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Abstract Regulation of the microtubule cytoskeleton is

of pivotal importance for neuronal development and

function. One such regulatory mechanism centers on

microtubule plus-end tracking proteins (?TIPs): struc-

turally and functionally diverse regulatory factors, which

can form complex macromolecular assemblies at the

growing microtubule plus-ends. ?TIPs modulate important

properties of microtubules including their dynamics and

their ability to control cell polarity, membrane transport

and signaling. Several neurodevelopmental and neurode-

generative diseases are associated with mutations in ?TIPs

or with misregulation of these proteins. In this review, we

focus on the role and regulation of ?TIPs in neuronal

development and associated disorders.
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Introduction

Microtubules (MTs) are one of the major types of filaments

that constitute the eukaryotic cytoskeleton. Over the years,

MTs have emerged as key players in cellular processes

such as vesicle and organelle transport, DNA segregation

during mitosis, cell migration and maintenance of cell

polarity. Neurons are among the most complex and

polarized cells, whose distinct morphology allows them to

establish intercellular connections and propagate chemical

and electrical signals across the nervous system. Mature

neurons typically extend multiple processes, one of which

(the axon) serves as a transmitter whereas others (the

dendrites) act as receivers of input from other neurons.

MTs are important for numerous functions in nerve cells

(reviewed in [1–3]), such as long-range transport of cargo

and neuron-specific processes like growth cone guidance.

Indeed, MTs are indispensable for neurodevelopment, and

many neurological diseases stem from defects in the MT

cytoskeleton or its regulation.

Evidence for the existence of MTs was first obtained

from electron microscopy (EM) data in the 1950s (re-

viewed in [4]). Prior to the development of EM, fibrillar

structures had already been described as part of the mitotic

spindle and cytoplasm. However, interpretative differences

and technical limitations of early microscopy made it

challenging to identify unity among observations [4]. It

therefore was not until 1963 that MTs were acknowledged

as distinct structures and named by Slautterback, Ledbetter

and Porter [5, 6]. Today, we know that MTs are hollow

tubes with a diameter of approximately 25 nm. MTs are

typically assembled from 13 laterally associating protofil-

aments, which in turn consist of a, b-tubulin dimers

aligned in a head-to-tail fashion. As a consequence of

tubulin dimer polarity, MTs possess polarity throughout,

which results in distinct ends of the polymer: the minus-

and the plus-end, exposing a- and b-tubulin, respectively.

MTs alternate between rapid phases of growth and

shrinkage, a behavior termed ‘dynamic instability’ [7]. A

transition from shrinkage to growth is called a rescue,

whereas the opposite transition is referred to as a

catastrophe.

Dynamic instability allows MTs to be swiftly remodeled

in response to environmental cues. The MT cytoskeleton is

suitable for rapidly sensing and responding to changes in

the intracellular environment. To this end, the MT

cytoskeleton acts in concert with a large number of proteins

(MAPs for MT-associated proteins) that either influence

MTs themselves or relay signals from the MT cytoskeleton

to other parts of the cell. MAPs are known to regulate MT

behavior such as stability, assembly, bundling and

targeting by associating with specific parts of the MT lat-

tice or by interacting with the soluble tubulin pool. Well-

characterized neuronal MAPs include MAP2 and tau,

which maintain a polarized, mutually exclusive distribution

and decorate MT bundles in dendrites and axons, respec-

tively. Both proteins stabilize MTs and are able to induce

MT bundling (reviewed in [8]). Abnormal phosphorylation

of tau triggers its dissociation from MTs and causes tau to

aggregate, resulting in the formation of potentially toxic

tau deposits (neurofibrillary tangles) found in the brains of

patients suffering from Alzheimer’s disease (AD) and other

tauopathies. This process is accompanied by degradation of

the axonal MT cytoskeleton, suggesting a model in which

dissociation of tau results in MT instability. It should be

noted, however, that the precise hierarchy of events during

the onset of AD remains unclear. Additional roles for tau

are still emerging and may shed new light on the biology of

tauopathies (reviewed in [9]). Among these is the regula-

tion of the subcellular distribution of MAPs that

specifically bind to the growing MT plus-end [10], the

subclass of MAPs that this review will focus on.

MT dynamics are most pronounced at the plus-end.

Although growth events have been observed at the MT

minus-end [11], in cells minus-ends are often anchored or

stabilized, restricting their dynamic behavior [12]. At the

growing plus-end, freshly polymerized MT stretches

contain GTP-loaded b-tubulin as opposed to the GDP-

bound subunits present in the MT lattice, resulting in a

so-called GTP cap. Moreover, the structures of poly-

merizing and depolymerizing MT plus-ends are different

[13]. The unique chemical environment of the polymer-

izing MT plus-end grants it its own interactome within

the realm of MAPs, consisting of MT plus-end tracking

proteins (?TIPs; reviewed in [14–16]). ?TIPs display a

large structural and functional variation between indi-

vidual proteins. However, a common theme sets them

apart from other MAPs: ?TIPs associate with the poly-

merizing MT plus-end, where they act as powerful

regulators of MT dynamics and MT interactions with

other structures.

In this review, we use the neuronal MT cytoskeleton to

illustrate the role of ?TIPs in the development of one of

the most polarized and complex cell types. Before dis-

cussing plus-end tracking mechanisms and highlighting the

roles and regulation of various ?TIPs in neurons, we touch

upon the function of the MT cytoskeleton in the developing

and mature nervous system. Moreover, we highlight the

role of ?TIPs in neurodegenerative and neurodevelop-

mental diseases. We conclude this review with an outlook

on the future of neuronal ?TIP research and briefly discuss

the drug target potential of these pivotal proteins.
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Microtubules in neurons

Neurons are derived from progenitor cells located in the

ventricular zone deep inside the brain, necessitating young

neurons to migrate large distances into remote regions.

During their journey, neurons undergo dramatic changes in

morphology and establish complex polarity. Even mature

neurons must remain plastic as connections between neu-

rons, synapses, are continuously rewired in response to

stimuli. This intricate development relies heavily on both

the MT and the actin cytoskeleton, on their crosstalk and

on their accessory proteins. For a detailed analysis of the

role of the cytoskeleton and in particular MTs during

neuronal development, we refer the reader to a number of

excellent reviews [1–3, 17]. Here, we briefly highlight

some of the main events involving MTs during the matu-

ration of multipolar neurons. It should be noted that the

development of neurons extending a single process,

unipolar neurons, is considerably different [18].

