normally keeps CDK9 derepressed at the transcrip-

tional level [139], was downregulated at a very early stage,

following cardiac hypertrophy induced in a mouse model

of aortic constriction-induced hypertrophy.

Also, the Hippo/Yap pathway plays an essential role in

the regulation of heart development and postnatal car-

diomyocyte proliferation [140], highlighting the potential

for enhancing cardiac regeneration (Fig. 2) [141]. Indeed,

modulation of this pathway in the neonatal heart has

been shown to prolong the regenerative window. However,

Hippo/Yap also appears to influence cardiomyocyte

autophagy and apoptosis [142]. Among the mitogens, IGF2

has been shown to activate cardiomyocyte proliferation and

is required for zebrafish heart regeneration [143], whereas

TGFb/activin signaling plays important roles in car-

diomyocyte proliferation and scar formation [144].

Modulation of inflammation may provide a key thera-

peutic strategy to drive heart regeneration. Indeed, the

types of macrophage present in the regenerating neonatal

mouse heart may provide essential stimuli for angiogenesis

and regeneration [145].

Hypoxia, redox signaling and metabolic phenotypes are

also key regulators of cardiomyocyte proliferation and

cardiac renewal [146]. Puente et al. [147] have recently

shown that cell cycle arrest in postnatally terminally dif-

ferentiated cardiomyocytes is triggered by mitochondrial

reactive oxygen species-mediated oxidative DNA damage.

This suggests that ROS may play key roles in cell cycle

regulation and differentiation during cardiac development.

In turn, this suggests that cells responsible for cellular

turnover in the heart, such as immature and/or mature

myocytes or progenitor population may need an environ-

ment with a lower oxygen concentration to proliferate

efficiently. The heart may be unique in the nature of this

oxygen-sensitive response. On the one hand, it has high O2

consumption [148], and on the other hand, its cardiac

progenitor cells appear to benefit from hypoxic precondi-

tioning which improves survival and homing of engrafted

cells into an infarcted territory [149]. Indeed, the epi-

cardium and subepicardium regions contain multipotent

progenitor cells [150] which could represent a novel

hypoxic niche of the heart. These cells express Hif1a and

respond to hypoxia by increasing cell proliferation and,

thus, provide a source of new cardiac cells following injury

including fibroblasts, perivascular smooth muscle cells

[151] and cardiomyocytes after thymosin b4 activation

[144, 145, 152]. A better understanding of these and other

molecular mechanisms would allow us to develop exciting

new strategies to improve cardiomyocyte proliferation and

cardiac regeneration.

Future perspectives

The question remains as to how drugs or therapeutic

stategies could be used to support cardiac repair in disease

conditions where the heart was failing or at risk of failing

following injury, stress or cell loss. Clearly, a key time for

treatment would be around the time of an acute myocardial

infarction where many previous studies of bone-marrow-

derived stem cells have been extensively tested over the

last 10 years [153] with overall, relatively disappointing

results.

The possibility of directly harnessing cellular mecha-

nisms to achieve therapeutic benefit in patients with both

heart disease remains elusive. To date, the possibility of

providing therapies targeted at enhancing cardiomyocyte

proliferation that could either be administered acutely, at

the time of acute injury such as infarction, or in the long

term to patients with chronic left ventricular systolic dys-

function remains an important but elusive target. The key

issue would be whether such drugs could be administered

orally or intravenously and whether their benefits out-

weighed the risk of harm. At this stage, we are a long way

from knowing the answers to these questions since no

viable candidate drug has yet been developed despite a

number of interesting pathways currently undergoing fur-

ther studies. Any such drug with the capacity to reactivate a

highly differentiated cardiomyocyte into a more active

proliferative state is likely to carry a significant risk of

inducing unregulated cell growth either in the target tissue

or in other exposed tissues. The risk of neoplasia is,

therefore, clear unless the drug can be highly targeted to a

specific cardiac pathway or delivered in a highly localised

manner directly to the heart.
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