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Abstract. Let a be an ideal of a commutative Noetherian ring R and M
a finitely generated R-module. It is shown that AnnR(Hdim M

a (M)) =
AnnR(M/TR(a, M)), where TR(a, M) is the largest submodule of M
such that cd(a, TR(a, M)) < cd(a, M). Several applications of this re-
sult are given. Among other things, it is shown that there exists an
ideal b of R such that AnnR(Hdim M

a (M)) = AnnR(M/H0
b(M)). Using

this, we show that if Hdim R
a (R) = 0, then AttR Hdim R−1

a (R) = {p ∈
Spec R| cd(a, R/p) = dim R − 1}. These generalize the main results of
Bahmanpour et al. (see [2, Theorem 2.6]), Hellus (see [7, Theorem 2.3]),
and Lynch (see [10, Theorem 2.4]).
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1. Introduction. Let R be an arbitrary commutative Noetherian ring (with
identity), a an ideal of R, and let M be a finitely generated R-module. An im-
portant problem concerning local cohomology is determining the annihilators
of the ith local cohomology module Hi

a(M). This problem has been studied by
several authors; see for example [9–11,14–16], and has led to some interesting
results. More recently, in [2] Bahmanpour et al. proved an interesting result
about the annihilator AnnR(Hd

m(M)) in the case (R,m) is a complete local
ring of dimension d.

The purpose of the present paper is to establish some new results concerning
the annihilators of local cohomology modules Hi

a(M) (i ∈ N0), where a is an
ideal in a Noetherian ring R and M a finitely generated module over R.
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As a main result in the second section, we determine the annihilators of the
top local cohomology module Hdim M

a (M). More precisely, we shall prove the
following theorem, which is a generalization of the main result of [2, Theorem
2.6] for an arbitrary ideal a of an arbitrary Noetherian ring R.

Theorem 1.1. Let R be a Noetherian ring, and let M be a finitely generated R-
module. Then for any ideal a of R, AnnR(Hdim M

a (M)) = AnnR(M/TR(a,M)),
where TR(a,M) denotes the largest submodule of M such that cd(a, TR(a,M))<
cd(a,M).

The result in Theorem 1.1 is proved in Theorem 2.3. Several corollaries of
this result are given. A typical result in this direction is the following, which
is a generalization of the main results of [2, Theorem 2.6] and [10, Theorem
2.4] for an ideal a in an arbitrary Noetherian ring R.

Corollary 1.2. Let R be a Noetherian ring and a an ideal of R. Let M be a non-
zero finitely generated R-module of finite dimension c such that cd(a,M) = c.
Then

AnnR(Hc
a(M)) = AnnR(M/H0

b(M)) = AnnR(M/ ∩cd(a,R/pj)=c Nj).

Here 0 = ∩n
j=1Nj denotes a reduced primary decomposition of the zero sub-

module 0 in M and Nj is a pj-primary submodule of M , for all j = 1, . . . , n
and b := Πcd(a,R/pj) �=cpj .

One of the basic problems concerning local cohomology is finding the set
of attached primes of Hi

a(M). In Section 3, we obtain some results about the
attached primes of local cohomology modules. In this section among other
things, we derive the following consequence of Theorem 1.1 and Corollary 1.2,
which provides an upper bound for the attached primes of AttR H

cd(a,M)
a (M).

This will generalize the main results of [5] and [4].

Theorem 1.3. Let R be a Noetherian ring and a an ideal of R. Let M be a
finitely generated R-module such that c := cd(a,M) is finite. Then

AttR Hc
a(M) ⊆ {p ∈ SuppM | cd(a, R/p) = c}.

Moreover, if c = dimM , then

AttR Hc
a(M) = {p ∈ mAssR M | cd(a, R/p) = c}.

For an R-module A, a prime ideal p of R is said to be attached prime to A
if p = AnnR(A/B) for some submodule B of A. We denote the set of attached
primes of A by AttR A. This definition agrees with the usual definition of
attached prime if A has a secondary representation (cf. [12, Theorem 2.5]).

Another main result in Section 3 is to give a complete characterization
of the attached primes of the local cohomology module Hdim R−1

a (R). More
precisely, we shall show the following result, which is an extension as well as a
correction of the main theorem of [7].

Theorem 1.4. Let (R,m) be a local (Noetherian) ring of dimension d. Let a
be an ideal of R such that dim R/a = 1 and Hd

a (R) = 0. Then AsshRR ⊆
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AttR Hd−1
a (R). Moreover, if R is complete, then

AttR Hd−1
a (R)={p ∈ Spec R| dim R/p=d − 1 and Rad(a + p)=m} ∪ AsshRR.