Microtubules during neurite formation and axon

outgrowth

Neurons start out as spherical, unpolarized cells with a MT

organization similar to that commonly found in mam-

malian cells (Fig. 1a). In young neurons, MTs mainly

nucleate from the centrosome, with MT minus-ends

pointing inward and plus-ends oriented towards the cell

periphery [19]. Upon differentiation, neurons undergo

symmetry breaking. During this event, the neuron extends

multiple processes that start as small buds on the mem-

brane and elongate to form thin protrusions [20]. These

early protrusions, termed neurites, mature into axons and

dendrites when the neuron polarizes. It has been proposed

that neurite formation is powered, at least in part, by MT

sliding. One model suggests that MAP2c (microtubule-as-

sociated protein 2c) induces stable MT bundles, which

translocate to the membrane where they exert a dynein-

dependent force to trigger protrusion formation [21].

Another model proposes that the motor protein kinesin-1

powers the displacement of MTs along other MTs, exerting

a mechanical force on the membrane which results in

neurite extension [22] (Fig. 1b).

Shortly after neurite extension, the axon is formed

(Fig. 1c). This event is preceded by local stabilization of

MTs in the pre-axonal neurite [23]. As the newly formed

axon starts to elongate, it relies on stable MT tracks for the

transport of proteins and organelles necessary for the for-

mation of new axonal segments [24]. The direction of axon

outgrowth is determined by the growth cone, which probes

the extracellular environment to allow non-random estab-

lishment of synaptic connections. Amidst the actin, which

drives invasion of the extracellular matrix (reviewed in

[25]), an array of MTs controls the direction in which the

growth cone advances (Fig. 1d; [26]). The MT array

assumes a looped conformation in pausing growth cones

[27], while active growth cones maintain a dynamic MT

array. These MTs probe the growth cone cortex and

respond to guidance signals by being stabilized or desta-

bilized, prompting the growth cone to turn towards or away

from the guidance cue, respectively [24, 28]. As the axon

matures further, it branches to allow higher interconnec-

tivity. Branch formation is accomplished by splaying of

tau-decorated MT bundles at branching sites. Here,

dynamic MTs invade actin-rich areas close to the mem-

brane to form a collateral branch [29]. Thus, while dynamic

MTs play only a minor role in neurite outgrowth, they are

crucial for axon polarization, pathfinding and branching.

Microtubules during dendrite maturation

Dendritic differentiation occurs later in development

than axogenesis and prompts dramatic changes to the

soon-to-be dendritic MT infrastructure. Prior to dendri-

togenesis, mammalian precursor neurites cycle between

phases of growth and shrinkage and maintain *80 %

plus-end out1 MT directionality [30]. Perhaps the most

striking feature of the dendritic MT cytoskeleton is the

appearance of MTs with their minus-ends oriented

towards the dendritic tips [31, 32] (Fig. 1e). However, it

should be noted that the ratio between minus- and plus-

end out MT orientations changes per neuron type and

even differs between regions of the same dendrite. In

invertebrates, as much as ninety percent of dendritic

MTs are oriented minus-end out [33, 34]. Differences in

MT orientations between axon and dendrites likely

contribute to proper targeting of specific cargo by

enabling transport by specific motor proteins. While

dendrites branch more than axons, the behavior of MTs

during this process has been studied less extensively.

Specialized Golgi compartments called Golgi outposts

were identified as potential sites of MT nucleation in

centrosome-free Drosophila neurons [35], and were

shown to localize to dendritic branch points [36]. Since

axon branching depends on dynamic MTs arising from

splayed bundles, it seems likely that dynamic MTs

nucleated at Golgi outposts fulfill a similar role in

dendritic branching [35].

1 With the terminology ‘plus-end out’, we designate MTs with their

plus-end oriented towards the cell periphery, or towards dendritic or

axonal tips. ‘Minus-end out’ indicates MTs of which the minus-end is

oriented towards the cell periphery or process tips.
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Microtubules and synapses

The formation of synapses, connections between the axon

of one neuron and the dendrite of another, is the final and

ongoing step in neuronal maturation. Excitatory synapses

are formed on dendritic spines, which are actin-rich pro-

trusions on the dendrite that scaffold the post-synaptic

density. The absence of MAP2-positive MTs in dendritic

spines raised the belief that the MT cytoskeleton remained

confined to the dendritic shaft [37]. However, visualization

of the behavior of MTs and MT plus-ends revealed that

dynamic MTs transiently invade dendritic spines by poly-

merizing from proximal sites [38–41]. MT-depolymerizing

drugs such as nocodazole markedly reduce the number of

spines, while the number of dendrites remains unaffected

[38]. Nocodazole also blocks the spine-inducing effect of

the growth factor BDNF (brain-derived neurotrophic fac-

tor), while the MT stabilizing drug taxol enhances BDNF-
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Fig. 1 Microtubule organization and function during neurodevelop-

ment. Cultured dissociated neurons start out as spherical, unpolarized

cells with MTs oriented with their plus-ends towards the plasma

membrane (a). Upon symmetry breaking, neurite extension is thought

to be facilitated by motor proteins, which were proposed to push MTs

and thus exert a force on the membrane to form protrusions (b).

Young neurons possess multiple neurites and maintain a mainly plus-

end out MT orientation (c). While remaining neurites cycle between

phases of growth and shrinkage, one neurite rapidly extends to form

the axon. In this neurite, MTs become stabilized and MT bundles are

decorated with the axon-specific MAP tau, while MTs remain

oriented plus-end out. The rate of advance and the directionality of

axon outgrowth is controlled by the growth cone, a specialized

structure at the tip of the axon that contains a dynamic array of MTs.

Local stabilization of a MT in one of the filopodia of the growth cone

prompts the growth cone to turn in that direction (d). Later in

development, the remaining neurites differentiate into dendrites.

Dendrites acquire unique antiparallel MT bundles decorated by

MAP2, presumably contributing to selective cargo trafficking (e). The

post-synapse is present at the tips of dendritic spines. Targeting of

dynamic MTs to spines triggers morphological changes and alters

synaptic strength, possibly by allowing the delivery of specific cargo

to the spine or activating signaling processes (f)

2056 D. van de Willige et al.

123



induced spine formation [40]. Finally, depletion of end-

binding protein 3 (EB3), a key scaffolding factor at the MT

plus-end and regulator of MT dynamics discussed below,

reduces the amount of spines [40]. These studies imply

dynamic MTs as modulators of neuronal plasticity. ?TIPs

involved in synaptic remodeling may rely on dynamic MT

plus-ends as a means of reaching spines targeted for

remodeling [38]. Other candidate regulatory mechanisms

involve the facilitation of cargo delivery to the postsynaptic

terminal [1] (Fig. 1f), though it remains to be elucidated

exactly which events are at play.

Microtubule plus-end tracking proteins in neurons

MT behavior during neurodevelopment has been cata-

logued extensively. However, research has only just begun

to uncover which factors control MT dynamics and how

MTs are able to relay intricate signals in neurons. Many of

the cellular processes and the molecular mechanisms that

underlie them remain unknown to date.

Since ?TIPs have emerged as potent MT regulators,

they are excellent candidates to control MTs and relay their

signals during neuronal development and homeostasis.

Indeed, numerous ?TIPs have already been linked to

neurodevelopmental functions (Table 1). New ?TIPs are

still discovered on a regular basis, and it is likely that

additional roles for ?TIPs in neurons will be uncovered in

the future. Current knowledge suggests that, based on their

mode of association with MTs, ?TIPs can be divided into

three categories: end-binding proteins (EBs), EB-depen-

dent ?TIPs and EB-independent ?TIPs. It should be noted

that even in the case of EB-independent ?TIPs, there is

crosstalk between these ?TIPs and EBs albeit indirectly.

Therefore, none of these categories can be regarded as fully

independent.

End-binding proteins

EBs are at the core of the MT plus-end interactome. They

are known to regulate MT behavior both autonomously and

by providing a structural scaffold for other ?TIPs [42–44].

EB plus-end tracking depends on an N-terminal calponin

homology (CH) domain that grants MT affinity [45]. It has

been shown that EB proteins associate with the MT plus-

end by a CH-dependent nucleotide sensing mechanism [46,

47]. MT binding is regulated by a negatively charged

C-terminal domain, which repels the negatively charged

MT lattice and thereby contributes to specificity for the MT

plus-end [48]. In addition, C-terminal coiled-coil and EB-

homology domains mediate homo- and heterodimerization

as well as interaction with other proteins including ?TIPs

[49, 50].

EBs mainly function as scaffolding proteins at the MT

plus-end, where they form a hub for other ?TIPs to asso-

ciate with and thereby regulate local protein composition

and MT dynamics. This is illustrated by the fact that EBs

promote catastrophes when reconstituted with tubulin in

biochemical preparations, while they reduce the number of

catastrophes and promote continuous MT growth in cells.

This suggests that EBs primarily act on other MT regula-

tors in cells rather than autonomously [44]. Plus-end bound

EBs rapidly exchange with the cytosolic pool, providing a

rapidly remodeling platform for protein binding [43, 51].

Quantitative proteomic studies of non-neuronal cell lines

have revealed that EBs are the most abundant plus-end

binding proteins: the EB family outnumbers the second

most abundant ?TIPs by factors of approximately 7–30 in

cultured fibroblasts [52, 53]. While technical limitations

arising from sample heterogeneity have hampered large-

scale quantitative proteomics studies in nerve cells [54], it

is expected that EBs dominate neuronal MT plus-ends in a

similar fashion as in cultured fibroblasts. The relatively

high concentration of EBs compared to other ?TIPs offers

a simple explanation for how EB-decorated plus-ends are

efficiently formed and maintained. Such a hub provides

cells with an extra layer of control to regulate large num-

bers of ?TIPs with minimal changes to the MT

cytoskeleton itself, making it easier to retain MT integrity

and reliant functions alongside.

In mammalian cells, the EB family is represented by

three members (EB1, EB2 and EB3), which all bind to MT

plus-ends but differ in their affinity for MT tips, phos-

phorylation and affinity for binding partners [44, 55–59].

EB1 and EB2 appear to be expressed ubiquitously, while

EB3 is strongly expressed in muscle and brain tissue [60,

61]. During neurodevelopment, EB1 expression decreases

while EB3 expression is upregulated [38]. Axon extension

coincides with EB1 expression in neuroblastoma cells [62].

In Drosophila¸ depletion of EB1 impairs axon outgrowth

and leads to the disorganization, but not loss, of MTs [63].

Other studies also point in the direction of a role for EB1 in

axogenesis [64], and suggest a differential role of EB

proteins in neurite formation. EB1 and EB3 have a positive

role in neurite outgrowth, while EB2 has a negative effect

[65], possibly because EB1 and EB3 have a higher affinity

than EB2 for MT-stabilizing partners [56, 66]. EB3 has

been specifically implicated in neuritogenesis in the con-

text of actin-MT interactions [67], suggesting that the

mechanisms underlying the importance of EBs for con-

trolling neuronal morphogenesis can be quite complex.

Apart from scaffolding other ?TIPs, EBs may also aid

the capture of MT plus-ends for regulatory purposes. For

example, MTs are proposed to rely on EB3 and Drebrin to

enter actin-rich spines. Drebrin interacts with the growing

MT plus-end via an unconventional interaction with EB3

Microtubule plus-end tracking proteins in neuronal development 2057
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[67], and is enriched in spines by binding to F-actin [68].

Drebrin localization becomes enhanced in spines upon

NMDA (N-methyl-D-aspartate) receptor activity, where-

upon Drebrin is believed to capture EB-decorated MT plus-

ends near or in the spine neck and thereby guide dynamic

MT entry into spines. Accordingly, Drebrin overexpression

and increased amounts of F-actin upregulate the number of

MT entries into spines [41].

Interestingly, another neuron-specific role for EB1/3

was reported that does not depend on plus-end tracking.

EBs are enriched in the axon initial segment (AIS) of

hippocampal neurons, where they contribute to AIS

integrity and maintenance [69]. This possibly contributes to

enhanced MT stability in the AIS [69], although the precise

mechanism remains unclear.

EB-dependent 1TIPs: CAP-Gly proteins

Most known EB-dependent ?TIPs can be divided in two

categories, depending on their mode of association with EB

proteins. The first category consists of a minority of ?TIPs

that contain an evolutionarily conserved cytoskeletal-as-

sociated protein glycine-rich (CAP-Gly) domain, which

associates with EEY/F motifs in the C-terminus of EB

proteins and tubulin [70–73].

An example of one such CAP-Gly domain-containing

?TIP is p150glued: the largest out of eleven subunits of the

dynactin complex. Dynactin is essential to nearly all

functions of dynein, the most prominent minus-end direc-

ted motor protein [74]. Dynein plays a particularly

important role in axons, wherein transport into the soma

relies on minus-end directed transport due to the uniform

plus-end out orientation of MTs. It is likely that multiple

mechanisms contribute to dynein activation at different

locations along the neuron [74]. At the MT plus-end

specifically, one such model explains how retrograde

transport is initiated when the dynamic MT plus-end loa-

ded with p150glued and other dynein regulators encounters

minus-end directed cargos ([75] and reviewed in [74]).

While the role of dynactin in dynein plus-end targeting

appears to differ between organisms [74], research suggests

that dynactin accumulation at the MT plus-ends in axons of

murine dorsal root ganglia (DRG) neurons contributes to

long-range retrograde transport by recruiting dynein to

vesicles [76]. It has been postulated that this function is

exerted by a neuron-specific p150glued isoform, which

reduces the frequency of catastrophes and thus increases

MT stability [77].