One of our tools for proving Theorem 1.4 is the following:

Proposition 1.5. Let R be a Noetherian ring of finite dimension d and a an
ideal of R such that Hd

a (R) = 0. Then

AttR Hd−1
a (R) = {p ∈ Spec R| cd(a, R/p) = d − 1}.

Throughout this paper, R will always be a commutative Noetherian ring
with non-zero identity and a will be an ideal of R. For any R-module M , the
ith local cohomology module of M with support in V (a) is defined by

Hi
a(M) := lim−→

n≥1

Exti
R(R/an,M).

The cohomological dimension of M with respect to a is defined as

cd(a,M) := sup{i ∈ Z|Hi
a(M) �= 0}.

For each R-module L, we denote by AsshRL (resp. mAssR L) the set {p ∈
AssR L : dimR/p = dimL} (resp. the set of minimal primes of AssR L). Also,
we shall use AttR L to denote the set of attached prime ideals of L. For any
ideal a of R, we denote {p ∈ Spec R : p ⊇ a} by V (a). Finally, for any ideal b of
R, the radical of b, denoted by Rad(b), is defined to be the set {x ∈ R : xn ∈ b
for some n ∈ N}. For any unexplained notation and terminology, we refer the
reader to [3] and [13].

2. Annihilators of top local cohomology modules. Let us, firstly, recall the
important concept of the cohomological dimension of an R-module L with
respect to an ideal a of a commutative Noetherian ring R, denoted by cd(a, L);
it is the largest integer i such that Hi

a(L) �= 0. The main result of this section
is Theorem 2.3. The following lemma plays a key role in the proof of that
theorem.

Lemma 2.1. Let R be a Noetherian ring and a an ideal of R. Let M and
N be two finitely generated R-modules such that SuppN ⊆ SuppM . Then,
cd(a, N) ≤ cd(a,M).

Proof. See [6, Theorem 2.2]. �

Definition 2.2. Let R be a Noetherian ring and a an ideal of R. Let M be
a non-zero finitely generated R-module. We denote by TR(a,M) the largest
submodule of M such that cd(a,TR(a,M)) < cd(a,M). It is easy to check that
TR(a,M) = ∪{N |N ≤ M and cd(a, N) < cd(a,M)}. In particular, for a local
ring (R,m), we denote TR(m,M) by TR(M). Thus TR(M) = ∪{N |N ≤ M
and dimN < dim M}, see [2, Definition 2.5].

Now, we are prepared to present the main result of this section, which is a
generalization of the main result of [2, Theorem 2.6].
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Theorem 2.3. Let R be a Noetherian ring and a an ideal of R. Let M be a
finitely generated R-module with finite dimension c such that cd(a,M) = c.
Then

AnnR(Hc
a(M)) = AnnR(M/TR(a,M)).

Proof. It easily follows from the canonical exact sequence

0 −→ TR(a,M) −→ M −→ M/TR(a,M) −→ 0

and Lemma 2.1 that cd(a,M/TR(a,M)) = c and

Hc
a(M) ∼= Hc

a(M/TR(a,M)).

Thus we have

Hc
a(M) ∼= H

cd(a,M/TR(a,M))
a (M/TR(a,M)).

Consequently, we can (and do) assume that TR(a,M) = 0, and with this
assumption our aim is to show that AnnR(Hc

a(M)) = AnnR(M). To this end,
as

AnnR(M) ⊆ AnnR(Hc
a(M)),

it is enough for us to prove that

AnnR/ AnnR(M)(Hc
a(M)) = 0.

Since by Lemma 2.1 cd(a, R/AnnR(M)) = dimR/AnnR(M) = c, it follows
that it is enough for us to show that

AnnR/ AnnR(M)(Hc
a(R/ AnnR(M))(M)) = 0.