Although p150glued binds to EBs directly, its affinity

for MT plus-ends appears not to be very high. In cells,

p150glued is assisted in targeting the plus-ends by another

CAP-Gly domain containing protein, cytoplasmic linker

protein of 170 kDa or CLIP-170 [76, 78]. Mammals alsoT
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express a protein closely related to CLIP-170: the neu-

ronally enriched CLIP-115 [79]. Both CLIPs are ?TIPs,

but differ by the structure of their C-termini. Only CLIP-

170 contains zinc-binding domains and an EEY/F motif,

which mediate the interactions with the CAP-Gly domain

of p150glued and with the dynein regulator LIS1, as well as

autoinhibition [78, 79]. Both CLIPs also promote MT

rescue [80], although the underlying mechanism is still

obscure, as it should involve depolymerizing MT ends or

the MT lattice, where CLIPs are not enriched. Of note,

CLIP plus-end tracking behavior is less prominent in

neuronal compared to non-neuronal cells [81], which

would be compatible with a function that is not directly

related to growing MT tips. In addition to regulating

dynactin recruitment, CLIPs are enriched in axonal growth

cones, where they stabilize MTs protruding into the actin-

rich leading edge [82]. CLIPs are therefore necessary for

axon formation and outgrowth as MT stabilization in the

growth cone precedes engorgement and consolidation.

CLIP-170 is involved in dendrite morphogenesis by regu-

lating crosstalk between the actin cytoskeleton and

dynamic MTs [83]. Given the importance of CLIPs for

different processes in cultured neurons, the phenotypes of

CLIP-115 and CLIP-170 knock-out mice are rather mild,

though CLIP-115 knock-out animals do display behavioral

phenotypes [84, 85]. The loss of CLIP-190, the Drosophila

homologue of CLIP-170, causes no strong phenotype either

[81]. This suggests that the neuronal function of CLIPs

might be redundant with that of other MT regulators.

EB-dependent 1TIPs: SxIP proteins

The largest subclass of EB-dependent ?TIPs comprises

proteins which utilize a short linear motif known as the

SxIP motif (serine/threonine-any amino acid-isoleucine/

leucine–proline) to bind the EB homology domain ([42]

and reviewed in [14]). SxIP motifs are generally embedded

in unstructured amino acid stretches enriched in proline,

serine and basic residues, resulting in a positive charge

[42]. Further computational analysis revealed that the nine

amino acids surrounding the SxIP motif cannot contain

acidic amino acids, and that at least one basic amino acid is

present in the four amino acids preceding the motif [56].

Since discussing all currently identified SxIP ?TIPs is

beyond the scope of this review, we here focus on a

selection of prominent examples to illustrate the broad

range of neurodevelopmental functions of these ?TIPs. All

currently known neurodevelopmental functions are listed

per ?TIP in Table 1, along with their mode of association

with the MT plus-end and the known neurological disease

associations.

Among the most conserved SxIP proteins are CLASPs

(cytoplasmic linker protein-associated proteins), the

mammalian versions of which were discovered through

their association with CLIPs [86]. Similar to CLIPs, there

are two CLASP-encoding genes in mammals: CLASP1,

which is expressed ubiquitously, and CLASP2, the products

of which appear enriched in nervous tissue [86]. CLASPs

utilize their SxIP motifs to bind EB1 and contain several

additional TOG (tumor overexpressed gene) domains

which can serve as tubulin-binding modules [87–89]. Dif-

ferent cell lines have revealed a function for CLASPs at the

membrane, where they capture dynamic MT ends to pro-

mote MT rescue and pausing, and thus stabilize MTs [89,

90]. CLASP-mediated cortical MT stabilization is crucial

to axon outgrowth and directionality and as such, CLASP

was implicated in axon development in various organisms

[90, 91]. Interestingly, CLASPs have affinity for both the

MT plus-end and lattice, and differences in CLASP dis-

tribution and CLASP-MT associations inside the growth

cone are able to direct axon growth status. CLASPs can be

localized to the tips of growth cone filopodia, where they

capture plus-ends of MTs to facilitate axon outgrowth.

Conversely, in pausing growth cones, lattice-binding

CLASP is present close to the end of the axon shaft to

prevent MTs from protruding into the peripheral growth

cone, thereby preventing outgrowth. The localization of

CLASPs inside growth cones is regulated by kinases such

as GSK3b and Abelson kinase [90, 92–94]. In addition to

axon growth status, the direction of axon outgrowth is

regulated by CLASP localization. The kinase-controlled,

asymmetric distribution of CLASPs to the filopodia of a

growth cone determines the sites of MT capture and

thereby dictates the direction in which the axon advances

[94, 95]. Additional functions for CLASPs include a role in

synaptic functioning likely via global control of neuronal

morphology [95] and maintenance of the Xenopus growth

cone lamellipodium [91]. Furthermore, CLASP2 mediates

MT capture at the postsynaptic membrane to promote

transport of acetylcholine receptors to neuromuscular

junctions [96].

Morphological changes during neurodevelopment are

the result of complex interplay between different compo-

nents of the cytoskeleton. This is in part facilitated by the

Microtubule-Actin Crosslinking Factor proteins MACF1

(ACF7) and MACF2 (dystonin), known as spectraplakins.

As spectraplakin nomenclature is complicated, we will here

refer to MACF1/2. The reader is directed to Table 1 for a

comprehensive list of alternative names for these proteins.

Spectraplakins gain their name from membership of the

spectrin family and their plakin repeats, which grant

affinity for intermediate filaments [97]. Spectraplakins also

contain CH domains to bind to actin, GAR (growth arrest-

specific 2 protein-related region) domains to bind and

stabilize MTs [98], and SxIP motifs to bind the MT plus-

end via EBs. This places them at the heart of cytoskeletal
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crosstalk and renders them a popular subject for neurode-

velopmental research. Indeed, homozygous MACF1

knockout mice are not viable, and mutant mice die from

neuronal migration defects when MACF1 is depleted dur-

ing development [99]. MACF1 is known to guide MTs

along actin filaments and to mediate MT capture at actin-

rich sites near the membrane [100], consistent with a role

for MACF1 and its orthologs in growth cone MT organi-

zation and axon extension [101]. In case of the Drosophila

MACF1 ortholog Shot, this function was shown to depend

on its SxIP motifs and interaction with EB1 [63]. MACF1

has also been implicated in formation of growth cone

filopodia, although for Shot this function does not rely on

its actin- or MT-binding domains [101].

The second mammalian spectraplakin, MACF2 or dys-

tonin, is best known for its role in the neurological disorder

dystonia. MACF2 knockout mice develop dystonia and

show repetitive muscle spasms [102], and mutations in

MACF2 have been identified in patients with Hereditary

Sensory Autonomic Neuropathy [103]. These pathologies

are associated with the degeneration of sensory and auto-

nomic nerves [102, 103]. Axons of MACF2 null mice

degenerate as a result of MT fragmentation, which is

believed to contribute to the dystonia phenotype indepen-

dent of the neurofilament-binding functions of MACF2

[104]. MACF2 has also been implicated in retrograde

axonal transport by interacting with p150glued [105]. This

function may depend on MACF2’s EB-dependent associ-

ation with the MT plus-end, as overexpression of peptides

which competitively block EB–SxIP interactions inhibit

retrograde transport of endosomes [106]. Another impor-

tant factor in dystonia may be the neuron’s inability to

regulate ER stress levels, Golgi integrity, MT acetylation

and autophagy due to loss of a neuron-specific MACF2

isoform (BPAG1-a2) [107–109]. This particular isoform

has an N-terminal trans-membrane domain and does not

localize to MTs [110], although it does affect MTs near the

centrosome via an association with MAP1B [108] and

retains the C-terminal SxIP motifs. The same isoform was

shown to partially rescue phenotypes in a dystonia mus-

culorum mouse model [111]. On the other hand, another

neuron-specific MACF2 splice variant (BPAG1n3) exclu-

sively binds MTs and may be involved in sustaining axonal

MT integrity [104], suggesting distinct functions for dif-

ferent MACF2 isoforms. The same holds true for the many

splice variants of MACF1, and more research is needed to

elucidate the contribution of spectraplakin plus-end track-

ing to their functions in both nerve cells and in other cell

types.

?TIPs also play important roles in mature neurons, as

neurons remain plastic throughout their lifespan and

remodel synapses in response to both intra- and extracel-

lular cues. One such ?TIP with a function at the synapse is

p140Cap, whose name is a combination of its molecular

weight and ‘Cas-associated protein’ (Cap; Cas for Crk-

associated substrate). p140Cap is regarded as a tumor

suppressor protein due to its function as an inhibitor of Src

kinase, which is involved in cell migration and growth

[112]. In addition to its potential to associate with MT plus-

ends via an SxIP/EB3-mediated interaction, p140Cap binds

actin fibers and localizes to actin-rich dendritic spines of

hippocampal neurons [38, 112]. p140Cap knockout mice

display impaired learning and memory functions, and spine

defects have been observed in the absence of p140Cap both

in cultured primary neurons and in knockout mice [38,

113]. Synaptosomes prepared from p140Cap-/-- mice

reveal hyperactivation and hyperphosphorylation of Src

kinase and its substrate cortactin, respectively, as well as

reduced RhoA activity [113]. Research suggests that

p140Cap forms a synaptic complex with and increases the

interaction between Src kinase and Citron-N, a protein

known to scaffold the actin remodeling machinery, and as

such controls spine morphology [113]. EB3 appears to

function upstream of the spine remodeling process as

synaptic phenotypes of EB3 knockdown mimic those of

p140Cap knockdown, and can be rescued by simultaneous

overexpression of p140Cap or Citron-N [38, 113]. Notably,

while overexpressed p140Cap tracks MT plus-ends in

neurons, this is rarely the case for endogenous p140Cap.

p140Cap’s affinity for local binding partners in spines is

likely sufficiently high to prevent cytoplasmic diffusion

necessary for MT plus-end tracking behavior [38, 114]. In

addition to its function at the postsynapse, p140Cap likely

plays a role at the presynapse where it interacts with sev-

eral proteins implicated in synaptic vesicle secretion [115,

116].

Another interesting SxIP-containing partner of EB1 is

the Stromal interaction molecule 1 or STIM1 [117], a

transmembrane ER protein which contains one SxIP motif

and can thus link EB-decorated MT plus-ends to the ER

membrane. STIM1 regulates store operated calcium entry

(SOCE) in neurons and is necessary to resupply the ER

with calcium by opening plasma membrane channels after

calcium release during synaptic signaling [118, 119]. The

function of the interaction of STIM1 with MT tips is not

yet entirely clear. STIM1 participates in ER tubule exten-

sion by coupling growing MT plus-ends to the ER [117],

and it is possible that such ER remodeling contributes to

SOCE in certain cell types by bringing STIM1 in the

vicinity of the plasma membrane. Interestingly, in

HEK293T cells changes in MT dynamics affect STIM1’s

association with calcium channels [120], suggesting that in

some cell types MT dynamics are important for calcium

signaling, possibly via the action of ?TIPs. It remains to be

verified, however, what the exact contribution of STIM1’s

plus-end tracking behavior is to SOCE in neurons. Part of
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the answer may come from the function of STIM2, a

STIM1 homolog with 63 % sequence identity but without

conservation of the SxIP motif. STIM2 regulates SOCE

instead of STIM1 in pyramidal neurons of the neocortex

[121], suggesting that plus-end tracking is not required for

STIM functioning during SOCE in neurons. However,

remodeling of the ER was observed along MTs during

SOCE [122]. As STIM1 was found to remodel the ER via

its interaction with EB1 in HeLa cells [117], there is a

possibility STIM1 may exert additional, potentially plus-

end tracking-dependent functions in neurons. This is

underlined by the finding that STIM1 participates in

growth cone steering, and that this effect is only coupled to

effects on SOCE for certain guidance cues [118].

To summarize, SxIP motif-containing proteins represent

a large and heterogeneous group of EB-dependent ?TIPs,

which exert different functions at different stages of neu-

rodevelopment. Although many roles have been identified

(Table 1), it is not always clear what the contribution of

plus-end tracking behavior is to each of these functions.

Other 1TIPs

While EB proteins are responsible for targeting a large

variety of proteins to MT tips, several major classes of MT

plus-end interacting factors target the growing MT plus-

end via other mechanisms. These include the MT poly-

merase ch-TOG/XMAP215 and certain kinesin motor

proteins, such as kinesin-4, -8 and -13 family members (see

below). In addition, for some MT- or tubulin-binding

proteins, such as doublecortin and stathmin, specific

interaction with MT plus-ends was established or proposed

based on in vitro reconstitution experiments [123, 124].

However, this was not demonstrated in cells, and is

therefore not further discussed here.

ch-TOG/XMAP215 can track the growing plus-ends of

MTs directly by recognizing the outmost MT tips [125,

126], or indirectly, via EB proteins. In mammalian cells,

MT plus-end tracking of ch-TOG is facilitated by binding

to SLAIN proteins, which themselves are EB-dependent,

SxIP-containing ?TIPs that have the ability to bind a

number of other ?TIPs [127]. Both SLAIN1/2 and ch-TOG

are enriched in mammalian brain tissue, and promote MT

growth by positioning the MT polymerase at the tip of the

growing MT [128]. Like the majority of ?TIPs implicated

in maintaining MT cytoskeleton integrity, ch-TOG plays a

role in axon outgrowth. Depletion of ch-TOG increases

catastrophe rates in all subcellular compartments of rat

hippocampal neurons, while reducing MT growth rates

[128]. Axon outgrowth defects are apparent in young

neurons depleted of ch-TOG, as well as in those overex-

pressing a dominant negative SLAIN construct that

prevents ch-TOG from accumulating at the MT plus-end

[128]. In Xenopus, the ch-TOG homolog XMAP215 is

necessary for MTs to resist axon retraction induced by

contractile actin forces and thereby promotes persistent

axon outgrowth [129]. Interestingly, depletion of

XMAP215 results in an increased rate of MT plus-end

displacement specifically in the growth cone but not in

axons. This effect does not seem to depend on XMAP215’s

MT-polymerizing function, which relies on plus-end

localization, but rather seems to be a result of an additional

role for Xenopus XMAP215 in MT sliding [129].