We can, and do, assume henceforth in this proof that cd(a, R) = c = dim R
and that M is a faithful R-module. Hence it is sufficient for us to show that
AnnR(Hc

a(M)) = 0. To this end, let x ∈ AnnR(Hc
a(M)). Our strategy is

to show that Hc
a(xM) = 0. To do this, it is sufficient for us to show that

Hc
aRp

(xMp) = 0, for all p ∈ Spec R. If dimRp(xMp) < c, then the asser-
tion follows from Grothendieck’s vanishing theorem (see [3, Theorem 6.1.2]).
Hence we may assume that dimRp(xMp) = c. Then dimRp Mp = c. Now, if
Hc

aRp
(Mp) = 0, then it follows from Lemma 2.1 that Hc

aRp
(xMp) = 0, and

there is nothing to prove. We therefore make the additional assumption that
Hc

aRp
(Mp) �= 0. Now, as xHc

aRp
(Mp) = 0, it follows from [1, Corollary 3.11]

that Hc
aRp

(xMp) = 0. Consequently, Hc
a(xM) = 0. Hence cd(a, xM) < c and

since TR(a,M) = 0, we deduce that xM = 0. Since M is faithful, it follows
that x = 0, as required. �

The first application of Theorem 2.3 extends the main result of [2, Theorem
2.6].

Corollary 2.4. (cf. [2, Theorem 2.6]) Let (R,m) be a local (Noetherian) ring and
M a finitely generated R-module. Then AnnR(Hdim M

m (M))=AnnR(M/TR(M)).

Proof. The result follows from Theorem 2.3 and the standard fact cd(m,M) =
dim M . �
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Corollary 2.5. Let R be a Noetherian ring with finite dimension c and a an
ideal of R such that cd(a, R) = c. Then

AnnR(Hc
a(R)) = TR(a, R).

Proof. The assertion follows from Theorem 2.3. �

Remark 2.6. Let R be a Noetherian ring, a an ideal of R, and M a non-
zero finitely generated R-module with finite cohomological dimension c :=
cd(a,M). Let {Mi}c

i=0 be a filtration of submodules of M such that for each
integer 0 ≤ i ≤ c, Mi is the largest submodule of M with cd(a,Mi) ≤ i. Then
TR(a,M) = Mc−1 and by [1, Proposition 2.3], we have

TR(a,M) = H0
b(M) = ∩cd(a,R/pj)=cNj ,

where 0 = ∩n
j=1Nj denotes a reduced primary decomposition of the zero sub-

module 0 in M , Nj is a pj-primary submodule of M , and b = Πcd(a,R/pj) �=cpj .

Corollary 2.7. Let R be a Noetherian ring and a an ideal of R. Let M be a non-
zero finitely generated R-module with finite dimension c such that cd(a,M) =
c. Then

AnnR(Hc
a(M)) = AnnR(M/H0

b(M)) = AnnR(M/ ∩cd(a,R/pj)=c Nj).

Here 0 = ∩n
j=1Nj denotes a reduced primary decomposition of the zero sub-

module 0 in M and Nj is a pj-primary submodule of M for all j = 1, . . . , n
and b = Πcd(a,R/pj) �=cpj .

Proof. The assertion follows from Theorem 2.3 and Remark 2.6. �

Corollary 2.8. Let R be a Noetherian ring with finite dimension c and a an
ideal of R such that cd(a, R) = c. Then

AnnR(Hc
a(R)) = H0

b(R) = ∩cd(a,R/pj)=cqj ,

where 0 = ∩n
j=1qj is a reduced primary decomposition of the zero ideal of R,

qj is a pj-primary ideal of R for all 1 ≤ j ≤ n, and b = Πcd(a,R/pj) �=cpj .

Proof. The result follows from Corollary 2.7. �

Corollary 2.9. Let R be a Noetherian ring with finite dimension c and a an
ideal of R such that cd(a, R) = c. Then the following conditions are equivalent:
(i) AnnR(Hc

a(R)) = 0.
(ii) AssR R = {p ∈ Spec R| cd(a, R/p) = c}.
Proof. The result follows from Corollary 2.8. �

Corollary 2.10. Let R be a Noetherian domain with finite dimension c and a
an ideal of R such that cd(a, R) = c. Then AnnR(Hc

a(R)) = 0.

Proof. Since AssR R = 0, the assertion follows immediately from Corollary 2.9.
�

Corollary 2.11. Let (R,m) be a local (Noetherian) ring and a an ideal of R such
that grade a = cd(a, R). Then AssR R ⊆ {p ∈ Spec R| cd(a, R/p) = cd(a, R)}.
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Proof. Since grade a = cd(a, R), it follows from [10, Theorem 3.3] that
AnnR(Hc

a(R)) = 0. Moreover, in view of the proof of Theorem 2.3,

Hc
a(R) ∼= Hc

a(R/TR(a, R)).