The kinesin-4 family member KIF21A is also involved in

axon development. In HeLa cells, KIF21A is part of a cor-

tical MT-anchoring complex that includes CLASP, where

KIF21A acts as a growth inhibitor to prevent further poly-

merization of MTs that reach the cell cortex [130]. Missense

mutations in KIF21A cause Congenital Fibrosis of the

Extraocular Muscles type 1 (CFEOM1), a disease charac-

terized by the patients’ inability to control eye movements

due to defects in oculomotor nerve development [131].

These mutations were found to prevent KIF21A autoinhi-

bition, promoting increased cortical MT growth inhibition

via an EB-independent interaction of KIF21A with the MT

plus-end [130, 132]. Mutant KIF21A results in growth cone

and axon pathfinding defects in cultured neurons and

knockin mice, suggesting that improper innervation of

extraocular muscles in CFEOM1 is a result of misregulation

of MT dynamics by KIF21A [130, 132].

Regulation of interactions between microtubules
and 1TIPs

It is clear that elaborate control of the MT cytoskeleton,

which involves tight regulation of interactions between

?TIPs and MTs, is of pivotal importance to neurons.

Since many ?TIPs use the same mode of association

with EBs, competitive binding between ?TIPs from the

same subclass is a major factor in the regulation of inter-

actions. This is illustrated by the use of SxIP-motif

containing peptides to disrupt ?TIP complexes and MT

dynamics in the literature (e.g. [133, 134]), and such

competition was proposed between CLIP-115 and CLIP-

170, for example [85]. However, competition between

different subclasses has also been reported. For instance,

the SxIP-motif containing Neuron Navigator (NAV) ?TIPs

have been shown to displace p150glued from MT plus-ends

upon overexpression [135], although p150glued relies on

CAP-Gly domains to associate with EBs. Small SxIP

peptides can also abolish p150glued and CLIP binding to

MT plus-ends in in vitro reconstitution assays, confirming

that binding sites on EBs for different ?TIPs of different

subclasses overlap at least partly [133]. Additionally, it will

be interesting to see whether ?TIPs can provide indirect
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feedback to other ?TIPs by impacting cytoskeleton

dynamics or by affecting the conformation of EB proteins.

Not all dominant ?TIP-EB interactions negatively

impact the recruitment of other ?TIPs. For instance, EB1

is sufficient to independently recruit both p150glued and

CLIP-170 to the MT plus-end in reconstitution assays using

purified proteins, but p150glued binds the plus-end tighter

in the presence of CLIP-170 because of an additional

interaction between the two ?TIPs [133]. A similar

mechanism is employed by SLAIN2, which likely uses

interactions with multiple ?TIPs to overcome the issue of

competition [127]. Intuitively, multiplying the number of

binding modules should also increase the affinity of ?TIPs

for the MT plus-end. This has been shown for both the

repetition of SxIP motifs within individual proteins and for

increases in the number of SxIP motifs via oligomerization

[42].

Apart from effects arising from the presence of other

?TIPs at the MT plus-end, modifications of MTs or ?TIPs

provide additional layers of control. At the MT level, post-

translational tubulin modifications favor binding of certain

?TIPs over others. For example, CAP-Gly ?TIPs only

associate with MT plus-ends containing tyrosinated a-

tubulin [71, 136]. Presence of the C-terminal tyrosine on a-

tubulin also promotes MT interaction with another ?TIP,

the SxIP-containing kinesin-13 KIF2C/MCAK (mitotic

centromere-associated kinesin), which has a MT-destabi-

lizing function [137]. MAPs present on the MT lattice may

also contribute to regulation of ?TIP binding: MAP1B is

able to capture cytosolic EBs and immobilize them along

MTs, effectively lowering the concentration of EBs at the

plus-end of the MT and thereby fine-tuning axon outgrowth

[138]. Likewise, MAP2 recruits EBs to the MT lattice in

dendrites upon synaptic stimulation [139] and tau was

recently reported to bind to EB1. Tau expression levels

may also regulate EB localization, as high levels of tau

result in EB immobilization along the MT lattice [10].

At the ?TIP level, phosphorylation is considered the

classic mechanism to regulate binding. Phosphorylation of

?TIPs results in unfavorable electrostatic interactions with

negatively charged MTs and may promote ?TIP accumu-

lation at the MT plus-end rather than along the MT lattice,

or abrogate binding altogether [15, 114]. Phosphorylation

of ?TIPs in the vicinity of SxIP motifs can also suppress

binding to the negatively charged C-terminal part of EBs

and thus the plus-end tracking [42]. Many ?TIPs involved

in axon outgrowth are substrates of GSK3b [92, 140–142],

a kinase involved in prominent signaling pathways such as

the phosphoinositide 3-kinase (PI3K)/Akt pathway and

Wnt signaling. In addition to the previously discussed role

of CLASP as a GSK3b substrate during axon outgrowth,

GSK3b exerts control on the ?TIP APC during growth

cone advance [140, 143]. Binding of the spectraplakin

?TIP MACF1 to MTs is also under control of GSK3b, and

the GSK3b-MACF1 interaction plays a role in pyramidal

neuron migration [142, 144]. Interestingly, both APC and

MACF1 were suggested to regulate GSK3b activity during

Wnt signaling [145, 146], hinting at the existence of

complex feedback loops between ?TIPs and signaling

pathways during neurodevelopment.

A second kinase with strong connections to ?TIP reg-

ulation is the Abelson kinase (Abl). Together with its

substrate, Abelson interacting protein (Abi), Abl orches-

trates actin dynamics important for Drosophila axon

guidance and synaptogenesis [90] and appears to link

?TIPs to the actin remodeling machinery. The ?TIP

NAV2 can promote actin polymerization by interacting

with Abi at sites targeted by pioneer MTs [147]. Abl also

interacts with p140Cap and is required for p140Cap-me-

diated actin remodeling [148], although this interaction has

not yet been explored in neurons. Interestingly, Abl con-

trols axon guidance via CLASP, which is also under

control of GSK3b during the same process [90, 93]. Pos-

sibly, multiple signaling pathways and kinases act in

parallel on the same ?TIPs to allow additional levels of

control.

Although phosphorylation remains the best-studied

mechanism for regulation of MT-?TIP associations, other

types of regulation have started to gain attention. For

example, EB1 acetylation has been postulated to regulate

binding of the SxIP motif-containing ?TIP DDA3 during

directional cell migration [149]. Intracellular calcium

levels determine whether the MACF2 isoform BPAG1n4

localizes to the lattice or to the plus-end of MTs [150].

Finally, since individual EB proteins display different

affinities for their binding partners [56, 151], their

expression levels can also affect the composition of ?TIP

networks in manner dependent on the cell type or devel-

opmental stage.

Microtubule plus-end tracking proteins in brain
diseases

For certain neurological disorders, MT dynamics have been

examined by live imaging of ?TIPs. In the case of mul-

tiple sclerosis, a neuroinflammatory condition associated

with axonal transport defects and motor neuron degenera-

tion, the number of EB3-positive MT plus-ends was found

to increase and their directionality was altered in swollen

axons of mouse models [152]. MT plus-end dynamics were

also investigated in C. elegans after axon damage, which

can occur after spinal cord injury or stroke in humans. As

expected, axon severing generated a large amount of

dynamic MT plus-ends at the newly formed tip of the axon,

but interestingly axon regrowth depended on the C. elegans
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EB homolog EBP-1 and could be inhibited by overex-

pression the MT catastrophe-promoting protein EFA-6

(Exchange Factor for Arf6) [153]. Consistently, axon

injury or stress induced by the expression of expanded

polyglutamine proteins led to increased MT dynamics,

which had a neuroprotective role by delaying or counter-

acting neuron degeneration in Drosophila [154].

While such studies strongly imply that regulation of MT

dynamics is important in the response to neurological

damage and disease, the underlying mechanisms are still

poorly understood. Due to their diverse range of neurode-

velopmental functions, many ?TIPs are involved in human

neurological disorders (Table 1), with mutations in certain

?TIPs found to directly cause neurological disease. In this

section, we highlight two ?TIPs and associated diseases

for which the role of plus-end tracking has been investi-

gated at least to some extent: p150glued and tau-tubulin

kinase 2 (TTBK2). In addition we consider TTBK1, the

closest homolog of TTBK2.

p150glued in Perry syndrome and hereditary motor

neuropathy 7B

As described earlier in this review, p150glued is an essential

component of the retrograde axonal transport machinery by

regulating and positioning dynein at MT plus-ends. Muta-

tions in the CAP-Gly domain of p150glued, which is

required for p150glued binding to EBs and MTs [155, 156],

cause two distinct neurological disorders: Perry syndrome

and hereditary motor neuropathy 7B (HMN7B). HMN7B

affects motor neurons. Symptoms ensue in early adulthood

and include muscle atrophy, vocal fold paralysis and

breathing difficulties [157]. By contrast, Perry syndrome

(reviewed in [158]) mainly affects neurons in the substantia

nigra but not motor neurons. This rare syndrome manifests

itself around 46 years of age and is associated with parkin-

sonism, depression, hypoventilation and weight loss.

Interestingly, the p150glued mutations that give rise to

these different conditions are in close proximity: G59S

mutations cause HMN7B [157], and G71(R/E/A), T72P

and Q74P mutations were identified in Perry syndrome

patients [159]. Differences between these two diseases may

in part be explained by the effect of these mutations on the

stability of p150glued. In case of the HMN7B mutation,

mutant p150glued aggregates and is incorporated into

inclusion bodies [160, 161]. However, p150glued’s global

folding and stability is largely unaffected by Perry syn-

drome mutations [161]. This observation is reflected by the

presence of dynactin aggregates in motor neurons of

HMN7B patients [162], which are believed to contribute to

cell death [160]. Such inclusions are less common in Perry

syndrome patients [159]. All mutations disturb the

interactions between p150glued and EB proteins or MTs

[157, 159, 163], but functional differences between muta-

ted forms of p150glued were also reported. The HMN7B

mutation globally perturbs axonal transport by disturbing

dynactin binding to dynein when mutant p150glued is

incorporated in the dynactin complex. Conversely, Perry

syndrome mutations do not affect global axonal transport,

but G71R p150glued has a dominant negative effect on the

initiation of retrograde trafficking from distal axon tips

[163]. This function directly depends on p150glued’s

interaction with EB proteins at the MT plus-end [76].

Another potentially disease-related mechanism is the MT

catastrophe-suppressing function of p150glued, which is

disturbed by the Perry syndrome mutation Q74P [77].

p150glued’s ability to suppress catastrophes relies on its

binding to MTs and free tubulin dimers, and is independent

of EB proteins. p150glued isoforms harboring all domains

necessary for these interactions are primarily expressed in

neurons, rendering the effect neuron-specific.

p150glued’s involvement in Perry syndrome and HMN7B

is an excellent example of how deficiencies in plus-end

tracking can result in neurological disease. It underlines the

importance of investigating the role of plus-end tracking for

?TIPs implicated in disorders of the brain, yet surprisingly,

p150glued remains the single best-studied case.

TTBK1/2 in spinocerebellar ataxia and Alzheimer’s

disease

Two other, closely related ?TIPs firmly implicated in brain

disease are tau-tubulin kinase 1 and 2 (TTBK1 and

TTBK2). TTBK1/2 belong to the casein kinase 1 group and

share 60 % sequence identity, primarily between their

N-terminal kinase domains (reviewed in [164]). Both

TTBK proteins contain two SxIP motives in their C-ter-

minal tail [56], which is only present in vertebrates [164].

TTBK2 was the first tau-tubulin kinase to be identified,

phosphorylating MAP2 and a-casein in addition to tau and

tubulin [165]. TTBK2 is expressed ubiquitously [166] and

can phosphorylate tau at sites identified in paired helical

filament tau, a hyperphosphorylated tau variant found in

the brains of Alzheimer’s disease (AD) patients [166].