Hence TR(a, R) ⊆ AnnR(Hc
a(R)), and so TR(a, R) = 0. Now, the assertion

follows from Remark 2.6. �

Corollary 2.12. Let R be a Noetherian ring and a an ideal of R. Let M be
a finitely generated R-module with finite dimension c such that cd(a,M) = c
and x ∈ R. Then Hc

a(xM) = 0 if and only if xHc
a(M) = 0. In particular,

AnnR Hc
a(M) = 0 if and only if cd(a, rM) = cd(a,M) for every non-zero

element r of R.

Proof. The assertion follows from Theorem 2.3. �

Corollary 2.13. Let R be a Noetherian ring and a an ideal of R. Let M be a
finitely generated R-module with finite dimension c such that cd(a,M) = c.
Then

(i) AnnR(Hc
a(M)) = AnnR(M) whenever AssR M ⊆ {p ∈ SuppM |

cd(a, R/p) = c}.
(ii) Rad(AnnR(Hc

a(M))) = ∩p∈AssR M, cd(a,R/p)=cp = ∩p∈AssR(M/TR(a,M))p.
(iii) V (AnnR(Hc

a(M))) = Supp(M/TR(a,M)).

Proof. (i) follows from Corollary 2.7. To show (ii), use [1, Proposition 2.6(iii)]
and Corollary 2.7. In order to prove (iii), in view of Theorem 2.3 we have

V (AnnR Hc
a(M)) = V (AnnR M/TR(a,M)) = Supp(M/TR(a,M)).

�

3. Attached primes of local cohomology modules. It will be shown in this
section that the subjects of the previous section can be used to investigate the
attached prime ideals of local cohomology modules. In fact, we will generalize
and improve the main result of Hellus (cf. [7, Theorem 2.3]). The main result
is Theorem 3.7. The following proposition will serve to shorten the proof of
the main theorem. We begin with

Definition 3.1. Let L be an R-module. We say that a prime ideal p of R is
an attached prime of L if there exists a submodule K of L such that p =
AnnR(L/K). We denote by AttR L the set of attached primes of L.

When M is representable in the sense of [12] (e.g. Artinian or injective),
our definition of AttR L coincides with that of MacDonald [12], Sharp [17].

It follows easily from the definition that, if p ∈ AttR L, then L⊗R R/p �= 0.
This is used in the proof of Theorem 3.3.

Lemma 3.2. Let R be a Noetherian ring and L an R-module. Then, the set of
minimal elements of V (AnnR(L)) coincides with that of AttR L. In particular,

Rad(AnnR(L)) = ∩p∈AttR Lp.
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Proof. The assertion follows from the Definition 3.1 and the fact that p =
AnnR(L/pL) for each minimal prime p over AnnR(L). �

We are now ready to state and prove the first main result of this section,
that gives us an upper bound for the attached primes of AttR H

cd(a,M)
a (M).

Before this, we note that as AnnR(M) ⊆ AnnR(Hi
a(M)), it follows that

AttR(Hi
a(M)) ⊆ SuppM for every finitely generated R-module M.

Theorem 3.3. Let R be a Noetherian ring and a an ideal of R. Let M be a
non-zero finitely generated R-module such that c := cd(a,M) is finite. Then

AttR Hc
a(M) ⊆ {p ∈ SuppM | cd(a, R/p) = c}.

Proof. As AttR Hc
a(M) ⊆ SuppM , it follows from Lemma 2.1 that

AttR Hc
a(M) ⊆ {p ∈ SuppM | cd(a, R/p) ≤ c}.

Now, it is enough to show that

AttR Hc
a(M) ⊆ {p ∈ SuppM | cd(a, R/p) ≥ c}.

To this end, let p ∈ AttR Hc
a(M). Then

p/AnnR(M) ∈ AttR/ AnnR(M) Hc
a(M),

and so

Hc
a(M) ⊗R/ AnnR(M) R/p �= 0.

Now, as

Hc
a(M) ∼= Hc

a(R/AnnR(M)) ⊗R/ AnnR(M) M,

it follows that

Hc
a(R/AnnR(M)) ⊗R/ AnnR(M) M ⊗R/ AnnR(M) R/p �= 0.

Consequently

Hc
a(R/p) ⊗R/ AnnR(M) M �= 0,

and thus Hc
a(R/p) �= 0, as required. �

The next corollary proves again the main result of [5, Theorem 2.5].

Corollary 3.4. Let R be a Noetherian ring and a an ideal of R. Let M be a
non-zero finitely generated R-module of finite dimension d. Then

AttR Hd
a (M) = {p ∈ mAssR M | cd(a, R/p) = d}.