Mutations in TTBK2, which yield a mutant protein trun-

cated after the N-terminal kinase domain, cause

spinocerebellar ataxia type 11 (SCA11) [167]: a rare neu-

rodegenerative disease of which symptoms include

pronunciation difficulties, involuntary eye movement and

ataxia [168]. So far, the brain of one SCA11 patient has

been examined and revealed the presence of tau deposits

among other signs of pathological aging and cerebellar

degeneration, raising the possibility that aberrant tau

phosphorylation by mutant TTBK2 contributes to SCA11
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pathology [167]. In addition, TTBK2 was more recently

shown to be required for the formation of cilia by pro-

moting the removal of the centriolar capping protein

CEP110 to allow axoneme extension [169]. Diseases

resulting from cilia defects, termed ciliopathies, often

affect the brain (reviewed in [170]), and mice harboring a

mutation that prematurely truncates TTBK2 lack certain

neural cell types known to be lost in cilia-depleted animal

models [169]. Since the SCA11-mutated form of TTBK2 is

unable to initiate ciliogenesis and can interfere with the

ciliary function of full-length TTBK2, TTBK2’s function

in cilia formation provides a second explanation for the

symptoms of SCA11 [169]. However, the EB1-TTBK2

interaction plays no role in the recruitment of TTBK2 to

the basal body or in the subsequent initiation of ciliogen-

esis [171]. Recently, TTBK2 was found to phosphorylate

the kinesin-13 family member KIF2A at the plus-end of

MTs in an EB-dependent manner. This interaction regu-

lates the binding and thereby depolymerization of MTs by

KIF2A in HeLa cells [172]. The same study suggested that

TTBK2 can exist in an auto-inhibited conformation,

wherein the kinase domain is folded back onto the tail

domain containing the SxIP motifs. Binding of EB would

liberate the kinase domain and promote kinase activity,

presenting an attractive mechanism for how TTBK kinase

activity can be regulated at the plus-end of MTs [172].

Interestingly, overexpressed TTBK2 is also able to displace

EB1 from the MT plus-end, and TTBK2 affinity to MTs

itself appears to be regulated by its autophosphorylation,

suggesting that TTBK2 has the potential to regulate ?TIP-

MT associations [56]. These studies clearly signal the

importance of TTBK2’s interaction with EBs and MT plus-

ends. The direct relevance of plus-end tracking for neu-

ronal functions of TTBK2 other than ciliogenesis has not

been investigated. It is thus currently unclear whether the

functions attributed to TTBK2, such as the earlier dis-

cussed pathological tau phosphorylation, a role in neuronal

migration [172], regulation of the retrieval of synaptotag-

min-1 during synaptic vesicle endocytosis [173] or the

control of the activity of transport channels including

BGT1, a betaine/c-amino-butyric acid (GABA) transporter

[174], require TTBK2 plus-end tracking.

Full-length TTBK1 was only characterized in 2006 as a

neuron-specific kinase with the ability to phosphorylate tau

on sites associated with AD [175]. During AD, tau

becomes hyperphosphorylated, causing it to detach from

MTs and form non-soluble aggregates in the cytosol.

Certain genetic variations of TTBK1 have been linked to

lower risk of developing AD [176, 177], suggesting that

TTBK1 and variations in its expression levels may play a

role in Alzheimer pathology. Full-length TTBK1 co-lo-

calizes with EB1 and bundles MTs at high expression

levels independent of its kinase activity [56], but the

contribution of TTBK1 plus-end tracking and MT modu-

lation has never been investigated with respect to its

function or involvement in disease.

More recently, TTBK1 and TTBK2 were also shown to

phosphorylate TDP-43 (transactive response DNA binding

protein of 43 kDa) [178], the phosphorylation-driven

aggregation of which is a hallmark of amyotrophic lateral

sclerosis and frontotemporal lobar degeneration as well as

numerous other neurodegenerative diseases [179]. Under-

standing the cell biology of these kinases both in health and

disease, as well as mapping the full range of substrates of

TTBKs will be a crucial step towards the identification of

targets for therapeutic intervention.

Future outlook

As versatile regulators of the MT cytoskeleton, ?TIPs play

important roles in all aspects of neurodevelopment. It is

therefore not surprising that ?TIPs are involved in many

neurological diseases (Table 1). Although more is known

about how individual ?TIPs affect MT behavior and

integrity, in many cases this knowledge is yet to be

extrapolated to neuronal MT networks and in some cases

insight is lacking altogether.

It is crucial to develop such understanding as pharma-

cological intervention to inhibit or promote ?TIP activity,

and thereby affect specific subsets or properties of MTs,

likely provides a more elegant and refined approach to

therapy development than the use of MT targeting agents

that globally impact MT dynamics. The influence of low

doses of MT-targeting drugs on neurons has been studied

extensively and was found to impact nearly all processes in

developing and mature neurons. For example, treatment

with 15–75 nM of the MT destabilizer nocodazole impairs

the formation (but not outgrowth) of neurites in young

dissociated neurons [23]. At 200 nM, nocodazole was also

reported to inhibit primary dendrite formation [83] and has

the ability to transform mature, mushroom-headed spines

of dendrites into filopodia [38]. These morphological spine

changes are paired with decreased synaptic response [38].

The MT stabilizing drug taxol, on the other hand, is known

to induce the formation of multiple axons in young disso-

ciated neurons at concentrations as low as 3 nM [23], and

nanomolar concentrations of both MT stabilizing and

destabilizing drugs affect axon pathfinding [28]. The above

effects on neurons were mostly found to be a result of

altered MT dynamics, rather than drug-specific effects on

other cellular processes. It is therefore reasonable to

assume that treatment with other MT-targeting agents

would result in similar effects on neuronal development

and functioning.
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MT-targeting agents do provide evidence that drugs

altering MT dynamics may be successful in treating brain

diseases. For example, the MT stabilizing, blood–brain

barrier-penetrant drug epothilone D shows promise as a

therapeutic agent in neurological disorders, as epothilone

D treatment partially relieves pathology in AD mouse

models [180]. Recently, the closely related MT-stabilizing

agent epothilone B also proved to stimulate regeneration

of axons after spinal cord injury in rats [181]. However,

in contrast to the global effect of MT-targeting drugs

which can yield unintended side effects, targeting indi-

vidual ?TIPs that are restricted to certain subcellular

localizations or tissues, expressed at certain times or

influence only limited aspects of MT behavior may be

preferable. Even when ?TIPs are not involved in estab-

lishing pathogenesis, they can potentially be stimulated or

inhibited to counteract MT-related disease mechanisms.

Of note, it has recently been proposed that the neuro-

protective peptide NAP possibly exerts its effects via

EBs. NAP affects the brain-specific tubulin pool as well

as MT stability and dynamics [182, 183], and has been

described to have beneficial effects in tauopathy animal

models [184–186]. NAP is believed to bind EB3 via an

alternative SxIP motif, Ser-Ile-Pro, and EB silencing in

PC12 cells obliterates the protective effect of NAP to zinc

toxicity. Although the precise mechanism remains

unclear, these data suggest that NAP’s binding to EBs

may contribute to its neuroprotective properties [187].

In summary, ?TIPs may offer a more precise approach

to interfere with pathological MT-related processes, rather

than conventional MT-targeting agents currently used in

the clinic. In order to truly establish their potential as

therapeutic targets for treatment against neurological dis-

orders, more research is needed into the functions and

mechanisms of action of an ever-growing pool of ?TIPs.

New ?TIPs are still being recognized on a large scale (e.g.

[56]), rendering the field of ?TIP research an exciting and

promising one for years to come.
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