Proof. We can (and do) assume that Hd
a (M) �= 0. Then in view of Theorem 3.3,

we have

AttR Hd
a (M) ⊆ {p ∈ mAssR M | cd(a, R/p) = d}.

Now, in order to show the inverse containment, let p be a prime ideal of R
such that p ∈ mAssR M and cd(a, R/p) = d. Then in view of [1, Propo-
sition 2.6], we have p ∈ AssR M/TR(a,M), and so by Corollary 2.13(iii),
p ∈ V (AnnR(Hd

a (M))). Hence in view of Lemma 3.2, p ∈ AttR Hd
a (M), as

required. �
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Corollary 3.5. Let R be a Noetherian ring and a an ideal of R. Let M be a
finitely generated R-module such that c := cd(a, R) is finite. Then

{p ∈ Spec R| cd(a, R/p) = c = dimR/p} ⊆ AttR Hc
a(R)

⊆ {p ∈ Spec R| cd(a, R/p) = c}.

Moreover, if c = dimR, then SuppHc
a(R) ⊆ V (a + TR(a, R)).

Proof. In order to prove the first containment, in view of Theorem 3.3, it is
enough to show that

{p ∈ Spec R| cd(a, R/p) = c = dimR/p} ⊆ AttR Hc
a(R).

To this end, let p ∈ Spec R be such that cd(a, R/p) = c = dim R/p. Then
in view of Corollary 3.4, we have p ∈ AttR Hc

a(R/p). Now, from the exact
sequence

0 −→ p −→ R −→ R/p −→ 0

and the right exactness of Hc
a(·), we deduce that p ∈ AttR Hc

a(R), as required.
In addition, in order to show the last inclusion, use Corollary 2.5 and the

fact that SuppHc
a(R) ⊆ V (a). �

Lemma 3.6. Let R be a Noetherian domain of finite dimension d and a an
ideal of R such that cd(a, R) = d − 1. Then AnnR(Hd−1

a (R)) = 0.

Proof. Set J := AnnR(Hd−1
a (R)). We now suppose that J �= 0 and look for a

contadiction. To this end, from the right exactness of the functor Hd−1
a (·), we

deduce that Hd−1
a (R) ∼= Hd−1

a (R/J t), for all integers t, and so by Lemma 2.1
we have cd(a, R/J t) = d − 1. Now, as R is an integral domain and J t �=
0, it follows that dimR/J t = d − 1 for all integers t. Moreover, in view of
Corollary 3.4, there is a p ∈ mAssR R/J t such that cd(a, R/p) = d − 1 for all
integers t. Now, let qt be the p-primary component of J t. Then, in view of
Corollary 2.7, we have

J = AnnR(Hd−1
a (R/J t)) ⊆ qt

for all integers t. Consequently, we obtain that

JRp ⊆
⋂

t≥0

qtRp =
⋂

t≥0

J tRp,

and so the Krull’s Intersection Theorem implies that JRp = 0. As R is an
integral domain, it follows that J = 0, which is a contradiction. �

Now we are prepared to prove the second main theorem of this section,
which is a generalization of the main result of Hellus (cf. [7, Theorem 2.3]).

Theorem 3.7. Let R be a Noetherian ring of finite dimension d and a an ideal
of R such that Hd

a (R) = 0. Then

AttR Hd−1
a (R) = {p ∈ Spec R| cd(a, R/p) = d − 1}.

Proof. We can (and do) assume that Hd−1
a (R) �= 0. Then in view of Theo-

rem 3.3, we have

AttR Hd−1
a (R) ⊆ {p ∈ Spec R| cd(a, R/p) = d − 1}.
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Now, let p be a prime ideal of R such that cd(a, R/p) = d−1, and so dim R/p ≥
d − 1. Hence, using Corollary 2.10 and Lemma 3.6, we can easily see that
AnnR/p Hd−1

a (R/p) = 0. Accordingly, we have AnnR Hd−1
a (R/p) = p. Thus,

in view of the definition, we have p ∈ AttR Hd−1
a (R/p). Therefore, from the

exact sequence

0 −→ p −→ R −→ R/p −→ 0

and the right exactness of the functor Hd−1
a (·), we deduce that p ∈ AttR

Hd−1
a (R), as required. �
The following lemma, which is a consequence of the Lichtenbaum–

Hartshorne vanishing theorem, is assistant in the proof of Theorem 3.9.

Lemma 3.8. Let (R,m) be a complete local (Noetherian) ring and a an ideal
of R. Let p be a prime ideal of R. Then cd(a, R/p) = dimR/p if and only if
Rad(a + p) = m.

Proof. Let cd(a, R/p) = dimR/p := c. Then Hc
a(R/p) �= 0, and so according

to the Lichtenbaum-Hartshorne vanishing theorem (see [3, Theorem 8.2.1]),
Rad(a + p) = m. In order to prove the opposite direction, use [3, Theorems
4.2.1 and 6.1.4]. �

The next theorem, which is a consequence of Theorem 3.7, improves the
main result of [7, Theorem 2.3]. If (R,m) is a local ring, then we use R̂ to
denote the completion of R with respect to the m-adic topology.

Theorem 3.9. Let (R,m) be a local (Noetherian) ring of dimension d. Let a be
an ideal of R such that dim R/a = 1 and Hd

a (R) = 0. Then

AsshRR ⊆ AttR Hd−1
a (R).

If, in addition, R is complete, then

AttR Hd−1
a (R)={p ∈ Spec R| dim R/p=d − 1 and Rad(a + p)=m} ∪ AsshRR.

Proof. For the proof of AsshRR ⊆ AttR Hd−1
a (R), let p ∈ AsshRR. Then, in

view of Theorem 3.7, it is enough to show that cd(a, R/p) = d − 1. To do this,
as AsshR(R) = {q ∩ R|q ∈ AsshR̂(R̂)}, dim R̂/aR̂ = 1 and cd(aR̂, R̂/pR̂) =
cd(a, R/p), by using Lemma 2.1 without loss of generality, we may assume
that R is complete. Now, since Hd

a (R) = 0, it follows that Hd
a (R/p) = 0. Thus

a + p is not m-primary, and so dimR/(a + p) = 1 (note that dimR/a = 1).
Let q be a minimal prime over a + p such that dim R/q = 1. Then it is easy
to see that q is also minimal over a. Next, as R is catenary, it yields that
dim Rq/pRq = d − 1, and so we have

(Hd−1
a (R/p))q

∼= Hd−1
qRq

(Rq/pRq) �= 0.

Therefore Hd−1
a (R/p) �= 0, and hence cd(a, R/p) = d − 1; so that AsshRR ⊆

AttR Hd−1
a (R). Consequently, Theorem 3.7 enables us to deduce that

AttR Hd−1
a (R) equals the set

{p∈Spec R| cd(a, R/p)=dim R/p=d − 1} ∪ {p∈AsshRR| cd(a, R/p) = d − 1}.
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Now, using Lemma 3.8, we see that AttR Hd−1
a (R) is equal with the set

{p ∈ Spec R| dim R/p = d − 1 and Rad(a + p) = m}
∪ {p ∈ AsshRR| cd(a, R/p) = d − 1}.

Therefore, it follows from Theorem 3.7 and AsshRR ⊆ AttR Hd−1
a (R) that

AttR Hd−1
a (R)={p∈Spec R| dim R/p=d − 1 and Rad(a + p)=m} ∪ AsshRR,

as required. �

Remark 3.10. As a main result, it has been proved in [7, Theorem 2.3], if
(R,m) is a complete local ring of dimension d and a an ideal of R such that
dim R/a = 1 and Hd

a (R) = 0, then

AttR Hd−1
a (R)={p∈Spec R| dim R/p=d − 1 and Rad(a + p)=m} ∪ AsshRR.

The proof of [7, Theorem 2.3] relies heavily on [8, Theorems 2.4 and 2.5], and
these results are not true in the case that d = 1. Indeed, if (R,m) is a complete
local domain of dimension d = 1, then it is easy to see that these results are
not true. Thus [7, Theorem 2.3] needs correction, nevertheless their proofs are
valid in the case that d ≥ 2. However, Theorem 3.9 recovers the corrected
version of [7, Theorem 2.3].

We end the paper with the following question:

Question. (i) We have shown in Theorem 3.3 that for an ideal a of a Noetherian
ring R and a finitely generated R-module M of finite cohomological dimension
c,

AttR Hc
a(M) ⊆ {p ∈ SuppM | cd(a, R/p) = c}.

Is the above containment an equality?
(ii) In Theorem 2.3 we have determined AnnR(Hdim M

a (M))?. ? Is it possible
to determine ?? AnnR(Hcd(a?,?M)

a (M))?
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